Combination Cancer Chemotherapy Regimens

Total Page:16

File Type:pdf, Size:1020Kb

Combination Cancer Chemotherapy Regimens Guide to Combination Cancer Chemotherapy Regimens Dominic A. Solimando, Jr. J. Aubrey Waddell A Thomas Land Publication CONTENTS ABBREVIATIONS ...........................................................................ix INTRODUCTION ............................................................................xi REGIMENS 1. BREAST Cyclophosphamide, Doxorubicin, and Fluorouracil (CAF, FAC). 1 Cyclophosphamide, Methotrexate, and Fluorouracil (CMF) .............................................4 Docetaxel and Capecitabine (DC) ...............................................................8 Docetaxel and Carboplatin (AUC = 6) (DC) ........................................................12 Docetaxel and Cisplatin (DP) ..................................................................16 Docetaxel, Doxorubicin, and Cyclophosphamide (TAC) ..............................................24 Dose Dense Doxorubicin and Cyclophosphamide Followed by Paclitaxel .................................28 Doxorubicin and Cyclophosphamide ............................................................31 Doxorubicin and Cyclophosphamide Followed by Docetaxel ..........................................33 Doxorubicin and Docetaxel ...................................................................37 Fluorouracil, Epirubicin, and Cyclophosphamide (FEC50) (FEC) ........................................42 Fluorouracil, Epirubicin, and Cyclophosphamide (FEC100) (FEC) .......................................46 Gemcitabine and Capecitabine ................................................................49 Ixabepilone and Capecitabine (IC) ..............................................................53 Lapatinib and Capecitabine. 56 Paclitaxel and Gemcitabine. 59 Pemetrexed and Carboplatin (PC) ..............................................................63 2. GASTROINTESTINAL Gemcitabine and Capecitabine (Biliary, Gallbladder) ................................................67 Irinotecan and Cisplatin (IP) (Gastroesophageal) ...................................................71 Colon/Colorectal Capecitabine plus Oxaliplatin (XelOx/CapOx) ......................................................75 Fluorouracil, Leucovorin, and Irinotecan (FOLFIRI) .................................................79 High-Dose Fluorouracil and Leucovorin ..........................................................82 Irinotecan, Fluorouracil, and Leucovorin .........................................................86 Leucovorin, Fluorouracil, and Oxaliplatin (FOLFOX 4) ................................................89 Leucovorin, Fluorouracil, and Oxaliplatin (FOLFOX 6 and 7). 93 Protracted Venous Infusion Fluorouracil. .97 Weekly Fluorouracil and Leucovorin ...........................................................100 Gastric Docetaxel and Capecitabine (DC) .............................................................103 Docetaxel and Cisplatin (DP) .................................................................107 Docetaxel, Cisplatin, and Fluorouracil (DCF) .....................................................115 Epirubicin, Cisplatin and Capecitabine (ECX) .....................................................119 iii iv Contents Epirubicin, Cisplatin, and Fluorouracil (ECF) ......................................................123 Fluorouracil, Doxorubicin, and Mitomycin (FAM) ..................................................130 Irinotecan and Cisplatin (IP). 134 Esophageal Docetaxel and Capecitabine (DC) .............................................................138 Docetaxel and Cisplatin (DP) .................................................................142 Irinotecan and Cisplatin (IP). 150 Pancreatic Fluorouracil, Doxorubicin, and Mitomycin (FAM) ..................................................154 Gemcitabine and Capecitabine ...............................................................158 3. GENITOURINARY Docetaxel and Cisplatin (DP) (Urothelial) ........................................................162 Gemcitabine and Capecitabine (Renal Cell) ......................................................170 Bladder Intravesical Doxorubicin ....................................................................174 Intravesical BCG ..........................................................................180 Intravesical Gemcitabine ....................................................................182 Intravesical Mitomycin .....................................................................184 Methotrexate, Vinblastine, Doxorubicin, and Cisplatin (MVAC) ........................................190 Prostate Docetaxel and Capecitabine (DC) .............................................................197 Docetaxel and Estramustine .................................................................201 Docetaxel and Prednisone (DP) ...............................................................205 Gemcitabine and Capecitabine ...............................................................208 Mitoxantrone and Prednisone (MP) ............................................................212 Taxanes and Estramustine ..................................................................214 Testicular Bleomycin, Etoposide, and Cisplatin (BEP) .......................................................218 Cisplatin and Ifosfamide With Either Vinblastine or Etoposide (VIP) .....................................221 Etoposide and Cisplatin .....................................................................225 4. GYNECOLOGIC Docetaxel and Carboplatin (AUC = 6) (DC) (Cervical) ...............................................228 Gestational Trophoblastic Neoplasm Etoposide, Methotrexate, Actinomycin, Cyclophosphamide, and Vincristine (EMA/CO) ......................232 Hydroxyurea, Dactinomycin, Vincristine, Leucovorin, Cyclophosphamide, and Doxorubicin (Modified Bagshawe Regimen). .235 Ovarian Docetaxel and Carboplatin (AUC = 6) (DC) .......................................................238 Docetaxel and Carboplatin (AUC = 5) (DC) .......................................................242 Docetaxel and Cisplatin (DP) .................................................................245 Liposomal Doxorubicin .....................................................................253 Pemetrexed and Carboplatin (PC) .............................................................255 Contents v 5. HEAD AND NECK Cisplatin and Continuous Infusion Fluorouracil (CF) ................................................259 Docetaxel and Carboplatin (AUC = 6) (DC) .......................................................265 Docetaxel and Cisplatin (DP) .................................................................269 Docetaxel, Cisplatin, and Fluorouracil (DCF) .....................................................277 Docetaxel, Cisplatin, and Fluorouracil (TCF) ......................................................281 6. LUNG Carboplatin and Etoposide (CE) ...............................................................283 Cisplatin and Pemetrexed ...................................................................286 Docetaxel and Capecitabine (DC) .............................................................290 Docetaxel and Cisplatin (DP) .................................................................294 Etoposide and Cisplatin (EP) .................................................................302 Gemcitabine and Cisplatin (GC) ...............................................................305 Irinotecan and Carboplatin (IC) ...............................................................309 Irinotecan and Cisplatin (IP). 313 Paclitaxel and Carboplatin (PC or TC). 317 Pemetrexed and Carboplatin (PC) .............................................................320 Vinorelbine and Cisplatin (VC) ................................................................324 7. LEUKEMIAS Acute Lymphocytic (ALL) Hyper-fractionated Cyclophosphamide, Vincristine, Doxorubicin, and Dexamethasone Alternating With Methotrexate and Cytarabine (Hyper-CVAD). .328 Prednisone, Asparaginase, Vincristine, Daunorubicin, Cyclophosphamide, Cytarabine, Thioguanine, Mercaptopurine, and Methotrexate (Hoelzer Regimen) ...........................................332 Prednisone, Vincristine, Daunorubicin, and Asparaginase (PVDA) ......................................337 Acute Myelogenous (AML) Cytarabine and Daunorubicin (7 plus 3) .........................................................340 Cytarabine and Idarubicin (7 + 3) .............................................................342 Fludarabine, Cytarabine, and Filgrastim (FLAG) ...................................................345 High-Dose Cytarabine (HIDAC) ...............................................................348 High-Dose Cytarabine (HIDAC) Plus Daunorubicin .................................................350 Chronic Lymphocytic (CLL) Cyclophosphamide, Fludarabine, and Rituximab (CFR, FCR). 353 Cyclophosphamide, Vincristine, and Prednisone ..................................................356 8. LYMPHOMAS Hodgkin Lymphoma Bleomycin, Etoposide, Doxorubicin, Cyclophosphamide, Vincristine, Procarbazine, and Prednisone (BEACOPP(BASELINE)) ......360 Bleomycin, Etoposide, Doxorubicin, Cyclophosphamide, Vincristine, Procarbazine, and Prednisone (BEACOPP(ESCALATED)). .365 Doxorubicin, Bleomycin, Vinblastine, and Dacarbazine (ABVD) ........................................369 Mechlorethamine, Vincristine, Procarbazine, and Prednisone (MOPP) ..................................373 MOPP/ABVD
Recommended publications
  • Hodgkin Lymphoma Treatment Regimens
    HODGKIN LYMPHOMA TREATMENT REGIMENS (Part 1 of 5) Clinical Trials: The National Comprehensive Cancer Network recommends cancer patient participation in clinical trials as the gold standard for treatment. Cancer therapy selection, dosing, administration, and the management of related adverse events can be a complex process that should be handled by an experienced health care team. Clinicians must choose and verify treatment options based on the individual patient; drug dose modifications and supportive care interventions should be administered accordingly. The cancer treatment regimens below may include both U.S. Food and Drug Administration-approved and unapproved indications/regimens. These regimens are provided only to supplement the latest treatment strategies. These Guidelines are a work in progress that may be refined as often as new significant data become available. The NCCN Guidelines® are a consensus statement of its authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult any NCCN Guidelines® is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The NCCN makes no warranties of any kind whatsoever regarding their content, use, or application and disclaims any responsibility for their application or use in any way. Classical Hodgkin Lymphoma1 Note: All recommendations are Category 2A unless otherwise indicated. Primary Treatment Stage IA, IIA Favorable (No Bulky Disease, <3 Sites of Disease, ESR <50, and No E-lesions) REGIMEN DOSING Doxorubicin + Bleomycin + Days 1 and 15: Doxorubicin 25mg/m2 IV push + bleomycin 10units/m2 IV push + Vinblastine + Dacarbazine vinblastine 6mg/m2 IV over 5–10 minutes + dacarbazine 375mg/m2 IV over (ABVD) (Category 1)2-5 60 minutes.
    [Show full text]
  • Vincristine (Conventional): Drug Information
    Official reprint from UpToDate® www.uptodate.com ©2017 UpToDate® Vincristine (conventional): Drug information Copyright 1978-2017 Lexicomp, Inc. All rights reserved. (For additional information see "Vincristine (conventional): Patient drug information" and see "Vincristine (conventional): Pediatric drug information") For abbreviations and symbols that may be used in Lexicomp (show table) Special Alerts Vincristine Sulfate Safety Alert October 2015 Health Canada is notifying health care providers that certain lots of Hospira’s vincristine sulfate 1 mg/mL injection (DIN 02183013: 2 mL vial, list #7077A001; 5 mL vial, list #7082A001) have incorrect or outdated safety information on the inner/outer labels and package insert, which may increase the risk to patients and may result in significant patient harm requiring medical intervention. These warnings include: - Vincristine should only be administered by the intravenous (IV) route. Administration of vincristine by any other route can be fatal. - Syringes containing this product should be labeled “Warning - for IV use only.” - Extemporaneously prepared syringes containing this product must be packaged in an overwrap which is labeled “Do not remove covering until moment of injection. For IV use only - fatal if given by other routes.” - Contraindication of vincristine in patients with demyelinating Charcot-Marie-Tooth syndrome. - Potential risk of acute shortness of breath when vincristine is coadministered with mitomycin-C and GI toxicities including necrosis with administration of vincristine. Health care providers are requested to consult with the approved Canadian product monograph for vincristine sulfate 1 mg/mL for the most updated information. Consumers with questions should contact their health care provider for more information. ALERT: US Boxed Warning Experienced physician: Vincristine should be administered by individuals experienced in the administration of the drug.
    [Show full text]
  • HODGKIN LYMPHOMA TREATMENT REGIMENS (Part 1 of 2)
    HODGKIN LYMPHOMA TREATMENT REGIMENS (Part 1 of 2) The selection, dosing, and administration of anticancer agents and the management of associated toxicities are complex. Drug dose modifications and schedule and initiation of supportive care interventions are often necessary because of expected toxicities and because of individual patient variability, prior treatment, and comorbidities. Thus, the optimal delivery of anticancer agents requires a healthcare delivery team experienced in the use of such agents and the management of associated toxicities in patients with cancer. The cancer treatment regimens below may include both FDA-approved and unapproved uses/regimens and are provided as references only to the latest treatment strategies. Clinicians must choose and verify treatment options based on the individual patient. NOTE: GREY SHADED BOXES CONTAIN UPDATED REGIMENS. REGIMEN DOSING Classical Hodgkin Lymphoma—First-Line Treatment General treatment note: Routine use of growth factors is not recommended. Leukopenia is not a factor for treatment delay or dose reduction (except for escalated BEACOPP).1 CR=complete response IPS=International Prognostic Score PD=progressive disease PFTs=pulmonary function tests PR=partial response RT=radiation therapy SD=stable disease Stage IA, IIA Favorable ABVD (doxorubicin [Adriamycin] Days 1 and 15: Doxorubicin 25mg/m2 IV + bleomycin 10mg/m2 IV + vinblastine + bleomycin + vinblastine + 6mg/m2 IV + dacarbazine 375mg/m2 IV. dacarbazine [DTIC-Dome]) + Repeat cycle every 4 weeks for 2–4 cycles. involved-field radiotherapy (IFRT)1–4 Follow with IFRT after completion of chemotherapy. Abbreviated Stanford V Weeks 1, 3, 5 and 7: Vinblastine 6mg/m2 IV + doxorubicin 25mg/m2 IV. (doxorubicin + vinblastine + Weeks 1 and 5: Mechlorethamine 6mg/m2.
    [Show full text]
  • Effect of Human Fibroblast Interferon on the Antiviral Activity of Mammalian Cells Treated with Bleomycin, Vincristine, Or Mitomycin C1
    [CANCER RESEARCH 43, 5462-5466. November 1983] Effect of Human Fibroblast Interferon on the Antiviral Activity of Mammalian Cells Treated with Bleomycin, Vincristine, or Mitomycin C1 Robert J. Suhadolnik,2 Yosuke Sawada,3 Maryann B. Flick, Nancy L. Reichenbach, and Joseph D. Mosca3 Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 ABSTRACT protein kinase (2,9,28,34,36). In addition to the use of interferon in the treatment of cancer (1, 11, 12, 29, 34), combination Bleomycin, vincristine, or mitomycin C, when added to HeLa chemotherapy of interferon and methotrexate, c/s-platinum diam- cells simultaneously with human fibroblast interferon (IFN-0), minedichloride, cyclophosphamide, or 1,3-bis(/i-chloroethyl)-1- caused a decrease in cell density and inhibited DMA synthesis nitrosourea on either tumor cells in culture or in leukemic mice compared with HeLa cells treated with IFN-/3 alone. However, has been reported (5, 7, 10, 25). Furthermore, Stolfi ef al. (37) the IFN-0-induced antiviral processes were unaffected by the reported recently that the administration of mouse interferon to presence of these drugs as determined by in vitro enzyme assays mice following the administration of 5-fluorouracil protected the and the development of the antiviral state in the intact HeLa cell. mice from mortality. Because it is possible to selectively inhibit HeLa cells treated with IFN-/Õalone or with IFN-/3 in combination proliferation of tumor cells with chemotherapeutic drugs, we with bleomycin, vincristine, or mitomycin C were able to induce reasoned that the ability of the normal cell to maintain the antiviral the double-stranded RNA-dependent adenosine triphos- phate:2',5'-oligoadenylic acid adenyltransferase (EC 2.2.2.-) and state might be adversely affected by such drugs and that the antiproliferative action of interferons might affect the activity of the double-stranded RNA-dependent protein kinase.
    [Show full text]
  • Highlights from the Pan Pacific Lymphoma Conference
    October 2011 A SPECIAL MEETING REVIEW EDITION Volume 9, Issue 10, Supplement 24 Highlights From the Pan Pacific Lymphoma Conference August 15–19, 2011 Kauai, Hawaii Special Reporting on: • Aggressive T-Cell Lymphomas • Novel Agents With Activity in CLL/SLL • PTCL—Update on Novel Therapies • Agents Targeting the Stromal Elements of the Lymph Node • Inducing Apoptosis in Lymphoma Cells Through Novel Agents With Expert Commentary by: Bruce D. Cheson, MD Deputy Chief Division of Hematology-Oncology Head of Hematology Lombardi Comprehensive Cancer Center Georgetown University Hospital Washington, DC Eb: E W Th O N www.clinicaladvances.com ENGINEERING T H E N E X T GENERATION OF ANTIBODY-DRUG CONJUGATES 003203_sgncor_adcadvcaho_fa4.indd 2 8/25/11 11:13 AM An innovative approach to improving outcomes in patients with cancer Antibody-drug conjugates (ADCs) use a conditionally stable linker to combine the targeting specificity of monoclonal antibodies with the tumor-killing power of potent cytotoxic agents.1,2 This could allow potent drugs to be delivered directly to tumor cells with minimal systemic toxicity. Optimizing the parameters for clinical success Scientists at Seattle Genetics are focused on parameters critical to the effective performance of ADCs, including target antigen selection,3,4 linker stability5-7 and potent cytotoxic agents.4,7,8 Elements of an antibody-drug conjugate Linker ADCs link precision and Antibody attaches the cytotoxic agent to specific for a tumor-associated the antibody. Newer linker potency for greater activity
    [Show full text]
  • Eliminating Vincristine Administration Events
    Issue 37 October 2017 Eliminating vincristine administration events Issue: Despite the usually deadly consequences of accidentally administering the chemotherapy drug vincristine intrathecally, adverse events still occur, typically because some organizations still administer vincristine via syringe. The good news is that these events are happening less in the United States, mostly because of the efforts of leading national organizations to promote an effective prevention strategy that assures a mechanical barrier to intrathecal administration (into the subarachnoid space). The strategy involves diluting intravenous vincristine or other vinca alkaloids in a minibag that contains a volume that is too large for intrathecal administration (e.g., 25 mL for pediatric patients and 50 mL for adults), making it mechanically difficult to accidentally administer intrathecally.1 Vinca alkaloids (vinblastine, vinorelbine, vincristine, and vincristine liposomal) are chemotherapy drugs that are intended to be administered intravenously. If given intrathecally, vincristine is nearly always fatal and associated with an irreversible, painful ascending paralysis.2 When vinca alkaloids are injected intrathecally, destruction of the central nervous system occurs, radiating out from the injection site. The few survivors of this adverse event experienced devastating neurological damage.1 Part of the problem stems from ordering intravenous vincristine in conjunction with medications that are administered intrathecally via a syringe, such as methotrexate, cytarabine and hydrocortisone. In some adverse events, vincristine was mistakenly injected into the cerebrospinal fluid (CSF) of patients when the intent was to inject another intrathecal chemotherapy agent, such as methotrexate or cytarabine.3 Intravenous vincristine and other vinca alkaloids are dispensed from the pharmacy with explicit warning labels about their lethality if given intrathecally.
    [Show full text]
  • Vincristine Archive File
    Vincristine archive file Vincristine is a vinakaloid, which was first discovered 1958 in the tropical plant Catharanthus roseus, native in Madagascar. Its ability to inhibit the metaphase of the mitosis by suppressing the polymerization of the microtubule makes it very important as a chemotherapeutic agent, especially against non-Hodgkin lymphomas and Wilms' tumor. History: Vinblastine and Vincristine are bisindole alkaloids and both widely known for their use as antitumor drugs. In former times they were isolated in trace quantities from the leaves of Catharanthus roseus. Because of their importance in the medical field numerous researches were examining the structure, use and synthesis of Vinblastine, Vincristine and their derivates. Their biological effect to inhibit the microtubule formation and mitosis was and still is a very important part of medical cancer therapy. They were both among the first natural products whose structures were identified by X-ray crystallography and among the first for which X-ray analysis of a heavy atom derivative was used to establish their absolute configuration. ( 2) Timeline: 1958 Vinblastine was first discovered as an unexpected myelosuppressive agent by Noble, R. L., C. T. Beer, and J. H. Cutts during the search for an antidiabetic agent in Catharanthus roseus (myelosupression decreased activity of the bone marrow) 1959 independendently researchers from Eli Lilly (Johnson, I. S., J. G. Armstrong, M. Gorman, and J. P. Burnett, Jr.)discovered that the extracts of C. roseus Possesses activity against
    [Show full text]
  • Procarbazine
    Procarbazine DRUG NAME: Procarbazine SYNONYM(S): COMMON TRADE NAME(S): MATULANE® CLASSIFICATION: alkylating agent Special pediatric considerations are noted when applicable, otherwise adult provisions apply. MECHANISM OF ACTION: Procarbazine is a cell cycle phase-nonspecific1 pro-drug and derivative of hydrazine whose mechanism of action has not yet been clearly defined. Procarbazine may act by inhibiting protein, RNA, and DNA synthesis,2-4 and by causing free-radical damage to DNA and inhibition of mitosis.3,5 Procarbazine also has monoamine oxidase (MAO) inhibiting properties2,3 and is an immunosuppressive agent.2 Cross resistance with other chemotherapy agents has not been demonstrated.2 PHARMACOKINETICS: Oral Absorption rapid and complete; peak plasma concentration in 1 h Distribution rapid distribution including into liver, kidneys, intestinal wall, and skin3 cross blood brain barrier? yes volume of distribution no information found plasma protein binding no information found Metabolism complex spontaneous chemical decomposition and biotransformation to active metabolites,3,6 primarily in the liver3 via cytochrome P450 oxidoreductase and mitochondrial monoamine oxidase7 active metabolite(s)3,5,6,8 yes; including azo-and methylazoxy-metabolites and hydrogen peroxide inactive metabolite(s)2,9 yes; including N-isopropyl-terephthalmamic acid Excretion primarily hepatic with some renal2,3 and pulmonary10 elimination urine2-4 25-70% in 24 h primarily as N-isopropyl- terephthalmamic acid; <5-20% unchanged feces7 minimal terminal half life3,4
    [Show full text]
  • Differential Activity of Vincristine and Vinblastine Against Cultured Cells1 ;
    [CANCER RESEARCH 44, 3307-3312, August 1984] Differential Activity of Vincristine and Vinblastine against Cultured Cells1 ; Peter J. Ferguson,2 J. Robert Phillips, Milada Seiner, and Carol E. Cass3 Cancer Research Group (McEachern Laboratory) [P. J. F., J. Ft. P., M. S., C. E. C.] and Department of Biochemistry [P. J. F., C. E. C.¡,University of Alberta, Edmonton, Alberta, Canada T6G 2H7 ABSTRACT determine if differential activity is related to differences in uptake4 or release of drug. Included were cells from these established Vincristine and vinblastine exhibit differential activity against lines: mouse neuroblastoma; mouse leukemia L1210; mouse tumors and normal tissues. In this work, a number of cultured lymphoma S49; HeLa; and human promyelocytic leukemia HL- cell lines were assayed for their sensitivity to the antiproliferative 60. Drug sensitivity in each cell line was determined by assaying and cytotoxic effects of the two drugs following short-term (4 hr) inhibition of proliferation during a continuous exposure to either or during continuous exposures. Differential activity was not drug or by assaying colony formation following a 24-hr exposure. seen when cells were subjected to continuous exposures. The Because of rapid loss of Vinca alkaloids from human serum concentrations of Vincristine and vinblastine, respectively, that following an i.v. bolus injection (11, 12,14, 17), the sensitivity of inhibited growth rates by 50% were: mouse leukemia L1210 cells to short-term (1- and 4-hr) exposures was also determined cells, 4.4 and 4.0 nw; mouse lymphoma S49 cells, 5 and 3.5 nM; for both drugs. Although there were differences in sensitivity to mouse neuroblastoma cells, 33 and 15 nw; HeLa cells, 1.4 and vincristine and vinblastine between cell lines, there was little or 2.6 nw; and human leukemia HL-60 cells, 4.1 and 5.3 nM.
    [Show full text]
  • Methotrexate / Vincristine / Leucovorin / Procarbazine (Cycles 1,3,5)
    Protocol Index IP DEANGELIS WITH RITUXIMAB - METHOTREXATE / VINCRISTINE / LEUCOVORIN / PROCARBAZINE (CYCLES 1,3,5) Types: ONCOLOGY TREATMENT Synonyms: PRIMARY, CENTRAL, CNS, LYMPH, MTX, ONCOV, METHOT, VINCR, PROCARB, DEANGELIS, DEAN, RITUX Cycle 1 Repeat 1 time Cycle length: 14 days Day 1 Perform every 1 day x1 Labs ☑ COMPREHENSIVE METABOLIC PANEL Interval: Once Occurrences: -- ☑ CBC WITH PLATELET AND DIFFERENTIAL Interval: Once Occurrences: -- ☑ MAGNESIUM LEVEL Interval: Once Occurrences: -- ☑ LDH Interval: Once Occurrences: -- ☑ URIC ACID LEVEL Interval: Once Occurrences: -- ☑ PHOSPHORUS LEVEL Interval: Once Occurrences: -- Labs ☑ METHOTREXATE LEVEL Interval: Once Occurrences: -- ☑ PH, URINALYSIS Interval: Conditional Occurrences: -- Frequency Comments: Draw prior to starting Methotrexate and PRN until pH GREATER than 7. Then draw urine pH every day until MTX is LESS than 0.05 Provider Communication ONC PROVIDER COMMUNICATION 58 Interval: Once Occurrences: -- Comments: Prior to beginning Rituxan infusion, please check if a Hepatitis B and C serology has been performed within the past 6 months. Hepatitis B and C serologies results: Push F2:11554001 drawn on ***. Provider Communication ONC PROVIDER COMMUNICATION 5 Interval: Once Occurrences: -- Comments: Use baseline weight to calculate dose. Adjust dose for weight gains/losses of greater than or equal to 10%. Provider Communication ONC PROVIDER COMMUNICATION 12 Interval: Until Occurrences: -- discontinued Comments: Careful monitoring of pulmonary function tests should be performed prior
    [Show full text]
  • VINBLASTINE-VINCRISTINE (Chlvpp-EVA
    Chemotherapy Protocol LYMPHOMA CHLORAMBUCIL-DOXORUBICIN-ETOPOSIDE-PREDNISOLONE-PROCARBAZINE- VINBLASTINE-VINCRISTINE (ChlVPP-EVA) Regimen • Lymphoma – ChlVPP-EVA-Chlorambucil-Doxorubicin-Etoposide-Prednisolone- Procarbazine-Vinblastine-Vincristine Indication • Hodgkin’s Lymphoma Toxicity Drug Adverse Effect Chlorambucil Gastro-intestinal disturbance Doxorubicin Cardiomyopathy, alopecia, urinary discolouration (red) Etoposide Hypotension on rapid infusion, hyperbilirubinaemia Weight gain, gastro-intestinal disturbances, hyperglycaemia, Prednisolone CNS disturbances, cushingoid changes, glucose intolerance Procarbazine Insomnia, ataxia, hallucinations, headache Vinblastine Peripheral neuropathy, constipation, jaw pain, ileus Vincristine Peripheral neuropathy, constipation, jaw pain, ileus The adverse effects listed are not exhaustive. Please refer to the relevant Summary of Product Characteristics for full details. Patients diagnosed with Hodgkin’s Lymphoma carry a lifelong risk of transfusion-associated graft versus host disease (TA-GVHD). Where blood products are required these patients must receive only irradiated blood products for life. Local blood transfusion departments must be notified as soon as a diagnosis is made and the patient must be issued with an alert card to carry with them at all times. Monitoring Drugs • FBC, LFTs and U&Es prior to day one and eight of treatment Version 1 (May 2018) Page 1 of 10 Lymphoma- ChlVPP-EVA-Chlorambucil-Doxorubicin-Etoposide-Prednisolone-Procarbazine-Vinblastine-Vincristine Dose Modifications The dose modifications listed are for haematological, liver and renal function and limited drug specific toxicities. Dose adjustments may be necessary for other toxicities as well. In principle all dose reductions due to adverse drug reactions should not be re-escalated in subsequent cycles without consultant approval. It is also a general rule for chemotherapy that if a third dose reduction is necessary treatment should be stopped.
    [Show full text]
  • Etoposide Compared with the Combination of Vincristine, Doxorubicin, and Cyclophosphamide in the Treatment of Small Cell Lung Cancer
    Thorax 1989;44:215-219 Thorax: first published as 10.1136/thx.44.3.215 on 1 March 1989. Downloaded from Etoposide compared with the combination of vincristine, doxorubicin, and cyclophosphamide in the treatment of small cell lung cancer M B McILLMURRAY, R J BIBBY, BE TAYLOR, L P ORMEROD, J R EDGE, R J WOLSTENHOLME, R F WILLEY, J F O'REILLY, N HORSFIELD, C E JOHNSON, C P MUSTCHIN, D BRISCOE From the Royal Lancaster Infirmary, Lancaster; Victoria Hospital, Blackpool; Royal Preston Hospital, Preston; Blackburn Royal Infirmary, Blackburn; Marsden Hospital, Burnley; Furness General Hospital, Cumbria; Cumberland Infirmary, Carlisle; and Royal Albert Edward Infirmary, Wigan ABSTRACT One hundred and three patients with small cell lung carcinoma were stratified according to stage ofdisese (47 limited disease, 56 extensive disease) and then randomised to receive etoposide 300 mg/m2 alone for two days or a combination (VAC) of vincristine 1 mg/m2, doxorubicin (Adriamycin) 50 mg/m2, and cyclophosphamide 1000 mg/m2. The drugs were given at three week intervals. Patients were assessed after three cycles of treatment and continued with the same regimen ifin complete remission and with the alternative regimen ifin partial remission; they were withdrawn if the disease had progressed. Twenty four patients (23%) achieved complete remission and this copyright. occurred more often when patients were receiving VAC (19 of82) than etoposide (5 of75). There was no difference, however, in overall survival between those initially treated with etoposide and those having combination chemotherapy, whether for limited disease (both 8 months) or extensive disease (7 and 5 5 months).
    [Show full text]