Endocrinology to Extend Current Knowledge About the Optimal Ablative Dose of I-131

Total Page:16

File Type:pdf, Size:1020Kb

Endocrinology to Extend Current Knowledge About the Optimal Ablative Dose of I-131 [Downloaded free from http://www.wjnm.org on Tuesday, October 9, 2018, IP: 203.10.55.11] POSTER PRESENTATIONS - SATURDAY Endocrinology to extend current knowledge about the optimal ablative dose of I-131. Methods: In our cohort, 160 adult patients (129 females, 31 males; mean age 46±14 years, range P001 18-89 years) diagnosed with histologically confirmed Discordant Thyroglobulin and Diagnostic papillary or follicular thyroid cancer, were randomized 131I Whole-Body Scan in Differentiated in prospective, phase III, open-label, single-center study, Thyroid Carcinoma: The Clinical Value of during 2000-2004, to receive either 1.1 GBq or 3.7 GBq Nuclear Medicine of I-131 after thyroidectomy. At randomization, patients were stratified according to the histologically verified 1 1 Emily Mia C Acayan* , R Ogbac cervical lymph node status, and were prepared for 1 St. Luke’s Medical Center, Quezon City, Philippines ablation using thyroid hormone withdrawal. No uptake Background/Aims: The overall 10-year survival rate for in the whole body scan with I-131 and thyroglobulin middle-age adults with differentiated thyroid cancer concentration <1 ng/mL at 4-8 months after treatment declines to 40% in the presence of distant metastasis. was considered successful ablation. Results: Median A 34 year old female patient, diagnosed with follicular follow-up time was 13.02 years (mean 11.03±4.80 years; thyroid cancer, having had completion thyroidectomy range 0.33-17.13 years). Altogether 81 patients received and multiple radioiodine therapies, and appearing to 1.1GBq, ablation was successful in 45 (56%) after one be disease-free for six years, presented with elevated administration of I-131 and 36 (44%) needed one or more thyroglobulin but negative diagnostic 131I whole body administrations to replete the ablation. Of these, 4 (8.9%) scan. Methods: 18F-FDG positron emission tomography and 5 (14%) patients were later relapsing respectively. showed probable locoregional nodal metastases. Of the 79 patients treated with 3.7 GBq 45 (57%) had Empiric therapy with 5550 MBq 131I was given for successful ablation after one administration and 34 ablation. Results: Post-radioiodine therapy whole (43%) needed several treatments. Of these, 2 (4.4%) and body scan with single-photon emission computed 9 (26.5%) patients were relapsing respectively. Of these tomography/computed tomography done two days 79 participants, three died from thyroid cancer during after oral administration revealed multiple osseous the median follow-up of 13 years. Activity groups did not metastases with no lesions in locoregional nodes. differ in the proportion of patients relapsing (p=0.951). Conclusion: During follow-up of median 13 years 1.1 Conclusion: This case discusses the most common GBq is as effective as 3.7 GBq for ablation of the thyroid tools used in monitoring thyroid cancer recurrence remnant. and metastasis. Emphasis is given on the clinical utility of thyroglobulin, the advantage of optimal thyroid stimulating hormone level prior to diagnostic P003 tests, the role of empiric 131I therapy, and the value of The Evaluation of Protective and Mitigating post-radioiodine therapy whole body scan with single- Effects of Vitamin C against Side Effects photon emission computed tomography/computed Induced by Radioiodine Therapy tomography. Mehrosadat Alavi*1, E Jafari2, M Haghani1 1Ionizing and Non-Ionizing Radiation Protection P002 Research Center, Shiraz University of Medical 13-Year Outcomes after Low versus High Sciences, Shiraz, 2Department of Medical Physics, Activity of Radioiodine to Ablate the Islamic Republic of Iran Thyroid after Thyroidectomy for Cancer: A Background/Aims: The goal of this study, in addition Prospective Randomized Study to confirming that ionizing radiation in differentiated Veera Ahtiainen*1, L Vaalavirta1, M Tenhunen1, thyroid cancer (DTC) patients ablated with radioiodine H Mäenpää1 causes stress oxidative, was to evaluate protective and 1Cancer Center, Helsinki University Hospital, mitigative effect of vitamin C on this phenomenon. Helsinki, Finland Methods: 58 DTC patients for radioactive iodine therapy (RAIT) by 5550 Mbq Iodine-131 were divided Background/Aims: The optimal activity of radioiodine into four groups. Group one (control group) were 16 (131I) in papillary and follicular thyroid cancer following patients who underwent RAIT, routinely. Groups 2, 3 thyroidectomy remains unknown in long term follow-up. and 4 received 1500 mg vitamin C daily 2 days after, Some, shorter follow-up studies suggest that activities 1.1 2 days before to 2 days after and 2 days before RAIT, GBq and 3.7 GBq are considered equally effective. We respectively. Serum oxidative stress markers including evaluated the long term outcomes of primary ablation malondialdehyde (MDA), glutathione (GSH), catalase © 2018 World Journal of Nuclear Medicine | Published by Wolters Kluwer - Medknow 49 [Downloaded free from http://www.wjnm.org on Tuesday, October 9, 2018, IP: 203.10.55.11] Abstracts (CAT), and superoxide dismutase (SOD) were measured extrathyroidal extension (p=0.030), radioiodine (RAI) immediately before and 2 days after RAIT. Results: A refractory persistent disease (p=0.0393) until end of significant increase in MDA after RAIT was observed follow-up (p=0.017). Patients with co-existing mutations in all groups (p<0.05). The concentrations of MDA were were significantly associated with poorer outcome. significantly higher in the control group compared Kaplan-Meier graph depicts the association of wild- to the intervention groups (p<0.05). A significant type versus various mutations with event-free-survival. decrease in the control group (p=0.049) and increase Conclusion: Patients with co-existing BRAFV600E and in group 4 (p=0.026) were observed in GSH level after TERT mutations showed the worst clinicopathologic RAIT (p<0.05). Mean variation of GSH was significant outcomes. The detection of these mutations paves path between control group with groups 3 (p=0.008) and for the early treatment of RAI refractory disease patients 4 (p=0.003). The results indicate that activity of SOD with alternate therapeutic options. remained unchanged in all groups (p>0.05). A significant increase was observed in CAT activity after RAIT in all P005 groups (p<0.05), which was higher in control group Evaluation of Recurrent Thyroid Carcinoma than intervention groups. In groups 3 (p=0.043) and 4 (p=0.05), this increase in CAT activity was significantly by High-Resolution Ultrasonography 131 lower than the control group. Conclusion: RAIT causes Where I Whole-Body Scan Is Negative serum oxidative stress, which can be ameliorated by and Normal Thyroglobulin Level using vitamin C as an antioxidant. These results indicate Shankar Biswas*1, F Haque1, F Rahman1, M Islam1, that radioprotective effect of vitamin C is preferable to S Hossain1 its mitigative effect. 1Department of Nuclear Medicine and Ultrasound, Institute of Nuclear Medicine and Allied Sciences, P004 Bangladesh Atomic Energy Commission, Dhaka, Prevalence of Genetic Duet and its Bangladesh Influence on the Prognosis of Differentiated Background/Aims: Total thyroidectomy followed Papillary Thyroid Carcinoma Patients by radioiodine therapy (RIT) and life long hormone replacement is the routine protocol of differentiated C S Bal*1, S Ballal1, S Shakya1, S Mathur2 Departments of 1Nuclear Medicine and 2Pathology, thyroid cancer management. During follow up usually AIIMS, New Delhi, India we consider serum thyroglobulin (Tg) and whole body scan (WBS) with 131I. This study was designed to unravel Background/Aims: The primary objective of the study the impact of ultrasonography in patients with recurrent was to investigate the prevalence of BRAFV600E thyroid cancer where WBS was negative and normal and TERT promoter mutations in papillary thyroid Tg level. Methods: We enrolled ten patients (age 36±13 cancer and secondary objective was their correlation years; 9 female) who were attended to Institute of Nuclear with various clinicopathologic features in the Indian Medicine & Allied Sciences (INMAS), Dhaka for routine population. Methods: A retrospective study of 160 follow up. All patients were sent for further management pathologically proven papillary thyroid cancer patients after total thyroidectomy. Thyroid scan with 99mTc and including 105 women and 55 men with a median age other relevant laboratory tests were performed initially. of 35 years (range 13–77 years) was conducted in the RIT was given according to our institutional protocol. Department of Nuclear Medicine, AIIMS, New Delhi, During follow up at certain intervals WBS with 4 mCi India. The study period was from the year 2008 to 2016 131I and Tg level were evaluated. Along with these, neck with a mean follow-up of 32.7 months (12-101 months). palpation and high resolution ultrasound were done Univariate and multivariate analysis was performed routinely for specific features of metastasis (i.e loss of hilar to determine the association of BRAFV600E and TERT fat, rounded shape & micro calcification). Results: All promoter with clinicopathologic features. Prognostic of them had differentiated papillary thyroid carcinoma. factors affecting the event-free survival were analysed Two patients needed revision surgery for removing by Kaplan-Meier curves. Results: The prevalence of residual tissue. Lymphovascular invasion was present BRAFV600E mutation was in 33% (53/160) and TERT in 4 patients and substantially they needed radical neck mutation in 17.5% (28/160) of patients. Both mutations
Recommended publications
  • 207/2015 3 Lääkeluettelon Aineet, Liite 1. Ämnena I Läkemedelsförteckningen, Bilaga 1
    207/2015 3 LÄÄKELUETTELON AINEET, LIITE 1. ÄMNENA I LÄKEMEDELSFÖRTECKNINGEN, BILAGA 1. Latinankielinen nimi, Suomenkielinen nimi, Ruotsinkielinen nimi, Englanninkielinen nimi, Latinskt namn Finskt namn Svenskt namn Engelskt namn (N)-Hydroxy- (N)-Hydroksietyyli- (N)-Hydroxietyl- (N)-Hydroxyethyl- aethylprometazinum prometatsiini prometazin promethazine 2,4-Dichlorbenzyl- 2,4-Diklooribentsyyli- 2,4-Diklorbensylalkohol 2,4-Dichlorobenzyl alcoholum alkoholi alcohol 2-Isopropoxyphenyl-N- 2-Isopropoksifenyyli-N- 2-Isopropoxifenyl-N- 2-Isopropoxyphenyl-N- methylcarbamas metyylikarbamaatti metylkarbamat methylcarbamate 4-Dimethyl- ami- 4-Dimetyyliaminofenoli 4-Dimetylaminofenol 4-Dimethylaminophenol nophenolum Abacavirum Abakaviiri Abakavir Abacavir Abarelixum Abareliksi Abarelix Abarelix Abataceptum Abatasepti Abatacept Abatacept Abciximabum Absiksimabi Absiximab Abciximab Abirateronum Abirateroni Abirateron Abiraterone Acamprosatum Akamprosaatti Acamprosat Acamprosate Acarbosum Akarboosi Akarbos Acarbose Acebutololum Asebutololi Acebutolol Acebutolol Aceclofenacum Aseklofenaakki Aceklofenak Aceclofenac Acediasulfonum natricum Asediasulfoni natrium Acediasulfon natrium Acediasulfone sodium Acenocoumarolum Asenokumaroli Acenokumarol Acenocumarol Acepromazinum Asepromatsiini Acepromazin Acepromazine Acetarsolum Asetarsoli Acetarsol Acetarsol Acetazolamidum Asetatsoliamidi Acetazolamid Acetazolamide Acetohexamidum Asetoheksamidi Acetohexamid Acetohexamide Acetophenazinum Asetofenatsiini Acetofenazin Acetophenazine Acetphenolisatinum Asetofenoli-isatiini
    [Show full text]
  • 1 Zkoumadla ANGLICKO–ČESKÁ 2016 Acetic Acid, Dilute R1
    7.4.2016 Zkoumadla ANGLICKO–ČESKÁ 2016 Vysvětlivky Times New Roman bold – název nového nebo změněného zkoumadla v ČL 2009 – Dopl. 2016, názvy označené N, jsou pro zkoumadla použitá v národních článcích Anglický název Český název Acacia Arabská klovatina R Acacia solution Arabská klovatina RS Acebutolol hydrochloride Acebutolol-hydrochlorid R Acetal Acetal R Acetaldehyde Acetaldehyd R Acetaldehyde ammonia trimer trihydrate Acetaldehyd-amoniak trimer trihydrát R Acetic acid, anhydrous Kyselina octová bezvodá R Acetic acid, glacial Kyselina octová ledová R Acetic acid Kyselina octová RS Acetic acid, dilute Kyselina octová zředěná RS Acetic acid, dilute R1 Kyselina octová zředěná RS1 Acetic anhydride Acetanhydrid R Acetic anhydride solution R1 Acetanhydrid RS1 Acetic anhydride-sulfuric acid solution Acetanhydrid v kyselině sírové RS Acetone Aceton R Acetonitrile Acetonitril R Acetonitrile for chromatography Acetonitril pro chromatografii R Acetonitrile R1 Acetonitril R1 Acetoxyvalerenic acid Kyselina acetoxyvalerenová R Acetylacetamide Acetylacetamid R Acetylacetone Acetylaceton R Acetylacetone reagent R1 Acetylaceton RS1 Acetylacetone reagent R2 Acetylaceton RS2 N-Acetyl-ε-caprolactam N-Acetyl-ε-kaprolaktam R Acetyl chloride Acetylchlorid R Acetylcholine chloride Acetylcholin-chlorid R Acetyleugenol Acetyleugenol R N-Acetylglucosamine N-Acetylglukosamin R Acetyl-11-keto-β-boswellic acid Kyselina acetyl-11-keto-β-boswellová R N-Acetylneuraminic acid Kyselina N-acetylneuraminová R N-Acetyltryptophan N-Acetyltryptofan Acetyltyrosine ethyl ester
    [Show full text]
  • EUROPEAN PHARMACOPOEIA 10.0 Index 1. General Notices
    EUROPEAN PHARMACOPOEIA 10.0 Index 1. General notices......................................................................... 3 2.2.66. Detection and measurement of radioactivity........... 119 2.1. Apparatus ............................................................................. 15 2.2.7. Optical rotation................................................................ 26 2.1.1. Droppers ........................................................................... 15 2.2.8. Viscosity ............................................................................ 27 2.1.2. Comparative table of porosity of sintered-glass filters.. 15 2.2.9. Capillary viscometer method ......................................... 27 2.1.3. Ultraviolet ray lamps for analytical purposes............... 15 2.3. Identification...................................................................... 129 2.1.4. Sieves ................................................................................. 16 2.3.1. Identification reactions of ions and functional 2.1.5. Tubes for comparative tests ............................................ 17 groups ...................................................................................... 129 2.1.6. Gas detector tubes............................................................ 17 2.3.2. Identification of fatty oils by thin-layer 2.2. Physical and physico-chemical methods.......................... 21 chromatography...................................................................... 132 2.2.1. Clarity and degree of opalescence of
    [Show full text]
  • Lääkealan Turvallisuus- Ja Kehittämiskeskuksen Päätös
    Lääkealan turvallisuus- ja kehittämiskeskuksen päätös N:o xxxx lääkeluettelosta Annettu Helsingissä xx päivänä maaliskuuta 2016 ————— Lääkealan turvallisuus- ja kehittämiskeskus on 10 päivänä huhtikuuta 1987 annetun lääke- lain (395/1987) 83 §:n nojalla päättänyt vahvistaa seuraavan lääkeluettelon: 1 § Lääkeaineet ovat valmisteessa suolamuodossa Luettelon tarkoitus teknisen käsiteltävyyden vuoksi. Lääkeaine ja sen suolamuoto ovat biologisesti samanarvoisia. Tämä päätös sisältää luettelon Suomessa lääk- Liitteen 1 A aineet ovat lääkeaineanalogeja ja keellisessä käytössä olevista aineista ja rohdoksis- prohormoneja. Kaikki liitteen 1 A aineet rinnaste- ta. Lääkeluettelo laaditaan ottaen huomioon lää- taan aina vaikutuksen perusteella ainoastaan lää- kelain 3 ja 5 §:n säännökset. kemääräyksellä toimitettaviin lääkkeisiin. Lääkkeellä tarkoitetaan valmistetta tai ainetta, jonka tarkoituksena on sisäisesti tai ulkoisesti 2 § käytettynä parantaa, lievittää tai ehkäistä sairautta Lääkkeitä ovat tai sen oireita ihmisessä tai eläimessä. Lääkkeeksi 1) tämän päätöksen liitteessä 1 luetellut aineet, katsotaan myös sisäisesti tai ulkoisesti käytettävä niiden suolat ja esterit; aine tai aineiden yhdistelmä, jota voidaan käyttää 2) rikoslain 44 luvun 16 §:n 1 momentissa tar- ihmisen tai eläimen elintoimintojen palauttami- koitetuista dopingaineista annetussa valtioneuvos- seksi, korjaamiseksi tai muuttamiseksi farmako- ton asetuksessa kulloinkin luetellut dopingaineet; logisen, immunologisen tai metabolisen vaikutuk- ja sen avulla taikka terveydentilan
    [Show full text]
  • IAEA TECDOC SERIES Production and Quality Control of Fluorine-18 Labelled Radiopharmaceuticals
    IAEA-TECDOC-1968 IAEA-TECDOC-1968 IAEA TECDOC SERIES Production and Quality Control of Fluorine-18 Labelled Radiopharmaceuticals IAEA-TECDOC-1968 Production and Quality Control of Fluorine-18 Labelled Radiopharmaceuticals International Atomic Energy Agency Vienna @ PRODUCTION AND QUALITY CONTROL OF FLUORINE-18 LABELLED RADIOPHARMACEUTICALS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GEORGIA OMAN ALBANIA GERMANY PAKISTAN ALGERIA GHANA PALAU ANGOLA GREECE PANAMA ANTIGUA AND BARBUDA GRENADA PAPUA NEW GUINEA ARGENTINA GUATEMALA PARAGUAY ARMENIA GUYANA PERU AUSTRALIA HAITI PHILIPPINES AUSTRIA HOLY SEE POLAND AZERBAIJAN HONDURAS PORTUGAL BAHAMAS HUNGARY QATAR BAHRAIN ICELAND REPUBLIC OF MOLDOVA BANGLADESH INDIA ROMANIA BARBADOS INDONESIA RUSSIAN FEDERATION BELARUS IRAN, ISLAMIC REPUBLIC OF RWANDA BELGIUM IRAQ SAINT LUCIA BELIZE IRELAND SAINT VINCENT AND BENIN ISRAEL THE GRENADINES BOLIVIA, PLURINATIONAL ITALY SAMOA STATE OF JAMAICA SAN MARINO BOSNIA AND HERZEGOVINA JAPAN SAUDI ARABIA BOTSWANA JORDAN SENEGAL BRAZIL KAZAKHSTAN SERBIA BRUNEI DARUSSALAM KENYA SEYCHELLES BULGARIA KOREA, REPUBLIC OF SIERRA LEONE BURKINA FASO KUWAIT SINGAPORE BURUNDI KYRGYZSTAN SLOVAKIA CAMBODIA LAO PEOPLE’S DEMOCRATIC SLOVENIA CAMEROON REPUBLIC SOUTH AFRICA CANADA LATVIA SPAIN CENTRAL AFRICAN LEBANON SRI LANKA REPUBLIC LESOTHO SUDAN CHAD LIBERIA SWEDEN CHILE LIBYA CHINA LIECHTENSTEIN SWITZERLAND COLOMBIA LITHUANIA SYRIAN ARAB REPUBLIC COMOROS LUXEMBOURG TAJIKISTAN CONGO MADAGASCAR THAILAND COSTA RICA MALAWI TOGO CÔTE D’IVOIRE
    [Show full text]
  • Mutations Responsible for Lipodystrophy with Severe Hypertension Activate the Cellular Renin-Angiotensin System
    Liste des publications Auclair M, Vigouroux C, Boccara F, Capel E, Vigeral C, Guerci B, et al. Peroxisome Proliferator-Activated Receptor-? Mutations Responsible for Lipodystrophy With Severe Hypertension Activate the Cellular Renin-Angiotensin System. Arterioscler Thromb Vasc Biol 2013. Svrcek M, Fontugne J, Duval A, Fléjou JF. Inflammatory Bowel Disease-associated Colorectal Cancers and Microsatellite Instability: An Original Relationship. Am J Surg Pathol 2013;37:460-2. Beydon N, Larroquet M, Coulomb A, Jouannic JM, Ducou le Pointe H, Clément A, et al. Comparison between US and MRI in the prenatal assessment of lung malformations. Pediatr Radiol 2013. Brioude F, Bouligand J, Francou B, Fagart J, Roussel R, Viengchareun S, et al. Two Families with Normosmic Congenital Hypogonadotropic Hypogonadism and Biallelic Mutations in KISS1R (KISS1 Receptor): Clinical Evaluation and Molecular Characterization of a Novel Mutation. PLoS One 2013;8:e53896. Watson JA, Bryan K, Williams R, Popov S, Vujanic G, Coulomb A, et al. miRNA profiles as a predictor of chemoresponsiveness in Wilms' tumor blastema. PLoS One 2013;8:e53417. Svrcek M, El-Murr N, Wanherdrick K, Dumont S, Beaugerie L, Cosnes J, et al. Overexpression of microRNAs-155 and 21 targeting mismatch repair proteins in inflammatory bowel diseases. Carcinogenesis 2013. Eckert C, Burghoffer B, Lalande V, Barbut F. Evaluation of the Chromogenic Agar chromID C. difficile. J Clin Microbiol 2013;51:1002-4. Menacer S, Claessens YE, Meune C, Elfassi Y, Wakim C, Gauthier L, et al. Reference range values of troponin measured by sensitive assays in elderly patients without any cardiac signs/symptoms. Clin Chim Acta 2013;417:45-7.
    [Show full text]
  • [18F]Parpi and Amino Acid PET in Mouse Models Patrick L
    Donabedian et al. EJNMMI Research (2018) 8:59 https://doi.org/10.1186/s13550-018-0399-z ORIGINALRESEARCH Open Access Discriminating radiation injury from recurrent tumor with [18F]PARPi and amino acid PET in mouse models Patrick L. Donabedian1, Susanne Kossatz1, John A. Engelbach2, Stephen A. Jannetti1,4,5, Brandon Carney1,4,6, Robert J. Young1,7, Wolfgang A. Weber1,8,9, Joel R. Garbow2,3 and Thomas Reiner1,7* Abstract Background: Radiation injury can be indistinguishable from recurrent tumor on standard imaging. Current protocols for this differential diagnosis require one or more follow-up imaging studies, long dynamic acquisitions, or complex image post-processing; despite much research, the inability to confidently distinguish between these two entities continues to pose a significant dilemma for the treating clinician. Using mouse models of both glioblastoma and radiation necrosis, we tested the potential of poly(ADP-ribose) polymerase (PARP)-targeted PET imaging with [18F]PARPi to better discriminate radiation injury from tumor. Results: In mice with experimental radiation necrosis, lesion uptake on [18F]PARPi-PET was similar to contralateral 18 uptake (1.02 ± 0.26 lesion/contralateral %IA/ccmax ratio), while [ F]FET-PET clearly delineated the contrast-enhancing region on MR (2.12 ± 0.16 lesion/contralateral %IA/ccmax ratio). In mice with focal intracranial U251 xenografts, tumor visualization on PARPi-PET was superior to FET-PET, and lesion-to-contralateral activity ratios (max/max, p =0.034)were higher on PARPi-PET than on FET-PET. Conclusions: A murine model of radiation necrosis does not demonstrate [18F]PARPi avidity, and [18F]PARPi-PET is better than [18F]FET-PET in distinguishing radiation injury from brain tumor.
    [Show full text]
  • Page 1 FINLANDS FÖRFATTNINGSSAMLING Utgiven I Helsingfors
    FINLANDS FÖRFATTNINGSSAMLING MuuMnrovvvvBeslutom läkemedelsförteckning asia av Säkerhets- och utvecklingscentret för läkemedelsområdet Utgiven i Helsingfors den 23 mars 2016 201/2016 Beslut av Säkerhets- och utvecklingscentret för läkemedelsområdet om läkemedelsförteckning Säkerhets- och utvecklingscentret för läkemedelsområdet har med stöd av 83 § i läke- medelslagen av den 10 april 1987 (395/1987) beslutat fastställa följande läkemedelsför- teckning: 1§ Förteckningens syfte Föreliggande beslut innehåller en förteckning över ämnen och droger som används medicinskt i Finland. Läkemedelsförteckningen upprättas med beaktande av bestämmel- serna i 3 och 5 § i läkemedelslagen. Med läkemedel avses ett preparat eller ämne vars ändamål är att vid invärtes eller ut- värtes bruk bota, lindra eller förebygga sjukdomar eller sjukdomssymtom hos människor eller djur. Som läkemedel betraktas också ett sådant ämne eller en sådan kombination av ämnen för invärtes eller utvärtes bruk som kan användas för att genom farmakologisk, im- munologisk eller metabolisk verkan återställa, korrigera eller modifiera fysiologiska funk- tioner eller utröna hälsotillståndet eller sjukdomsorsaker hos människor eller djur. Läkemedelsförteckningen är inte uttömmande. Till läkemedel räknas även sådana äm- nen och droger som inte nämns i denna förteckning men som uppfyller definitionen av lä- kemedel i läkemedelslagen. Utöver fastställande av läkemedelsförteckningen beslutar Säkerhets- och utvecklings- centret för läkemedelsområdet med stöd av 6 § i läkemedelslagen vid behov om ett ämne eller ett preparat ska betraktas som ett läkemedel. Centret beslutar separat i respektive fall om ett preparat som innehåller ett ämne i förteckningen ska betraktas som ett läkemedel med beaktande av produktens framställningssätt, sammansättning, dess farmakologiska egenskaper, hur det används, dess spridning, hur känt det är hos konsumenterna och de ris- ker som kan vara förenade med dess användning.
    [Show full text]
  • Pharmacology for Students of Bachelor's Programmes at MF MU
    Pharmacology for students of bachelor’s programmes at MF MU (special part) Alena MÁCHALOVÁ, Zuzana BABINSKÁ, Jan JUŘICA, Gabriela DOVRTĚLOVÁ, Hana KOSTKOVÁ, Leoš LANDA, Jana MERHAUTOVÁ, Kristýna NOSKOVÁ, Tibor ŠTARK, Katarína TABIOVÁ, Jana PISTOVČÁKOVÁ, Ondřej ZENDULKA Text přeložili: MVDr. Mgr. Leoš Landa, Ph.D., MUDr. Máchal, Ph.D., Mgr. Jana Merhautová, Ph.D., MUDr. Jana Pistovčáková, Ph.D., Doc. PharmDr. Jana Rudá, Ph.D., Mgr. Barbora Říhová, Ph.D., PharmDr. Lenka Součková, Ph.D., PharmDr. Ondřej Zendulka, Ph.D., Mgr. Markéta Strakošová, Mgr. Tibor Štark, Jazyková korektura: Julie Fry, MSc. Obsah 2 Pharmacology of the autonomic nervous system ........................................................................ 10 2.1 Pharmacology of the sympathetic nervous system ................................................................... 10 2.1.1 Sympathomimetics ............................................................................................................... 12 2.1.2 Sympatholytics ..................................................................................................................... 17 2.2 Pharmacology of the parasympathetic system ......................................................................... 19 2.2.1 Cholinomimetics .................................................................................................................. 20 2.2.2 Parasympathomimetics ......................................................................................................... 21 2.2.3 Parasympatholytics ..............................................................................................................
    [Show full text]
  • Tepzz 494Z75b T
    (19) TZZ Z_T (11) EP 2 494 075 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 47/50 (2017.01) A61K 47/69 (2017.01) 04.04.2018 Bulletin 2018/14 A61K 49/00 (2006.01) (21) Application number: 10827627.0 (86) International application number: PCT/US2010/055018 (22) Date of filing: 01.11.2010 (87) International publication number: WO 2011/053940 (05.05.2011 Gazette 2011/18) (54) TEMPLATED NANOCONJUGATES TEMPLATGESTEUERTE NANOKONJUGATE NANOCONJUGUÉS FORMÉS SUR MATRICE (84) Designated Contracting States: (74) Representative: D Young & Co LLP AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 120 Holborn GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO London EC1N 2DY (GB) PL PT RO RS SE SI SK SM TR (56) References cited: (30) Priority: 30.10.2009 US 256640 P WO-A1-2009/115579 WO-A2-03/057175 27.09.2010 US 386846 P US-A1- 2006 159 921 17.08.2010 US 374550 P • MIRKIN ET AL: "Nano-flares for mRNA regulation (43) Date of publication of application: and detection", ASC NANO, vol. 3, no. 8, 13 July 05.09.2012 Bulletin 2012/36 2009 (2009-07-13), - 13 July 2009 (2009-07-13), pages 2147-2152, XP002737658, (73) Proprietor: Northwestern University • RETHORE ET AL.: ’Preparation of Evanston, IL 60208 (US) chitosan/polyglutamicacid spheres basedon the use of polystyrene template as a nonviral gene (72) Inventors: carrier.’ TISSUE ENGINEERING vol. 15, no. 4, • MIRKIN, Chad A.
    [Show full text]
  • Discovery Consists of Seeing What Everybody Has Seen, And
    Discovery consists of seeing “ “ what everybody has seen, and thinking what nobody has thought. Albert SZENT-GYORGYI, 1937 Nobel Prize for Medicine 1 ADMINISTRATIVE STRUCTURE The administrative structure of the Institute is composed of an Institute Administrative Coordinator, a Clinical Research Unit and the Logistics and Accounts Unit. This structure ensures a transversal support to all Research Groups. Institutes Administrative Coordinator (CAI): Michel Van Hassel Clinical Research Unit: Regulatory Affairs, Quality, Contract-Budget Analysis of Clinical Trials Clémentine Janssens Valérie Buchet Salvatore Livolsi Marie Masson Dominique Van Ophem Logistics and Accounts Unit: Maimouna Elmjouzi MBLG/CTMA Myriam Goosse-Roblain MIRO Eric Legrand CHEX Cyril Mougin FATH/RUMA Michel Notteghem CARD/EDIN Dora Ourives Sereno GYNE/PEDI/GAEN Nadtha Panin LTAP IREC General Address: Avenue Hippocrate, 55 bte B1.55.02 1200 Woluwe-Saint-Lambert Internet Address: http://www.uclouvain.be/irec.html 2 The Institute brings together different research groups who work to improve our understanding of disease mechanisms, as well as to discover and/or develop new therapeutic strategies. Basic research joins clinical research in an enriching environment where clinical scientists and basic researchers can exchange their experiences and work on common projects. Our focus is thus clearly on translational research. Research at our Institute covers a wide range of biomedical problems and is mostly organized in an organ or system specific manner. The Institute is composed of 21 research groups working in close collaboration with the Cliniques universitaires Saint- Luc, in Brussels, and Mont-Godinne, in Yvoir. The Institute brings together more than 500 researchers and PhD students of different horizons and provides logistical support for both basic and clinical research.
    [Show full text]
  • View PDF Version
    MedChemComm View Article Online REVIEW View Journal | View Issue 2-[18F]Fluoroethyl tosylate – a versatile tool for building 18F-based radiotracers for positron Cite this: Med. Chem. Commun., 2015, 6,1714 emission tomography Torsten Kniess,* Markus Laube, Peter Brust and Jörg Steinbach Positron emission tomography (PET) is a modern in vivo imaging technique and an important diagnostic modality for clinical and pre-clinical research. The incorporation of a radionuclide like fluorine-18 into a target molecule to form PET radiopharmaceuticals is a repeated challenge for radiochemists. [18F]Fluoro- ethylation is a well-acknowledged method for 18F-radiolabeling and 2-[18F]fluoroethyl tosylate ([18F]FETs) is Received 17th July 2015, a preferred reagent because of its high reactivity to phenolic, thiophenolic, carboxylic and amide function- Accepted 1st September 2015 alities. This review will highlight the role of [18F]FETs in PET chemistry and summarize its applicability in radiotracer design. The radiolabeling conditions and the pros and cons of direct and indirect radiolabeling DOI: 10.1039/c5md00303b as well the aspects of the reactivity of [18F]FETs compared with other [18F]fluoroalkylating reagents will be Creative Commons Attribution 3.0 Unported Licence. www.rsc.org/medchemcomm discussed comprehensively. Introduction into a target molecule, PET radiopharmaceuticals are formed, enabling the non-invasive visualization of bio- Positron emission tomography (PET) is a modern in vivo chemical processes and the imaging and quantification of
    [Show full text]