Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience
REVIEW published: 27 November 2019 doi: 10.3389/fmed.2019.00268 Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience Marie Beaurain 1,2*, Anne-Sophie Salabert 1,2, Maria Joao Ribeiro 3,4,5, Nicolas Arlicot 3,4,5, Philippe Damier 6, Florence Le Jeune 7, Jean-François Demonet 8 and Pierre Payoux 1,2 1 CHU de Toulouse, Toulouse, France, 2 ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France, 3 UMR 1253, iBrain, Université de Tours, Inserm, Tours, France, 4 Inserm CIC 1415, University Hospital, Tours, France, 5 CHRU Tours, Tours, France, 6 Inserm U913, Neurology Department, University Hospital, Nantes, France, 7 Centre Eugène Marquis, Rennes, France, 8 Leenards Memory Centre, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland Over the past few decades, several radiotracers have been developed for neuroimaging applications, especially in PET. Because of their low steric hindrance, PET radionuclides can be used to label molecules that are small enough to cross the blood brain barrier, without modifying their biological properties. As the use of 11C is limited by Edited by: Samer Ezziddin, its short physical half-life (20min), there has been an increasing focus on developing Saarland University, Germany tracers labeled with 18F for clinical use. The first such tracers allowed cerebral blood Reviewed by: flow and glucose metabolism to be measured, and the development of molecular Puja Panwar Hazari, imaging has since enabled to focus more closely on specific targets such as receptors, Institute of Nuclear Medicine & Allied Sciences (DRDO), India neurotransmitter transporters, and other proteins. Hence, PET and SPECT biomarkers Anupama Datta, have become indispensable for innovative clinical research.
[Show full text]