Tauvid Integrated Review Document

Total Page:16

File Type:pdf, Size:1020Kb

Tauvid Integrated Review Document CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 212123Orig1s000 INTEGRATED REVIEW Executive Summary Interdisciplinary Assessment Appendices NDA212123 Tauvid (flortaucipir F 18 injection) Integrated Review Table 1. Administrative Application Information Category Application Information Application type NDA Application number{s) 212123 Priority or standard Ptiority Submit date{s) 9/30/2019 Received date(s) 9/30/2019 PDUFA goal date 5/29/2020 Division/office Division oflmaging and Radiation Medicine (DIRM) Review completion date 5/27/2020 Established name Flo1taucipir F 18 (Proposed) trade name Tauvid Pharmacologic class Radioactive diagnostic agent (for PET imaging) Code name F18-AV-1451 , F18-T807, LSN3182568 Applicant Avid Radiopha1maceuticals Inc Dose form/formulation(s) Injection Dosing regimen 370 MBq (10 mCi), administered as a bolus intravenous injection Applicant proposed For positron emission tomography (PET) imaging ofthe brain to indication{s)/population{s) estimate the density and disttibution of ag~gated tau 4 nemofibrillary tangles (NFTs) !b>T m adult oatients who are bein~evaluat~d for AD (b)(4__<l>H_ •l Proposed SNOMED indication Regulatory action Approval Approved Tauvid is indicated for use with PET imaging of the brain to indication{s)/population{s) estimate the density and disttibution of aggregated tau NFTs in {if applicable) adult patients with cognitive impaiiment who are being evaluated for AD. Limitations ofUse: Tauvid is not indicated for use in the evaluation ofpatients for chronic traumatic encephalopathy (CTE) Approved SNOMED 386806002 Ihnpaired cognition (fmdiI1g) indication Integrated Review Template, version date 2019/09/25 Reference ID: 4615642 NDA212123 Tauvid (flortaucipir F 18 injection) Table of Contents Table ofTables ....................................................................................................................v Table ofFigures ................................................................................................................ vii Glossaiy ............................................................................................................................ 1 I. Executive Sunrmary.......................................................................................................... 3 1. Summaiy ofRegulato1y Act.ion ...................................................................................3 2. Benefit-Risk Assessment ..............................................................................................5 II. Interdisciplina1y Assessment. ........................................................................................10 3. Introduction ................................................................................................................10 3.1. Approach to the Review ......................................................................................12 4. Patient Experience Data .............................................................................................16 5. Phannacologic Activity, Phannacokinetics, and Clinical Phaimacology ..................17 5.1. Nonclinical Assessment ofPotential Effectiveness .............................................26 6. Evidence ofBenefit (Assessment ofEfficacy) ..........................................................27 6.1. Assessment ofDose and Potential Effectiveness ................................................27 6.2. Design of Clinical Trials Intended to Demonstrate Benefit to Patients ...............27 6.2.1. Trial Design ...................................................................................................27 6.2.2. Eligibility Criteria .........................................................................................31 6.2.3. Statistical Analysis Plans ..............................................................................31 6.3. Results of Analyses of Clinical Trials/Studies Intended to Demonstrate Benefit to Patients ...........................................................................................35 6.4. Review Issues Relevant to the Evaluation ofBenefit.. ........................................ 39 6.4.1. User Guide for Tauvid PET Image Display ..................................................39 6.4.2. Limitations ofEfficacy Evidence for Tau Pathology Detection .................. .41 (bf(4 .......................45 ,__~~~~~~~~~~~~~~~~~~~~~~- 7. Risk and Risk Management ........................................................................................48 7.1. Potential Risks or Safety Concerns Based on Nonclinical Data......................... .48 7.2. Potential Risks or Safety Concerns Based on Drng Class or Other Drng- Specific Factors ..............................................................................................50 7.3. Potential Safety Concerns Identified Through Postmai·ket Experience ..............51 7.4. FDA Approach to Safety Review ........................................................................51 7.5. Adequacy ofthe Clinical Safety Database ..........................................................51 7.6. Safety Findings and Safety Concerns Based on Review of the Clinical Safety Database ..............................................................................................54 7.6.1. Overall Adverse Event SUlllillaty. .................................................................54 7.6.2. Deaths............................................................................................................55 7.6.3. Serious Adverse Events .................................................................................55 7.6.4. Dropouts and/or Discontinuations Due to Adverse Events ...........................56 11 Integrated Review Template, version date 2019/09/25 Reference ID: 4615642 NDA 212123 Tauvid (flortaucipir F 18 injection) 7.6.5. Treatment-Emergent Adverse Events ...........................................................56 7.6.6. Laboratory Findings ......................................................................................57 7.7. Review Issues Relevant to the Evaluation of Risk ..............................................57 7.7.1. CTE Misdiagnosis .........................................................................................57 7.7.2. Effect of MAO Inhibitors on FTP Binding ...................................................59 7.7.3. QT Interval Prolongation ..............................................................................59 8. Therapeutic Individualization ....................................................................................60 8.1. Intrinsic Factors ...................................................................................................60 8.2. Drug Interactions .................................................................................................60 8.3. Pediatric Labeling/Plans for Pediatric Drug Development .................................61 8.4. Pregnancy and Lactation......................................................................................61 9. Product Quality ..........................................................................................................62 9.1. Device or Combination Product Considerations .................................................62 10. Human Subjects Protections/Clinical Site and Other Good Clinical Practice Inspections/Financial Disclosure ...........................................................................62 11. Advisory Committee Summary ................................................................................62 III. Appendices ...................................................................................................................63 12. Summary of Regulatory History ..............................................................................63 13. Pharmacology Toxicology Assessments and Additional Information .....................66 13.1. Summary Review of Studies Submitted Under IND .........................................66 13.1.1. Pharmacology (Primary and Secondary) ....................................................66 13.1.1.1. Primary Pharmacology Studies ............................................................66 13.1.1.2. Secondary Pharmacology Studies ........................................................68 13.1.2. Safety Pharmacology ..................................................................................69 13.1.3. Absorption, Distribution, Metabolism, Excretion/Pharmacokinetics .........71 13.1.4. Toxicology ..................................................................................................73 13.1.4.1. General Toxicology ..............................................................................73 13.1.4.2. Genetic Toxicology ..............................................................................76 13.1.4.3. Carcinogenicity .....................................................................................76 13.1.4.4. Reproductive Toxicology .....................................................................76 13.1.4.5. Other Toxicology Studies .....................................................................77 13.1.5. Impurities/Degradants .................................................................................77 13.1.6. Referenced NDAs, BLAs, DMFs ...............................................................77 13.2. Individual Reviews of Studies Submitted to the NDA ......................................77 14. Clinical Pharmacology
Recommended publications
  • List Item Withdrawal Assessment Report for Folcepri
    20 March 2014 EMA/CHMP/219148/2014 Committee for Medicinal Products for Human Use (CHMP) Assessment report Folcepri International non-proprietary name: etarfolatide Procedure No.: EMEA/H/C/002570/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. This AR reflects the CHMP opinion on 20 March 2014, which originally recommended to approve this medicine. The recommendation was conditional to the results of the on-going confirmatory study EC-FV-06. Before the marketing authorisation was granted by the EC, the results of this study became available and did not support the initial recommendation. Subsequently, the company decided to withdraw the application and not to pursue any longer the authorisation for marketing this product. The current report does not include the latest results of this study as the withdrawal of the application did not allow for the CHMP to revise its opinion in light of the new data. For further information please refer to the Q&A which followed the company’s withdrawal of the application. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5505 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2014. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 6 1.1. Submission of the dossier ...................................................................................... 6 1.2. Manufacturers ...................................................................................................... 8 1.3. Steps taken for the assessment of the product ......................................................... 8 2. Scientific discussion ...............................................................................
    [Show full text]
  • Brain Imaging
    Publications · Brochures Brain Imaging A Technologist’s Guide Produced with the kind Support of Editors Fragoso Costa, Pedro (Oldenburg) Santos, Andrea (Lisbon) Vidovič, Borut (Munich) Contributors Arbizu Lostao, Javier Pagani, Marco Barthel, Henryk Payoux, Pierre Boehm, Torsten Pepe, Giovanna Calapaquí-Terán, Adriana Peștean, Claudiu Delgado-Bolton, Roberto Sabri, Osama Garibotto, Valentina Sočan, Aljaž Grmek, Marko Sousa, Eva Hackett, Elizabeth Testanera, Giorgio Hoffmann, Karl Titus Tiepolt, Solveig Law, Ian van de Giessen, Elsmarieke Lucena, Filipa Vaz, Tânia Morbelli, Silvia Werner, Peter Contents Foreword 4 Introduction 5 Andrea Santos, Pedro Fragoso Costa Chapter 1 Anatomy, Physiology and Pathology 6 Elsmarieke van de Giessen, Silvia Morbelli and Pierre Payoux Chapter 2 Tracers for Brain Imaging 12 Aljaz Socan Chapter 3 SPECT and SPECT/CT in Oncological Brain Imaging (*) 26 Elizabeth C. Hackett Chapter 4 Imaging in Oncological Brain Diseases: PET/CT 33 EANM Giorgio Testanera and Giovanna Pepe Chapter 5 Imaging in Neurological and Vascular Brain Diseases (SPECT and SPECT/CT) 54 Filipa Lucena, Eva Sousa and Tânia F. Vaz Chapter 6 Imaging in Neurological and Vascular Brain Diseases (PET/CT) 72 Ian Law, Valentina Garibotto and Marco Pagani Chapter 7 PET/CT in Radiotherapy Planning of Brain Tumours 92 Roberto Delgado-Bolton, Adriana K. Calapaquí-Terán and Javier Arbizu Chapter 8 PET/MRI for Brain Imaging 100 Peter Werner, Torsten Boehm, Solveig Tiepolt, Henryk Barthel, Karl T. Hoffmann and Osama Sabri Chapter 9 Brain Death 110 Marko Grmek Chapter 10 Health Care in Patients with Neurological Disorders 116 Claudiu Peștean Imprint 126 n accordance with the Austrian Eco-Label for printed matters.
    [Show full text]
  • Radiotracers for SPECT Imaging: Current Scenario and Future Prospects
    Radiochim. Acta 100, 95–107 (2012) / DOI 10.1524/ract.2011.1891 © by Oldenbourg Wissenschaftsverlag, München Radiotracers for SPECT imaging: current scenario and future prospects By S. Adak1,∗, R. Bhalla2, K. K. Vijaya Raj1, S. Mandal1, R. Pickett2 andS.K.Luthra2 1 GE Healthcare Medical Diagnostics, John F Welch Technology Center, Bangalore, India 560066 2 GE Healthcare Medical Diagnostics, The Grove Centre, White Lion Road, Amersham, HP7 9LL, UK (Received October 4, 2010; accepted in final form July 18, 2011) Nuclear medicine / 99m-Technetium / 123-Iodine / ton emission computed tomography (SPECT or less com- Oncological imaging / Neurological imaging / monly known as SPET) and positron emission tomogra- Cardiovascular imaging phy (PET). Both techniques use radiolabeled molecules to probe molecular processes that can be visualized, quanti- fied and tracked over time, thus allowing the discrimination Summary. Single photon emission computed tomography of healthy from diseased tissue with a high degree of con- (SPECT) has been the cornerstone of nuclear medicine and today fidence. The imaging agents use target-specific biological it is widely used to detect molecular changes in cardiovascular, processes associated with the disease being assessed both at neurological and oncological diseases. While SPECT has been the cellular and subcellular levels within living organisms. available since the 1980s, advances in instrumentation hardware, The impact of molecular imaging has been on greater under- software and the availability of new radiotracers that are creating a revival in SPECT imaging are reviewed in this paper. standing of integrative biology, earlier detection and charac- The biggest change in the last decade has been the fusion terization of disease, and evaluation of treatment in human of CT with SPECT, which has improved attenuation correction subjects [1–3].
    [Show full text]
  • The Role of 18F-Flortaucipir (AV-1451) in the Diagnosis of Neurodegenerative Disorders
    Open Access Review Article DOI: 10.7759/cureus.16644 The Role of 18F-Flortaucipir (AV-1451) in the Diagnosis of Neurodegenerative Disorders Saswata Roy 1 , Dipanjan Banerjee 2, 3 , Indrajit Chatterjee 4 , Deepika Natarajan 5 , Christopher Joy Mathew 2 1. General Medicine, Musgrove Park Hospital, Taunton, GBR 2. Internal Medicine, East Sussex Healthcare NHS Trust, Hastings, GBR 3. Neuroscience, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA 4. General Psychiatry, Wishaw University Hospital, Hamilton, GBR 5. General Surgery, North Cumbria Integrated Care (NCIC), Carlisle, GBR Corresponding author: Saswata Roy, [email protected] Abstract Tau protein plays a vital role in maintaining the structural and functional integrity of the nervous system; however, hyperphosphorylation or abnormal phosphorylation of tau protein plays an essential role in the pathogenesis of several neurodegenerative disorders. The development of radioligand such as the 18F- flortaucipir (AV-1451) has provided us with the opportunity to assess the underlying tau pathology in various etiologies of dementia. For the purpose of this article, we aimed to evaluate the utility of 18F-AV- 1451 in the differential diagnosis of various neurodegenerative disorders. We used PubMed to look for the latest, peer-reviewed, and informative articles. The scope of discussion included the role of 18F-AV-1451 positron emission tomography (PET) to aid in the diagnosis of Alzheimer’s disease (AD), frontotemporal dementia (FTD), dementia with Lewy bodies (DLB), and Parkinson’s disease with dementia (PDD). We also discussed if the tau burden identified by neuroimaging correlated well with the clinical severity and identified the various challenges of 18F-AV-1451 PET.
    [Show full text]
  • Development and Evaluation of Radiotracers for Tumor Imaging Via
    Development and Evaluation of Radiotracers for Tumor Imaging via Positron Emission Tomography Dissertation zur Erlangung des Grades eines “Doktor rerum naturalium (Dr. rer. nat.)“ im Promotionsfach Chemie Am Fachbereich Chemie, Pharmazie und Geowissenschaften der Johannes Gutenberg-Universität Mainz Kathrin Kettenbach geboren in Mainz Mainz, im Februar 2017 Dekan: Erster Berichterstatter: Zweiter Berichterstatter: Tag der mündlichen Prüfung: 06.06.2017 Die vorliegende Arbeit wurde in der Zeit von 2013 bis 2017 am Institut für Kernchemie der Johannes Gutenberg-Universität Mainz angefertigt. „I hereby declare that I wrote the dissertation submitted without any unauthorized external assistance and used only sources acknowledged in this work. All textual passages which are appropriated verbatim or paraphrased from published and unpublished texts as well as information obtained from oral sources are duly indicated and listed in accordance with bibliographical rules. In carrying out this research, I complied with the rules of standard scientific practice as formulated in the statutes of Johannes Gutenberg-University Mainz to insure standard scientific practice.” Mainz, Februar 2017 Abstract Positron emission tomography (PET) enables the non-invasive imaging of metabolical processes in the human body. Thus, the use of radiolabeled cancer-specific targeting vectors can facilitate early diagnosis of tumors. A robust and reliable attachment of the radionuclide to the bioactive compound without major influences on its pharmacokinetic behavior is mandatory for routine PET imaging. In the herein presented work two different 18F-prosthetic groups for the radiolabeling of biomolecule-azides via click chemistry were evaluated. First, a strained prosthetic group based on (aza)dibenzocyclooctyne (DBCO) was developed to enable copper-free strain-promoted alkyne-azide cycloadditions (SPAAC) with biomolecule-azides.
    [Show full text]
  • Neuroimaging of Alzheimer's Disease: Focus on Amyloid and Tau
    Japanese Journal of Radiology (2019) 37:735–749 https://doi.org/10.1007/s11604-019-00867-7 INVITED REVIEW Neuroimaging of Alzheimer’s disease: focus on amyloid and tau PET Hiroshi Matsuda1 · Yoko Shigemoto2 · Noriko Sato2 Received: 23 July 2019 / Accepted: 28 August 2019 / Published online: 6 September 2019 © Japan Radiological Society 2019 Abstract Although the diagnosis of dementia is still largely a clinical one, based on history and disease course, neuroimaging has dra- matically increased our ability to accurately diagnose it. Neuroimaging modalities now play a wider role in dementia beyond their traditional role of excluding neurosurgical lesions and are recommended in most clinical guidelines for dementia. In addition, new neuroimaging methods facilitate the diagnosis of most neurodegenerative conditions after symptom onset and show diagnostic promise even in the very early or presymptomatic phases of some diseases. In the case of Alzheimer’s disease (AD), extracellular amyloid-β (Aβ) aggregates and intracellular tau neurofbrillary tangles are the two neuropathological hallmarks of the disease. Recent molecular imaging techniques using amyloid and tau PET ligands have led to preclinical diagnosis and improved diferential diagnosis as well as narrowed subject selection and treatment monitoring in clinical trials aimed at delaying or preventing the symptomatic phase of AD. This review discusses the recent progress in amyloid and tau PET imaging and the key fndings achieved by the use of this molecular imaging modality related to the respective roles of Aβ and tau in AD, as well as its specifc limitations. Keywords Dementia · Alzheimer’s disease · PET · Amyloid · Tau Introduction expected to reach 7 million in 2025, representing approxi- mately one in fve elderly people in Japan [3].
    [Show full text]
  • Mars Shot for Nuclear Medicine, Molecular Imaging, and Molecularly Targeted Radiopharmaceutical Therapy
    THE STATE OF THE ART Mars Shot for Nuclear Medicine, Molecular Imaging, and Molecularly Targeted Radiopharmaceutical Therapy Richard L. Wahl1, Panithaya Chareonthaitawee2, Bonnie Clarke3, Alexander Drzezga4, Liza Lindenberg5, Arman Rahmim6, James Thackeray7, Gary A. Ulaner8, Wolfgang Weber9, Katherine Zukotynski10, and John Sunderland11 1Mallinckrodt Institute of Radiology, Washington University St. Louis, Missouri; 2Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota; 3Research and Discovery, Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia; 4Department of Nuclear Medicine, University of Cologne, Cologne, Germany, German Center for Neurodegenerative Diseases, Bonn- Cologne, Germany, and Institute of Neuroscience and Medicine, Molecular Organization of the Brain, Forschungszentrum J¨ulich, J¨ulich, Germany; 5Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; 6Departments of Radiology and Physics, University of British Columbia, Vancouver, British Columbia, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada; 7Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany; 8Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, and Molecular Imaging and Therapy, Hoag Cancer Center, Newport Beach, California; 9Department of Nuclear Medicine, Technical University Munich, Munich, Germany; 10Departments of Medicine and Radiology,
    [Show full text]
  • Slides Report on Recent Factors Related to the T&E Report, and Are Not That of the Convened Subcommittee
    Overview: 2019-2020 ACMUI Activities Darlene Metter, M.D. ACMUI Chair/Diagnostic Radiologist November 18, 2020 Today’s Agenda • A. Robert Schleipman, Ph.D. (ACMUI Vice-Chair) – ACMUI’s Comments on the Staff’s Evaluation of Training and Experience for Radiopharmaceuticals Requiring a Written Directive • Ms. Melissa Martin (ACMUI Nuclear Medicine Physicist) – ACMUI’s Comments on Extravasations 2 Today’s Agenda cont’d • Mr. Michael Sheetz (ACMUI Radiation Safety Officer) – ACMUI’s Comments on Patient Intervention and Other Actions Exclusive of Medical Events • Hossein Jadvar, M.D., Ph.D. (ACMUI Nuclear Medicine Physician) – Trending Radiopharmaceuticals 3 Overview of the ACMUI • ACMUI Role • Membership • 2019-2020 Topics • Current Subcommittees • Future 4 Role of the ACMUI • Advise the U.S. Nuclear Regulatory Commission (NRC) staff on policy & technical issues that arise in the regulation of the medical use of radioactive material in diagnosis & therapy. • Comment on changes to NRC regulations & guidance. • Evaluate certain non-routine uses of radioactive material. 5 Role of the ACMUI (cont’d) • Provide technical assistance in licensing, inspection & enforcement cases. • Bring key issues to the attention of the Commission for appropriate action. 6 ACMUI Membership (12 members) • Healthcare Administrator (Dr. Arthur Schleipman) • Nuclear Medicine Physician (Dr. Hossein Jadvar) • 2 Radiation Oncologists (Drs. Ronald Ennis & Harvey Wolkov) • Nuclear Cardiologist (Dr. Vasken Dilsizian) • Diagnostic Radiologist (Dr. Darlene Metter) • Nuclear Pharmacist (Mr. Richard Green) 7 7 ACMUI Membership (12 members) • 2 Medical Physicists Nuclear Medicine (Ms. Melissa Martin) Radiation Therapy (Mr. Zoubir Ouhib) • Radiation Safety Officer (Mr. Michael Sheetz) • Patients’ Rights Advocate (Mr. Gary Bloom*) • FDA Representative (Dr. Michael O’Hara) • Agreement State Representative (Ms.
    [Show full text]
  • Preclinical Evaluation of 18F-RO6958948, 11C-RO6931643 and 11C-RO6924963 As Novel Radiotracers for Imaging Aggregated Tau in AD
    Journal of Nuclear Medicine, published on September 28, 2017 as doi:10.2967/jnumed.117.196741 Preclinical Evaluation of 18F-RO6958948, 11C-RO6931643 and 11C-RO6924963 as Novel Radiotracers for Imaging Aggregated Tau in Alzheimer’s Disease with Positron Emission Tomography Michael Honer1, Luca Gobbi1, Henner Knust1, Hiroto Kuwabara2,3, Dieter Muri1, Matthias Koerner1, Heather Valentine2,3, Robert F. Dannals2, Dean F. Wong2,3,4,5,6, Edilio Borroni1 1Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland 2Russell H. Morgan Department of Radiology, Division of Nuclear Medicine – PET Center, The Johns Hopkins University School of Medicine, Baltimore 3Section of High Resolution Brain PET, Division of Nuclear Medicine, The Johns Hopkins University School of Medicine, Baltimore 4Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore 5Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore 6Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore Corresponding author: Dr. Michael Honer Pharma Research and Early Development (pRED) Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel, Switzerland E-mail: [email protected] Running foot line: PET imaging of tau Abstract Tau aggregates and amyloid-beta (Aβ) plaques are key histopathological features in Alzheimer‘s disease (AD) and are considered as targets for therapeutic intervention as well as biomarkers for diagnostic in vivo imaging agents. This study describes the preclinical in vitro and in vivo characterization of the 3 novel compounds RO6958948, RO6931643 and RO6924963 that bind specifically to tau aggregates and have the potential to become positron emission tomography (PET) tracers for future human use.
    [Show full text]
  • Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience
    REVIEW published: 27 November 2019 doi: 10.3389/fmed.2019.00268 Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience Marie Beaurain 1,2*, Anne-Sophie Salabert 1,2, Maria Joao Ribeiro 3,4,5, Nicolas Arlicot 3,4,5, Philippe Damier 6, Florence Le Jeune 7, Jean-François Demonet 8 and Pierre Payoux 1,2 1 CHU de Toulouse, Toulouse, France, 2 ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France, 3 UMR 1253, iBrain, Université de Tours, Inserm, Tours, France, 4 Inserm CIC 1415, University Hospital, Tours, France, 5 CHRU Tours, Tours, France, 6 Inserm U913, Neurology Department, University Hospital, Nantes, France, 7 Centre Eugène Marquis, Rennes, France, 8 Leenards Memory Centre, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland Over the past few decades, several radiotracers have been developed for neuroimaging applications, especially in PET. Because of their low steric hindrance, PET radionuclides can be used to label molecules that are small enough to cross the blood brain barrier, without modifying their biological properties. As the use of 11C is limited by Edited by: Samer Ezziddin, its short physical half-life (20min), there has been an increasing focus on developing Saarland University, Germany tracers labeled with 18F for clinical use. The first such tracers allowed cerebral blood Reviewed by: flow and glucose metabolism to be measured, and the development of molecular Puja Panwar Hazari, imaging has since enabled to focus more closely on specific targets such as receptors, Institute of Nuclear Medicine & Allied Sciences (DRDO), India neurotransmitter transporters, and other proteins. Hence, PET and SPECT biomarkers Anupama Datta, have become indispensable for innovative clinical research.
    [Show full text]
  • Radiopharmaceuticals in Neurological and Psychiatric Disorders
    International Conference on Clinical PET-CT and Molecular Imaging (IPET 2015 ): PET-CT in the era of multimodality imaging and image-guided therapy October, 05-09, 2015, Vienna Radiopharmaceuticals in Neurological and Psychiatric Disorders Emilia Janevik Faculty of Medical Sciences Goce Delcev – Stip, Republic of Macedonia Everything that healthcare providers do has a real, meaningful impact on human life Nuclear medicine is the only imaging modality that depend of the injected radiopharmaceutical Every radiopharmaceutical that is administrated holds far more than just a radionuclide Radiopharmaceuticals want it to deliver confidence, efficiency and a higher standard of excellence. And above all, renewed hope for each patient’s future Radiopharmaceuticals for planar imaging, (SPECT), (PET), PET-CT or SPECT-CT fusion imaging PET-MRI is currently being developed for clinical application Understanding the utilization of radiopharmaceuticals for neurological and psychiatric disorders First contact…Projects related to International Atomic Energy Agency - IAEA: 1.(technical cooperation) 1995-1997 Preparation and QC od Technetium 99m Radiopharmaceuticals 99mTc - HMPAO DIAGNOSTIC APPLICATION OF SPECT RADIOPHARMACEUTICALS IN NEUROLOGY AND PSYCHIATRY The principal application areas for brain imaging include: - evaluation of brain death - brain imaging to assess the absence of cerebral blood flow - epilepsy - cerebrovascular disease - neuronal function - cerebrospinal fluid (CSF) dynamics - brain tumours Primarily technetium agents, including - nondiffusible tracers 99mTc-pertechnetate, 99mTc pentetate (Tc- DTPA) and 99mTc-gluceptate (Tc-GH) - diffusible tracers 99mTc-exametazime, hexamethylpropyleneamine oxime - (Tc-HMPAO) and 99mTc-bicisate, ethylcysteinate dimer (Tc-ECD) - Evaluation of brain death - brain imaging to assess the absence of cerebral blood flow Cerebral delivery of radiotracer Major arteries that distribute Major veins that drain blood to the brain after i.v.
    [Show full text]
  • Programmflyer – Stand Vom 14
    GRUßWORT NUKLEARMEDIZIN 2021 –DIGITAL Liebe Kolleginnen und Kollegen, sehr geehrte Damen und Herren, hiermit möchte ich Sie ganz herzlich zu unserer 59. Jahrestagung der Deutschen Gesellschaft für Nuklearmedizin, der „NuklearMedizin 2021 – digital“, einladen, die vom 14. – 17. April 2021 stattfinden wird. Unsere erste digitale Jah- restagung liegt noch nicht lange zurück. Trotz der damaligen und auch aktuellen schwierigen Rahmenbedingungen 2021 – DIGITAL 2021 – DIGITAL haben uns etliche positive Rückmeldungen erreicht, was uns sehr freut. NUKMED21.NUKLEARMEDIZIN.DE Das diesjährige Format des digitalen Kongresses bietet im Gegensatz zu unserem Kongress im Jahr 2020 nun drei statt zwei parallele Streaming-Slots. Dies ermöglicht ein deutliches Mehr an wissenschaftlichem Programm: 3 Leucht- turmsitzungen mit den best-bewerteten interdisziplinären Beiträgen – vom Jungen Talent bis zum/zur etablierten Forscher/in, 10 Vortragssitzungen mit über 90 Live-Beiträgen, Moderation und Diskussion, sowie eine ständige Kongressvorstand Postersitzung mit aufgezeichneten Kurzbeiträgen. Prof. Dr. Michael Schäfers (Münster) Erneut werden umfassende, interaktive CME-Fortbildungen mit 7 Sitzungen angeboten, hierunter neben Themen aus dem 3-jährigen DGN-Curriculum, 2 weitere Sitzungen mit einem Medizinphysik Curriculum und einer Sonderveran- staltung zu aktuellen Themen der „Auxillären CT in der Hybridbildgebung“. Vorsitz des Wissenschaftlichen Komitees Wie in jedem Jahr freuen wir uns auch wieder auf eine sehr gut organisierte und spannende MTRA-Tagung, die mit Prof. Dr. Michael Schäfers (Münster) 5 Sitzungen vorgesehen ist und die aktuellen Themen „Künstliche Intelligenz“ und „Covid-19“ aufgreift. 2021 – DIGITAL Preisträger und ihre Arbeiten werden in einer speziellen „Winners Lounge“ mit interaktiven Beiträgen geehrt. Wäh- Organisation MTRA-Tagung rend der Tagung werden Sie online in unserem Kongressportal, das in diesem Jahr einen virtuellen Kongress inkl.
    [Show full text]