Non-Native Freshwater Molluscs in the Neotropics: What Can Be Learned from Brazilian Reservoirs?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity of Echinostomes (Digenea: Echinostomatidae) in Their Snail Hosts at High Latitudes
Parasite 28, 59 (2021) Ó C. Pantoja et al., published by EDP Sciences, 2021 https://doi.org/10.1051/parasite/2021054 urn:lsid:zoobank.org:pub:9816A6C3-D479-4E1D-9880-2A7E1DBD2097 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Diversity of echinostomes (Digenea: Echinostomatidae) in their snail hosts at high latitudes Camila Pantoja1,2, Anna Faltýnková1,* , Katie O’Dwyer3, Damien Jouet4, Karl Skírnisson5, and Olena Kudlai1,2 1 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic 2 Institute of Ecology, Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania 3 Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, H91 T8NW, Galway, Ireland 4 BioSpecT EA7506, Faculty of Pharmacy, University of Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France 5 Laboratory of Parasitology, Institute for Experimental Pathology, Keldur, University of Iceland, IS-112 Reykjavík, Iceland Received 26 April 2021, Accepted 24 June 2021, Published online 28 July 2021 Abstract – The biodiversity of freshwater ecosystems globally still leaves much to be discovered, not least in the trematode parasite fauna they support. Echinostome trematode parasites have complex, multiple-host life-cycles, often involving migratory bird definitive hosts, thus leading to widespread distributions. Here, we examined the echinostome diversity in freshwater ecosystems at high latitude locations in Iceland, Finland, Ireland and Alaska (USA). We report 14 echinostome species identified morphologically and molecularly from analyses of nad1 and 28S rDNA sequence data. We found echinostomes parasitising snails of 11 species from the families Lymnaeidae, Planorbidae, Physidae and Valvatidae. -
Report to Office of Water Science, Department of Science, Information Technology and Innovation, Brisbane
Lake Eyre Basin Springs Assessment Project Hydrogeology, cultural history and biological values of springs in the Barcaldine, Springvale and Flinders River supergroups, Galilee Basin and Tertiary springs of western Queensland 2016 Department of Science, Information Technology and Innovation Prepared by R.J. Fensham, J.L. Silcock, B. Laffineur, H.J. MacDermott Queensland Herbarium Science Delivery Division Department of Science, Information Technology and Innovation PO Box 5078 Brisbane QLD 4001 © The Commonwealth of Australia 2016 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence Under this licence you are free, without having to seek permission from DSITI or the Commonwealth, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the source of the publication. For more information on this licence visit http://creativecommons.org/licenses/by/3.0/au/deed.en Disclaimer This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy. If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5725 Citation Fensham, R.J., Silcock, J.L., Laffineur, B., MacDermott, H.J. -
Toxicity of Three Commercial Tannins to the Nuisance Invasive Species Limnoperna Fortunei (Dunker, 1857): Implications for Control
© by PSP Volume 20 – No 6. 2011 Fresenius Environmental Bulletin TOXICITY OF THREE COMMERCIAL TANNINS TO THE NUISANCE INVASIVE SPECIES LIMNOPERNA FORTUNEI (DUNKER, 1857): IMPLICATIONS FOR CONTROL Patricio J. Pereyra1,*, Gustavo Bulus Rossini2 and Gustavo Darrigran1 1 GIMIP División Zoología de Invertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata, Argentina. 2 Centro de Investigaciones Medio Ambientales, CIC-PBA (1900) La Plata, Argentina. ABSTRACT habitats in the Neotropical region since there are no native freshwater bivalves that cause it [6]. Adding biocides to water is one strategy to control macrofouling organisms. A natural biocide that helps to Limnoperna fortunei infects man-made structures and prevent/control macrofouling of Limnoperna fortunei (Dun- causes macrofouling in three places in Southeast Asia: ker, 1857) on human installations is one way to minimize en- Hong Kong [9], Taiwan [10] and Japan [11]. In South Amer- vironmental impacts of different control strategies. Labora- ica, invasions have been recorded in various power stations tory tests were carried out to evaluate effects of three com- (nuclear, thermal and hydroelectric) [8], water treatment mercial tannis preparations (ECOTEC®-UA, ECOTEC®-L plants [6], and irrigation systems [7]. Among the many and ECOTEC®-MC) on the survival of two life-history problems caused by this species, the following are notewor- stages (larvae and adults) of L. fortunei. In addition tests thy: obstruction of filters and pipes, production of turbulent were performed on two non-target species, a crustacean flow, loss of hydraulic capacity and an increase in corrosion Daphnia magna and a plant Lactuca sativa, to evaluate [12]. -
Bayardella Burch, 1977
Bayardella Burch, 1977 Diagnostic features Snails with small neritiform or cylindrical shell with a low spire. The shell surface has raised spiral ribs and transverse striae, giving appearance of small, incised rectangles The aperture length is almost equal to the whole shell, and has a continuous periostracal fringe. The columellar margin is reflected and slightly curved, without a columellar fold. A deep umbilicus is present. The copulatory organ has an accessory bursa, but lacks a flagellum. A large muscular bulb is suspended from the proximal end of the praeputium, into which the duct of the accessory bursa opens. The anus lies on the anterior edge of rectal lobe. Classification Class Gastropoda Infraclass Heterobranchia Megaorder Hygrophila Order Lymnaeida Superfamily Planorboidea Family Planorbidae Subfamily: Miratestinae Genus Bayardella Burch, 1977 Type species: Plesiophysa (Bayardella) johni Burch, 1977 Original reference: Burch, J.B. (1977). A new freshwater snail (Basommatophora : Planorbidae) from Australia, Plesiophysa (Bayardella) johni. Malacological Review 10: 79-80. Type locality: sdell River, Walcott nlet, north Western Australia. State of taxonomy We follow Walker (1988). We know of at least one undescribed species of Bayardella. Biology and ecology Under wood and stones, in streams and waterholes. At least one species (B. cosmeta) capable of aestivation (Smith and Burn, 1976); biology otherwise unstudied. Distribution Northern, central and eastern Australian mainland. Notes Only Glyptophysa (Glyptophysa) aliciae has similar heavy periostracal spiral ridges. Bayardella has a narrower and much smaller spire and a less distinct shoulder and is smaller in size than G. (G) aliciae. Bayardella also has a much larger aperture compared to G. (G) aliciae. -
1 Invasive Species in the Northeastern and Southwestern Atlantic
This is the author's accepted manuscript. The final published version of this work (the version of record) is published by Elsevier in Marine Pollution Bulletin. Corrected proofs were made available online on the 24 January 2017 at: http://dx.doi.org/10.1016/j.marpolbul.2016.12.048. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher. Invasive species in the Northeastern and Southwestern Atlantic Ocean: a review Maria Cecilia T. de Castroa,b, Timothy W. Filemanc and Jason M Hall-Spencerd,e a School of Marine Science and Engineering, University of Plymouth & Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. [email protected]. +44(0)1752 633 100. b Directorate of Ports and Coasts, Navy of Brazil. Rua Te filo Otoni, 4 - Centro, 20090-070. Rio de Janeiro / RJ, Brazil. c PML Applications Ltd, Prospect Place, Plymouth, PL1 3DH, UK. d Marine Biology and Ecology Research Centre, Plymouth University, PL4 8AA, UK. e Shimoda Marine Research Centre, University of Tsukuba, Japan. Abstract The spread of non-native species has been a subject of increasing concern since the 1980s when human- as a major vector for species transportation and spread, although records of non-native species go back as far as 16th Century. Ever increasing world trade and the resulting rise in shipping have highlighted the issue, demanding a response from the international community to the threat of non-native marine species. In the present study, we searched for available literature and databases on shipping and invasive species in the North-eastern (NE) and South-western (SW) Atlantic Ocean and assess the risk represented by the shipping trade between these two regions. -
Gastropoda: Physidae) in Singapore
BioInvasions Records (2015) Volume 4, Issue 3: 189–194 Open Access doi: http://dx.doi.org/10.3391/bir.2015.4.3.06 © 2015 The Author(s). Journal compilation © 2015 REABIC Research Article Clarifying the identity of the long-established, globally-invasive Physa acuta Draparnaud, 1805 (Gastropoda: Physidae) in Singapore Ting Hui Ng1,2*, Siong Kiat Tan3 and Darren C.J. Yeo1,2 1Department of Biological Sciences, National University of Singapore 14 Science Drive 4, Singapore 117543, Republic of Singapore 2NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Republic of Singapore 3Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Republic of Singapore E-mail: [email protected] (THN), [email protected] (SKT), [email protected] (DCJY) *Corresponding author Received: 24 December 2014 / Accepted: 6 May 2015 / Published online: 2 June 2015 Handling editor: Vadim Panov Abstract The freshwater snail identified as Physastra sumatrana has been recorded in Singapore since the late 1980’s. It is distributed throughout the island and commonly associated with ornamental aquatic plants. Although the species has previously been considered by some to be native to Singapore, its origin is currently categorised as unknown. Morphological comparisons of freshly collected specimens and material in museum collections with type material, together with DNA barcoding, show that both Physastra sumatrana, and a recent gastropod record of Stenophysa spathidophallus, in Singapore are actually the same species—the globally-invasive Physa acuta. An unidentified physid snail was also collected from the Singapore aquarium trade. -
Identifying Liver Fluke Snails
Identifying liver fluke snails March 2017, Primefact 476, second edition Dr Joan Lloyd, former Veterinary Research Officer, EMAI Dr Joseph C Boray, former Principal Research Scientist, EMAI Dr Noel Campbell, former Senior Research Scientist, Department of Primary Industries, Victoria (Revised by) Stephen Love, Veterinarian/Research Officer (Parasitology), Sheep Industries, Armidale Introduction Finding liver fluke snails In NSW, about 20 million sheep and 2 million Liver fluke snails live in the mud or on plants in cattle graze pastures where liver fluke (Fasciola shallow water at the edge of springs, small hepatica) commonly occurs. Liver fluke is creeks, dam inflows and outflows, irrigation widespread across eastern NSW, where average channels, poorly drained drainage channels or in rainfall is about 600 mm or more a year. water troughs. They are small and sometimes Specifically, it occurs on the tablelands and difficult to find. nearby slopes, and the north and south coasts. It The kind of habitat in which the snail is found is also found in irrigation areas further west, often gives clues as to which type it is. For where the annual rainfall may only be 400 mm, example, Austropeplea (Lymnaea) tomentosa but is supplemented by regular irrigation. prefers trickling creeks flowing from hillside During its life cycle, liver fluke must develop in a springs and soaks (black bogs), and is only rarely particular type of small freshwater snail. found in dams, water troughs or large creeks. It can, however, be found in dam overflows after In Australia, the most important intermediate host heavy rain, or within spring-fed dam inflows and is the indigenous freshwater snail, Austropeplea outflows. -
Gonad Transcriptome of Golden Mussel Limnoperna Fortunei Reveals Potential Sex Differentiation Genes
bioRxiv preprint doi: https://doi.org/10.1101/818757; this version posted November 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Gonad transcriptome of golden mussel Limnoperna fortunei reveals potential sex differentiation genes LUANA FERREIRA AFONSO1 AND JULIANA ALVES AMERICO2GIORDANO BRUNO SOARES-SOUZA3ANDRÉ LUIZ QUINTANILHA TORRES1INÊS JULIA RIBAS WAJSENZON1MAURO DE FREITAS REBELO1,* 1Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, RJ, Brazil 2Bio Bureau Biotechnology, Rio de Janeiro, RJ, Brazil 3SENAI Innovation Institute for Biosynthetics, National Service for Industrial Training, Center of the Chemical and Textile Industry (SENAI CETIQT), Rio de Janeiro, RJ, Brazil *Corresponding author: [email protected] The golden mussel Limnoperna fortunei is an Asian invasive bivalve that threats aquatic biodiversity and causes economic damage, especially to the hydroelectric sector in South America. Traditional control methods have been inefficient to stop the advance of the invasive mollusk, which currently is found in 40% of Brazilian hydroelectric power plants. In order to develop an effective strategy to stop golden mussel infestations, we need to better understand its reproductive and sexual mechanisms. In this study, we sequenced total RNA samples from male and female golden mussel gonads in the spawning stage. A transcriptome was assembled resulting in 200,185 contigs with 2,250 bp N50 and 99.3% completeness. Differential expression analysis identified 3,906 differentially expressed transcripts between the sexes. -
A Risk Assessment of the Golden Mussel, Limnoperna Fortunei (Dunker, 1857) for Ontario, Canada
Management of Biological Invasions (2017) Volume 8, Issue 3: 383–402 DOI: https://doi.org/10.3391/mbi.2017.8.3.12 Open Access © 2017 The Author(s). Journal compilation © 2017 REABIC Special Issue: Management of Invasive Species in Inland Waters Risk Assessment A risk assessment of the golden mussel, Limnoperna fortunei (Dunker, 1857) for Ontario, Canada Gerald L. Mackie1,* and Jeff K. Brinsmead2 123 Avra Court, Guelph, Ontario, N1H 7B2 Canada 2Ontario Ministry of Natural Resources and Forestry, 300 Water Street, 2nd Floor South, Peterborough, ON K9J 8M5 Canada Author e-mails: [email protected] (GLM), [email protected] (JKB) *Corresponding author Received: 26 September 2016 / Accepted: 8 May 2017 / Published online: 24 June 2017 Handling editor: Frank Collas Editor’s note: This study was first presented at the 19th International Conference on Aquatic Invasive Species held in Winnipeg, Canada, April 10–14, 2016 (http://www.icais.org/html/previous19.html). This conference has provided a venue for the exchange of information on various aspects of aquatic invasive species since its inception in 1990. The conference continues to provide an opportunity for dialog between academia, industry and environmental regulators. Abstract The golden mussel, Limnoperna fortunei, is an epibenthic mytilid native to freshwaters of China and south-eastern Asia. It became established in Hong Kong in 1965, in Japan in the 1990’s and South America in 1991 through ballast water discharge into the La Plata River basin in Argentina. It has since expanded to Bolivia, Paraguay, Uruguay, and Brazil in South America. Populations have steadily increased in these countries since their first reported incidence. -
Mollusca: Gastropoda) from Islands Off the Kimberley Coast, Western Australia Frank Köhler1, Vince Kessner2 and Corey Whisson3
RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 27 021–039 (2012) New records of non-marine, non-camaenid gastropods (Mollusca: Gastropoda) from islands off the Kimberley coast, Western Australia Frank Köhler1, Vince Kessner2 and Corey Whisson3 1 Department of Environment and Conservation of Western Australia, Science Division, PO Box 51, Wanneroo, Western Australia 6946; and Australian Museum, 6 College Street, Sydney, New South Wales 2010, Australia. Email: [email protected] 2 162 Haynes Road, Adelaide River, Northern Terrritory 0846, Australia. Email: [email protected] 3 Department of Aquatic Zoology, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia 6106, Australia. Email: [email protected] ABSTRACT – The coast of the Western Australian Kimberley boasts an archipelago that comprises several hundred large islands and thousands much smaller. While the non–marine gastropod fauna of the Kimberley mainland has been surveyed to some extent, the fauna of these islands had never been comprehensively surveyed and only anecdotal and unsystematic data on species occurrences have been available. During the Western Australian Department of Environment and Conservation’s Kimberley Island Survey, 2008–2010, 22 of the largest islands were surveyed. Altogether, 17 species of terrestrial non–camaenid snails were found on these islands. This corresponds to about 75% of all terrestrial, non–camaenid gastropods known from the entire Kimberley region. In addition, four species of pulmonate freshwater snails were found to occur on one or more of four of these islands. Individual islands harbour up to 15, with an average of eight, species each. Species diversity was found to be higher in the wetter parts of the region. -
Conservation Advice for the Karst Springs and Associated Alkaline Fens of the Naracoorte Coastal Plain Bioregion
The Threatened Species Scientific Committee provided their advice to the Minister on 31 July 2020. The Minister approved this Conservation Advice on 3 December 2020 and agreed that no recovery plan is required at this time. Conservation Advice1 for the Karst springs and associated alkaline fens of the Naracoorte Coastal Plain Bioregion This document combines the approved conservation advice and listing assessment for the threatened ecological community. It provides a foundation for conservation action and further planning. Karst springs and alkaline fens, Ewen Ponds © Copyright, Anthony Hoffman Conservation Status The Karst springs and associated alkaline fens of the Naracoorte Coastal Bioregion is listed in the Endangered category of the threatened ecological communities list under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). The ecological community was assessed by the Threatened Species Scientific Committee, who found it to be eligible for listing as Endangered and recommended that a recovery plan is not required at this time. The Committee’s assessment and recommendations are at Section 6. The Committee’s assessment of the eligibility against each of the listing criteria is: Criterion 1: Vulnerable Criterion 2: Endangered Criterion 3: Insufficient data Criterion 4: Endangered Criterion 5: Insufficient data Criterion 6: Insufficient data The main factors that make the threatened ecological community eligible for listing in the Endangered category are its historic losses to drainage, clearing and resulting fragmentation, and ongoing threats to its integrity and function, particularly from hydrological changes. The Karst springs and associated alkaline fens of the Naracoorte Coastal Plain Bioregion occurs within country (the traditional lands) of the Boandik and the Gunditjmara peoples. -
Correcting Misidentifications and First Confirmation of the Globally-Invasive Physa Acuta Draparnaud, 1805 (Gastropoda: Physidae) in Thailand and Laos
BioInvasions Records (2018) Volume 7, Issue 1: 15–19 Open Access DOI: https://doi.org/10.3391/bir.2018.7.1.03 © 2018 The Author(s). Journal compilation © 2018 REABIC Rapid Communication Correcting misidentifications and first confirmation of the globally-invasive Physa acuta Draparnaud, 1805 (Gastropoda: Physidae) in Thailand and Laos Ting Hui Ng1,*, Yanin Limpanont2, Yupa Chusongsang2, Phirapol Chusongsang2 and Somsak Panha1,* 1Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 2Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand Author e-mails: [email protected] (THN), [email protected] (YL), [email protected] (YC), [email protected] (PC), [email protected] (SP) *Corresponding authors Received: 11 September 2017 / Accepted: 14 December 2017 / Published online: 27 January 2018 Handling editor: Kenneth Hayes Abstract Introduced freshwater gastropods in the Indo-Burmese region may be under-documented owing to a lack of research attention. For the first time, we report on the widespread establishment of the globally invasive freshwater snail Physa acuta (Physidae) in Thailand and Laos, including decades old records that had previously been misidentified as Camptoceras jiraponi (Planorbidae). Occurrence of Physa acuta as hitchhikers among ornamental aquatic plants suggests that the ornamental trade was a likely introduction pathway of the species into Thailand. That a globally invasive species was able to spread unnoticed for such a long period of time highlights the need for countries like Thailand to focus research efforts on prevention and early detection of introduced species, in addition to increasing our understanding of native biodiversity.