An Overview of Nuclear Medici
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
List Item Withdrawal Assessment Report for Folcepri
20 March 2014 EMA/CHMP/219148/2014 Committee for Medicinal Products for Human Use (CHMP) Assessment report Folcepri International non-proprietary name: etarfolatide Procedure No.: EMEA/H/C/002570/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. This AR reflects the CHMP opinion on 20 March 2014, which originally recommended to approve this medicine. The recommendation was conditional to the results of the on-going confirmatory study EC-FV-06. Before the marketing authorisation was granted by the EC, the results of this study became available and did not support the initial recommendation. Subsequently, the company decided to withdraw the application and not to pursue any longer the authorisation for marketing this product. The current report does not include the latest results of this study as the withdrawal of the application did not allow for the CHMP to revise its opinion in light of the new data. For further information please refer to the Q&A which followed the company’s withdrawal of the application. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5505 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2014. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 6 1.1. Submission of the dossier ...................................................................................... 6 1.2. Manufacturers ...................................................................................................... 8 1.3. Steps taken for the assessment of the product ......................................................... 8 2. Scientific discussion ............................................................................... -
Assessment of Cardiac Amyloidosis with 99MTC- Pyrophosphate (PYP) Quantitative Spect
Assessment of Cardiac Amyloidosis With 99MTC- pyrophosphate (PYP) Quantitative Spect Chao Ren Peking Union Medical College Hospital Jingyun Ren Peking Union Medical College Hospital Zhuang Tian Peking Union Medical College Hospital Yanrong Du Peking Union Medical College Hospital Zhixin Hao Peking Union Medical College Hospital Zongyao Zhang Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital Wei Fang Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital Fang Li Peking Union Medical College Hospital Shuyang Zhang Peking Union Medical College Hospital Bailing Hsu University of Missouri-Columbia Li Huo ( [email protected] ) Peking Union Medical College Hospital https://orcid.org/0000-0003-1216-083X Original research Keywords: ATTR cardiomyopathy, 99mTc-PYP quantitative SPECT, standardized uptake value, diagnostic feasibility, the operator reproducibility Posted Date: June 5th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-32649/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Version of Record: A version of this preprint was published on January 7th, 2021. See the published version at https://doi.org/10.1186/s40658-020-00342-7. Page 2/25 Abstract Background: 99mTc-PYP scintigraphy provides differential diagnosis of ATTR cardiomyopathy (ATTR-CM) from lightchain cardiac amyloidosis and other myocardial disorders without biopsy. This study was aimed to assess the diagnostic feasibility and the operator reproducibility of 99mTc-PYP quantitative SPECT. Method:Thirty-seven consecutive patients underwent a99mTc-PYP thorax planar scan followed by SPECT and CT scans to diagnose suspected ATTR-CM were enrolled. For the quantitative SPECT, phantom studies were initially performed to determine the image conversion factor (ICF) and partial volume correction (PVC) factor to recover 99mTc-PYP activity concentration in myocardium for calculating the standardized uptake value (SUV) (unit: g/ml). -
Epilepsy & Seizure
Epilepsy & Seizure Journal of Japan Epilepsy Society Vol.4 No.1 (2011) pp.15-25 Original Article Usefulness of 123I-iomazenil SPECT for childhood focal epilepsies 1) 1) 1) 1) Kentaro Okamoto, MD , Hirokazu Oguni, MD , Yoshiko Hirano, MD , Makiko Osawa, MD 1Department of Pediatrics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan Key words: focal epilepsy, children, 123I-iomazenil SPECT, epileptic foci Published online July 29, 2011 Abstract Purpose: We investigated the usefulness of obtained from visualization of IMZ-SPECT 123I-iomazenil (IMZ-) SPECT to detect epilep- images and those speculated based on a com- tic foci in children with symptomatic focal bination of clinical manifestations, EEG find- epilepsy (SFE). ings, and brain MRI. We then verified the Subjects: 21 children with SFE who under- concordance of the results between the two went IMZ-SPECT to identify the epileptic fo- methods. cus were studied. Results: There was concordance in both later- Methods: We retrospectively compared the alization and localization in 9/12 patients with localization and lateralization of epileptic foci temporal lobe epilepsy (75%), in 2/5 patients Correspondence to: Hirokazu Oguni, MD, Department of Pediatrics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162, Japan Tel. 81-3-3353-8111, Fax. 81-3-5269-7338, [email protected] 15 Kentaro Okamoto, et al. IMZ-SPECT for childhood epilepsy with frontal lobe epilepsy (40%), and in 2/4 interictal/ictal cerebral blood flow single pho- patients with parieto-occipital lobe epilepsy ton emission computed tomography (SPECT) (50%). -
Imaging in Parkinson's Disease
Clinical Medicine 2016 Vol 16, No 4: 371–5 CME MOVEMENT DISORDERS I m a g i n g i n P a r k i n s o n ’ s d i s e a s e Authors: G e n n a r o P a g a n o , A F l a v i a N i c c o l i n i B a n d M a r i o s P o l i t i s C The clinical presentation of Parkinson’s disease (PD) Abnormal intra-neuronal (Lewy bodies) and intra-neuritic is heterogeneous and overlaps with other conditions, (Lewy neurites) deposits of fibrillary aggregates are currently including the parkinsonian variant of multiple system considered the key neuropathological alterations in PD. atrophy (MSA-P), progressive supranuclear palsy (PSP) and The majority of these aggregates, mainly composed of alpha essential tremor. Imaging of the brain in patients with (α)−synuclein, are located at presynaptic level and impair ABSTRACT parkinsonism has the ability to increase the accuracy of axonal trafficking, resulting in a series of noxious events that differential diagnosis. Magnetic resonance imaging (MRI), cause neuronal damage to the substantia nigra pars compacta single photon emission computed tomography (SPECT) and with a subsequent dopaminergic denervation of the striatum. positron emission tomography (PET) allow brain imaging The cardinal motor features of PD (bradykinesia and rigidity, of structural, functional and molecular changes in vivo in with or without resting tremor) manifest after a substantial patients with PD. Structural MRI is useful to differentiate denervation of substantia nigra, which is associated with about PD from secondary and atypical forms of parkinsonism. -
Brain Imaging
Publications · Brochures Brain Imaging A Technologist’s Guide Produced with the kind Support of Editors Fragoso Costa, Pedro (Oldenburg) Santos, Andrea (Lisbon) Vidovič, Borut (Munich) Contributors Arbizu Lostao, Javier Pagani, Marco Barthel, Henryk Payoux, Pierre Boehm, Torsten Pepe, Giovanna Calapaquí-Terán, Adriana Peștean, Claudiu Delgado-Bolton, Roberto Sabri, Osama Garibotto, Valentina Sočan, Aljaž Grmek, Marko Sousa, Eva Hackett, Elizabeth Testanera, Giorgio Hoffmann, Karl Titus Tiepolt, Solveig Law, Ian van de Giessen, Elsmarieke Lucena, Filipa Vaz, Tânia Morbelli, Silvia Werner, Peter Contents Foreword 4 Introduction 5 Andrea Santos, Pedro Fragoso Costa Chapter 1 Anatomy, Physiology and Pathology 6 Elsmarieke van de Giessen, Silvia Morbelli and Pierre Payoux Chapter 2 Tracers for Brain Imaging 12 Aljaz Socan Chapter 3 SPECT and SPECT/CT in Oncological Brain Imaging (*) 26 Elizabeth C. Hackett Chapter 4 Imaging in Oncological Brain Diseases: PET/CT 33 EANM Giorgio Testanera and Giovanna Pepe Chapter 5 Imaging in Neurological and Vascular Brain Diseases (SPECT and SPECT/CT) 54 Filipa Lucena, Eva Sousa and Tânia F. Vaz Chapter 6 Imaging in Neurological and Vascular Brain Diseases (PET/CT) 72 Ian Law, Valentina Garibotto and Marco Pagani Chapter 7 PET/CT in Radiotherapy Planning of Brain Tumours 92 Roberto Delgado-Bolton, Adriana K. Calapaquí-Terán and Javier Arbizu Chapter 8 PET/MRI for Brain Imaging 100 Peter Werner, Torsten Boehm, Solveig Tiepolt, Henryk Barthel, Karl T. Hoffmann and Osama Sabri Chapter 9 Brain Death 110 Marko Grmek Chapter 10 Health Care in Patients with Neurological Disorders 116 Claudiu Peștean Imprint 126 n accordance with the Austrian Eco-Label for printed matters. -
Radiotracers for SPECT Imaging: Current Scenario and Future Prospects
Radiochim. Acta 100, 95–107 (2012) / DOI 10.1524/ract.2011.1891 © by Oldenbourg Wissenschaftsverlag, München Radiotracers for SPECT imaging: current scenario and future prospects By S. Adak1,∗, R. Bhalla2, K. K. Vijaya Raj1, S. Mandal1, R. Pickett2 andS.K.Luthra2 1 GE Healthcare Medical Diagnostics, John F Welch Technology Center, Bangalore, India 560066 2 GE Healthcare Medical Diagnostics, The Grove Centre, White Lion Road, Amersham, HP7 9LL, UK (Received October 4, 2010; accepted in final form July 18, 2011) Nuclear medicine / 99m-Technetium / 123-Iodine / ton emission computed tomography (SPECT or less com- Oncological imaging / Neurological imaging / monly known as SPET) and positron emission tomogra- Cardiovascular imaging phy (PET). Both techniques use radiolabeled molecules to probe molecular processes that can be visualized, quanti- fied and tracked over time, thus allowing the discrimination Summary. Single photon emission computed tomography of healthy from diseased tissue with a high degree of con- (SPECT) has been the cornerstone of nuclear medicine and today fidence. The imaging agents use target-specific biological it is widely used to detect molecular changes in cardiovascular, processes associated with the disease being assessed both at neurological and oncological diseases. While SPECT has been the cellular and subcellular levels within living organisms. available since the 1980s, advances in instrumentation hardware, The impact of molecular imaging has been on greater under- software and the availability of new radiotracers that are creating a revival in SPECT imaging are reviewed in this paper. standing of integrative biology, earlier detection and charac- The biggest change in the last decade has been the fusion terization of disease, and evaluation of treatment in human of CT with SPECT, which has improved attenuation correction subjects [1–3]. -
Vizamyl, INN-Flutemetamol (18F)
26 June 2014 EMA/546752/2014 Committee for Medicinal Products for Human Use (CHMP) Vizamyl flutemetamol (18F) Procedure No. EMEA/H/C/002553 Marketing authorisation holder: GE HEALTHCARE LIMITED Assessment report for an initial marketing authorisation application Assessment report as adopted by the CHMP with all commercially confidential information deleted 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2014. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 7 1.1. Submission of the dossier ...................................................................................... 7 1.2. Manufacturers ...................................................................................................... 8 1.3. Steps taken for the assessment of the product ......................................................... 8 2. Scientific discussion ................................................................................ 9 2.1. Introduction......................................................................................................... 9 2.2. Quality aspects .................................................................................................. 11 2.2.1. Introduction ................................................................................................... -
Tanibirumab (CUI C3490677) Add to Cart
5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor -
Radiopharmaceuticals and Contrast Media – Oxford Clinical Policy
UnitedHealthcare® Oxford Clinical Policy Radiopharmaceuticals and Contrast Media Policy Number: RADIOLOGY 034.19 T0 Effective Date: January 1, 2021 Instructions for Use Table of Contents Page Related Policies Coverage Rationale ....................................................................... 1 • Cardiology Procedures Requiring Prior Definitions .................................................................................... 10 Authorization for eviCore Healthcare Arrangement Prior Authorization Requirements .............................................. 10 • Radiation Therapy Procedures Requiring Prior Applicable Codes ........................................................................ 10 Authorization for eviCore Healthcare Arrangement Description of Services ............................................................... 13 • Radiology Procedures Requiring Prior Authorization References ................................................................................... 13 for eviCore Healthcare Arrangement Policy History/Revision Information ........................................... 14 Instructions for Use ..................................................................... 14 Coverage Rationale eviCore healthcare administers claims on behalf of Oxford Health Plans for the following services that may be billed in conjunction with radiopharmaceuticals and/or contrast media: • Radiology Services: Refer to Radiology Procedures Requiring Prior Authorization for eviCore Healthcare Arrangement for additional information. -
Nuclear Medicine Imaging in Neuroblastoma: Current Status and New Developments
Journal of Personalized Medicine Review Nuclear Medicine Imaging in Neuroblastoma: Current Status and New Developments Atia Samim 1,2, Godelieve A.M. Tytgat 1, Gitta Bleeker 3, Sylvia T.M. Wenker 1,2, Kristell L.S. Chatalic 1,2, Alex J. Poot 1,2, Nelleke Tolboom 1,2, Max M. van Noesel 1 , Marnix G.E.H. Lam 2 and Bart de Keizer 1,2,* 1 Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; [email protected] (A.S.); [email protected] (G.A.M.T.); [email protected] (S.T.M.W.); [email protected] (K.L.S.C.); [email protected] (A.J.P.); [email protected] (N.T.); [email protected] (M.M.v.N.) 2 Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; [email protected] 3 Department of Radiology and Nuclear Medicine, Northwest Clinics, Wilhelminalaan 12, 1815 JD Alkmaar, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +31-887-571-794 Abstract: Neuroblastoma is the most common extracranial solid malignancy in children. At diagnosis, approximately 50% of patients present with metastatic disease. These patients are at high risk for refractory or recurrent disease, which conveys a very poor prognosis. During the past decades, Citation: Samim, A.; Tytgat, G.A.M.; nuclear medicine has been essential for the staging and response assessment of neuroblastoma. 123 123 Bleeker, G.; Wenker, S.T.M.; Currently, the standard nuclear imaging technique is meta-[ I]iodobenzylguanidine ([ I]mIBG) Chatalic, K.L.S.; Poot, A.J.; whole-body scintigraphy, usually combined with single-photon emission computed tomography Tolboom, N.; van Noesel, M.M.; with computed tomography (SPECT-CT). -
208054Orig1s000
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 208054Orig1s000 MEDICAL REVIEW(S) Clinical Review Phillip B. Davis, MD Priority Review 505(b)(2) NDA Axumin (18F-Fluciclovine) CLINICAL REVIEW Application Type 505 (b) (1) Application Number(s) 208054 Priority or Standard Priority Review Submit Date(s) 9/28/2015 Received Date(s) 9/28/2015 PDUFA Goal Date 5/27/2016 Division/Office DMIP/ODEIV Reviewer Name(s) Phillip B. Davis, MD Review Completion Date 2/26/2016 Established Name 18F-Fluciclovine (Proposed) Trade Name Axumin Applicant Blue Earth Diagnostics Formulation(s) Solution Dosing Regimen 10mCi via intravenous injection Applicant Proposed PET Imaging men with suspected prostate cancer recurrence. Indication(s)/Population(s) Recommendation on Approval Regulatory Action Recommended Positron emission tomography (PET) imaging of men with Indication(s)/Population(s) suspected prostate cancer recurrence. Axumin PET imaging may (if applicable) identify sites of prostate cancer. CDER Clinical Review Template 2015 Edition 1 Version date: June 25, 2015 for initial rollout (NME/original BLA reviews) Reference ID: 3897370 Clinical Review Phillip B. Davis, MD Priority Review 505(b)(2) NDA Axumin (18F-Fluciclovine) Table of Contents Glossary .................................................................................................................................. 8 1 Executive Summary .........................................................................................................10 1.1. Product Introduction ................................................................................................10 -
Development and Evaluation of Radiotracers for Tumor Imaging Via
Development and Evaluation of Radiotracers for Tumor Imaging via Positron Emission Tomography Dissertation zur Erlangung des Grades eines “Doktor rerum naturalium (Dr. rer. nat.)“ im Promotionsfach Chemie Am Fachbereich Chemie, Pharmazie und Geowissenschaften der Johannes Gutenberg-Universität Mainz Kathrin Kettenbach geboren in Mainz Mainz, im Februar 2017 Dekan: Erster Berichterstatter: Zweiter Berichterstatter: Tag der mündlichen Prüfung: 06.06.2017 Die vorliegende Arbeit wurde in der Zeit von 2013 bis 2017 am Institut für Kernchemie der Johannes Gutenberg-Universität Mainz angefertigt. „I hereby declare that I wrote the dissertation submitted without any unauthorized external assistance and used only sources acknowledged in this work. All textual passages which are appropriated verbatim or paraphrased from published and unpublished texts as well as information obtained from oral sources are duly indicated and listed in accordance with bibliographical rules. In carrying out this research, I complied with the rules of standard scientific practice as formulated in the statutes of Johannes Gutenberg-University Mainz to insure standard scientific practice.” Mainz, Februar 2017 Abstract Positron emission tomography (PET) enables the non-invasive imaging of metabolical processes in the human body. Thus, the use of radiolabeled cancer-specific targeting vectors can facilitate early diagnosis of tumors. A robust and reliable attachment of the radionuclide to the bioactive compound without major influences on its pharmacokinetic behavior is mandatory for routine PET imaging. In the herein presented work two different 18F-prosthetic groups for the radiolabeling of biomolecule-azides via click chemistry were evaluated. First, a strained prosthetic group based on (aza)dibenzocyclooctyne (DBCO) was developed to enable copper-free strain-promoted alkyne-azide cycloadditions (SPAAC) with biomolecule-azides.