Molecular Imaging 2020: Year in Review

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Imaging 2020: Year in Review JANUARY 2021 THE CLINICAL TRIALS NETWORK NEWSLETTER Pathways Table of Contents Molecular Imaging 2020: Year in Review 1 Molecular Imaging John Sunderland, PhD, MBA; University of Iowa and 2020: Year in Jonathan McConathy, MD; University of Alabama Review Co-Chairs, Clinical Trials Network 4 FAP Agents he year 2020 may long linger in our minds for a number of reasons, but some of those John Sunderland, PhD, MBA Jonathan E. McConathy, MD, PhD thoughts should be positive. The field Director, Small Animal Imaging Director, Advanced Imaging Facility T Core and PET Imaging Center, and Director, Division of Molecular 6 Therapy Toolkit of molecular imaging and nuclear medicine Department of Radiology, Imaging and Therapeutics, accomplished a phenomenal milestone: the University of Iowa University of Alabama-Birmingham U.S. Food and Drug Administration (FDA) 7 CTN Education approved three new molecules (FES, tau and Cerianna™ (fluoroestradiol F-18) Committee Welcomes PSMA), one new isotope (copper-64) and one On May 20, 2020, the FDA approved the New Co-Chair new production method (cyclotron-generated positron emission tomography (PET) imaging gallium-68). agent F-18 fluoroestradiol (Cerianna™, Zionexa Updated CTN The development of new drugs and therapeutic USA) as the first F-18-labeled PET agent for Courses – Be on the biological products used to advance medicine detecting estrogen receptor (ER)–positive lesions Lookout in 2021! and improve healthcare requires innovation, as an adjunct to biopsy in patients with recurrent determination, team effort and, of course, or metastatic breast cancer. This new agent 8 My Path to Molecular money. But key to all of this is understanding the will enhance therapeutic decision–making by Imaging Research science about the diseases and conditions that providing total body information of the estrogen new products are designed to treat, performing receptor status of tumors.1 “This approval is based FDA Approves Cyclo- methodical testing to achieve reproducible on multiple single institution studies in the US and tron-Produced Ga-68 and consistent results, establishing irrefutable Europe, which are in the process of confirmation DOTATOC and quality control in manufacturing procedures and in multi-center trials now including EAI 142. Ga-68 PSMA-11 obtaining appropriate regulatory advice before These trials show that FES predicts clinical new radiopharmaceuticals and therapies are benefit with endocrine therapy,” said Hannah approved for use in humans. The availability Linden, MD, Athena Distinguished Professorship 9 Save-the-Dates of these new drugs, biological products of Breast Cancer Research at the University of and manufacturing procedures often means Washington. “Like genomic profiling in earlier CTN Phantom desperately needed new treatment options can stage tumors, FES has the potential to reduce Analysis Tool be made available to our patients—and what the use of cytotoxic agents in metastatic breast can be more positive than that? cancer by identification of which patients could 2020 was indeed a year of “firsts” for PET benefit from ER-directed therapy. The emerging tracers. Herein we provide a short review of field of molecularly targeted synergistic agents these events in order of approval date. makes this even more feasible.” Continued on page 2. See Molecular Imaging 2020: Year in Review Molecular Imaging 2020: Year in Review. Continued from page 1. Cerianna is not indicated for imaging other receptors, such Detectnet™ (copper Cu 64 dotatate) process to manufacture the final drug product. Cyclotron-produced the field of nuclear medicine and molecular imaging with the as human epidermal growth factor receptor 2 (HER2) and the On September 8, 2020, RadioMedix Inc. and its commercial Ga-68 DOTATOC consistently results in production of 40–50 approval of three new molecules, one new isotope and one new progesterone receptor (PR). The ER status of a patient’s tumor partner Curium announced FDA approval of Detectnet™ mCi of Ga-68 DOTATOC rather than the 10–25 mCi typically production method. In fact, the past ten years have been an and recurrence of breast cancer should be confirmed with tissue (copper-64 DOTATATE injection). Detectnet is the first Cu-64- produced by a Ge-68/Ga-68 generator. The new process amazing era of growth for the field. Please review the timeline biopsy. When interpreting images, it is important to remember labeled PET agent indicated for the localization of somatostatin allows for multi-dose vials and provides a viable alternative to on pages 2 and 3 of this issue to follow the approvals of single that the uptake of F-18 fluoroestradiol depends on the ER receptor positive neuroendocrine tumors (NETs) in adult patients. Ge-68/Ga-68 generators for facilities with cyclotrons. The FDA photon tracers, PET oncology tracers, PET brain tracers, and density and function in tumors and physiologic tissue, including The 12.7-hour half-life of Cu-64 allows for the increased also approved cyclotron production of Ga-68 PSMA-11 at the radiopharmaceutical therapies that occurred over the past in the liver, ovary, and uterus. Tumors identified as ER-positive availability across the U.S. through shipments from centralized University of California, San Francisco (UCSF).7 decade. It’s an amazing chronicle of innovation and progress. on PET/CT should be based on comparison with normal tissue production sites.5 References background of organs without high physiologic uptake.2 As noted in the package insert, there may be a risk for image Gallium 68 PSMA-11 (Ga 68 PSMA-11) 1. Estrogen Receptor Agent Approved. JNM Newsline. J Nucl Med. July misinterpretation with Detectnet. Caution should be used, as On December 1, 2020, the FDA approved gallium-68 PSMA- 2020, 61(7):20N. Tauvid™ (F-18 flortaucipir) a variety of other tumors also express somatostatin receptors. 11, the first PET imaging agent for prostate-specific membrane 2. CERIANNA™ (fluoroestradiol F 18) Injection, for intravenous use. The FDA granted approval of Tauvid™ for intravenous Increased uptake might also be seen in other non-cancerous antigen (PSMA)–positive lesions in men with prostate cancer. Prescribing Information. FDA Reference ID: 4610145. injection to Avid Radiopharmaceuticals Inc. on May 28, pathologic conditions, in subacute inflammation, or as a normal The approval was granted to the University of California, Los 3. FDA Approves First Drug to Image Tau Pathology in Patients Being Evaluated for Alzheimer’s Disease. FDA NEWS RELEASE May 28, 2020. 2020. It is the first tau diagnostic PET imaging agent used physiologic variant (e.g., uncinate process of the pancreas). Angeles (UCLA) and UCSF following two prospective clinical www.fda.gov/news. to assess adult patients with cognitive impairment who are Additionally, a negative Detectnet scan in patients who do not trials involving a total of 960 prostate cancer patients. This 4. Mattay, VS, et al. Brain Tau Imaging: Food and Drug Administration being evaluated for Alzheimer’s disease (AD). Tau is one of have a history of NET disease does not rule out disease.6 approval process involved a great collaboration between the Approval of 18F-Flortaucipir Injection. J Nucl Med 2020. 61(10):1411-12. Published online Aug. 4, 2020. doi: 10.2967/jnumed.120.252254. two proteins, along with amyloid, recognized as a hallmark SNMMI Clinical Trials Network, two academic institutions, 5. RadioMedix and Curium Announce FDA Approval of Detectnet (copper Cu of Alzheimer’s disease. When diseased tau proteins develop Cyclotron-Produced Gallium-68 and the FDA that will hopefully serve as a model for future 64 dotatate injection) in the U.S. Press Release September 8, 2020. inside neurons in the brain, neurofibrillary tangles (NFTs) are On October 14, 2020, the University of Iowa received collaborations and radiopharmaceutical approvals.8 www.curiumpharma.com/. formed. Tauvid is indicated for brain imaging to estimate the approval for cyclotron-produced gallium-68 (Ga-68) via a Ga-68 PSMA-11 is indicated for patients with suspected 6. Detectnet (copper Cu 64 dotatate injection) for intravenous use. Prescribing density and distribution of these aggregated tau NFTs. It helps supplement to their DOTATOC NDA, which was approved prostate cancer metastasis who are potentially curable by information. FDA Reference ID: 4666138. 7. SNMMI Press Release. FDA Approves Cyclotron-Produced Ga-68 identify the presence of tau pathology by binding to sites in the in 2019 for the localization of NETs in adults and children. surgery or radiation therapy and for patients with suspected DOTATOC for Neuroendocrine Tumors. October 20, 2020. brain associated with tau protein misfolding.3 Cyclotron-produced Ga-68 will allow for higher-volume recurrence based on elevated PSA levels. Once administered www.snmmi.org/NewsPublications/NewsDetail.aspx?ItemNumber=34801. It is important to remember that Tauvid is not indicated for production. The newly approved process uses a liquid target by intravenous injection, Ga-68 PSMA-11 binds to PSMA, 8. SNMMI Press Release December 2, 2020. FDA Announces First-Ever evaluating patients with chronic traumatic encephalopathy. filled with a zinc-68 solution to produce Ga-68 in the cyclotron. allowing for the presence of PSMA-positive prostate cancer Approval of PSMA PET for Prostate Cancer Imaging. www.snmmi.org/NewsPublications/NewsDetail.aspx?ItemNumber=35254. 9 Furthermore, a tau-positive scan alone does not establish a The target solution is transferred to a cassette-based synthesis lesions to be imaged by PET. 9. FDA NEWS RELEASE. FDA Approves First PSMA-Targeted PET Imaging diagnosis of AD or other cognitive disorders.4 module that purifies the gallium-68 and performs the chemistry The year 2020 certainly left some positive memories in Drug for Men with Prostate Cancer. December 1, 2020. 2 3 Figure 1. Maximum intensity projections (MIP) of PET/CT scans in patients suffering from metastasized pancreatic cancer (A) and breast cancer (C). (B) Maximum tissue uptake of 68Ga-FAPI-02 10 min, 1 h and 3 h after intravenous administration to a patient with Special Feature metastasized breast cancer.
Recommended publications
  • The Role of 18F-Flortaucipir (AV-1451) in the Diagnosis of Neurodegenerative Disorders
    Open Access Review Article DOI: 10.7759/cureus.16644 The Role of 18F-Flortaucipir (AV-1451) in the Diagnosis of Neurodegenerative Disorders Saswata Roy 1 , Dipanjan Banerjee 2, 3 , Indrajit Chatterjee 4 , Deepika Natarajan 5 , Christopher Joy Mathew 2 1. General Medicine, Musgrove Park Hospital, Taunton, GBR 2. Internal Medicine, East Sussex Healthcare NHS Trust, Hastings, GBR 3. Neuroscience, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA 4. General Psychiatry, Wishaw University Hospital, Hamilton, GBR 5. General Surgery, North Cumbria Integrated Care (NCIC), Carlisle, GBR Corresponding author: Saswata Roy, [email protected] Abstract Tau protein plays a vital role in maintaining the structural and functional integrity of the nervous system; however, hyperphosphorylation or abnormal phosphorylation of tau protein plays an essential role in the pathogenesis of several neurodegenerative disorders. The development of radioligand such as the 18F- flortaucipir (AV-1451) has provided us with the opportunity to assess the underlying tau pathology in various etiologies of dementia. For the purpose of this article, we aimed to evaluate the utility of 18F-AV- 1451 in the differential diagnosis of various neurodegenerative disorders. We used PubMed to look for the latest, peer-reviewed, and informative articles. The scope of discussion included the role of 18F-AV-1451 positron emission tomography (PET) to aid in the diagnosis of Alzheimer’s disease (AD), frontotemporal dementia (FTD), dementia with Lewy bodies (DLB), and Parkinson’s disease with dementia (PDD). We also discussed if the tau burden identified by neuroimaging correlated well with the clinical severity and identified the various challenges of 18F-AV-1451 PET.
    [Show full text]
  • Tauvid Integrated Review Document
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 212123Orig1s000 INTEGRATED REVIEW Executive Summary Interdisciplinary Assessment Appendices NDA212123 Tauvid (flortaucipir F 18 injection) Integrated Review Table 1. Administrative Application Information Category Application Information Application type NDA Application number{s) 212123 Priority or standard Ptiority Submit date{s) 9/30/2019 Received date(s) 9/30/2019 PDUFA goal date 5/29/2020 Division/office Division oflmaging and Radiation Medicine (DIRM) Review completion date 5/27/2020 Established name Flo1taucipir F 18 (Proposed) trade name Tauvid Pharmacologic class Radioactive diagnostic agent (for PET imaging) Code name F18-AV-1451 , F18-T807, LSN3182568 Applicant Avid Radiopha1maceuticals Inc Dose form/formulation(s) Injection Dosing regimen 370 MBq (10 mCi), administered as a bolus intravenous injection Applicant proposed For positron emission tomography (PET) imaging ofthe brain to indication{s)/population{s) estimate the density and disttibution of ag~gated tau 4 nemofibrillary tangles (NFTs) !b>T m adult oatients who are bein~evaluat~d for AD (b)(4__<l>H_ •l Proposed SNOMED indication Regulatory action Approval Approved Tauvid is indicated for use with PET imaging of the brain to indication{s)/population{s) estimate the density and disttibution of aggregated tau NFTs in {if applicable) adult patients with cognitive impaiiment who are being evaluated for AD. Limitations ofUse: Tauvid is not indicated for use in the evaluation ofpatients for chronic traumatic encephalopathy (CTE) Approved SNOMED 386806002 Ihnpaired cognition (fmdiI1g) indication Integrated Review Template, version date 2019/09/25 Reference ID: 4615642 NDA212123 Tauvid (flortaucipir F 18 injection) Table of Contents Table ofTables ....................................................................................................................v Table ofFigures ...............................................................................................................
    [Show full text]
  • Neuroimaging of Alzheimer's Disease: Focus on Amyloid and Tau
    Japanese Journal of Radiology (2019) 37:735–749 https://doi.org/10.1007/s11604-019-00867-7 INVITED REVIEW Neuroimaging of Alzheimer’s disease: focus on amyloid and tau PET Hiroshi Matsuda1 · Yoko Shigemoto2 · Noriko Sato2 Received: 23 July 2019 / Accepted: 28 August 2019 / Published online: 6 September 2019 © Japan Radiological Society 2019 Abstract Although the diagnosis of dementia is still largely a clinical one, based on history and disease course, neuroimaging has dra- matically increased our ability to accurately diagnose it. Neuroimaging modalities now play a wider role in dementia beyond their traditional role of excluding neurosurgical lesions and are recommended in most clinical guidelines for dementia. In addition, new neuroimaging methods facilitate the diagnosis of most neurodegenerative conditions after symptom onset and show diagnostic promise even in the very early or presymptomatic phases of some diseases. In the case of Alzheimer’s disease (AD), extracellular amyloid-β (Aβ) aggregates and intracellular tau neurofbrillary tangles are the two neuropathological hallmarks of the disease. Recent molecular imaging techniques using amyloid and tau PET ligands have led to preclinical diagnosis and improved diferential diagnosis as well as narrowed subject selection and treatment monitoring in clinical trials aimed at delaying or preventing the symptomatic phase of AD. This review discusses the recent progress in amyloid and tau PET imaging and the key fndings achieved by the use of this molecular imaging modality related to the respective roles of Aβ and tau in AD, as well as its specifc limitations. Keywords Dementia · Alzheimer’s disease · PET · Amyloid · Tau Introduction expected to reach 7 million in 2025, representing approxi- mately one in fve elderly people in Japan [3].
    [Show full text]
  • Mars Shot for Nuclear Medicine, Molecular Imaging, and Molecularly Targeted Radiopharmaceutical Therapy
    THE STATE OF THE ART Mars Shot for Nuclear Medicine, Molecular Imaging, and Molecularly Targeted Radiopharmaceutical Therapy Richard L. Wahl1, Panithaya Chareonthaitawee2, Bonnie Clarke3, Alexander Drzezga4, Liza Lindenberg5, Arman Rahmim6, James Thackeray7, Gary A. Ulaner8, Wolfgang Weber9, Katherine Zukotynski10, and John Sunderland11 1Mallinckrodt Institute of Radiology, Washington University St. Louis, Missouri; 2Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota; 3Research and Discovery, Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia; 4Department of Nuclear Medicine, University of Cologne, Cologne, Germany, German Center for Neurodegenerative Diseases, Bonn- Cologne, Germany, and Institute of Neuroscience and Medicine, Molecular Organization of the Brain, Forschungszentrum J¨ulich, J¨ulich, Germany; 5Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; 6Departments of Radiology and Physics, University of British Columbia, Vancouver, British Columbia, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada; 7Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany; 8Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, and Molecular Imaging and Therapy, Hoag Cancer Center, Newport Beach, California; 9Department of Nuclear Medicine, Technical University Munich, Munich, Germany; 10Departments of Medicine and Radiology,
    [Show full text]
  • Slides Report on Recent Factors Related to the T&E Report, and Are Not That of the Convened Subcommittee
    Overview: 2019-2020 ACMUI Activities Darlene Metter, M.D. ACMUI Chair/Diagnostic Radiologist November 18, 2020 Today’s Agenda • A. Robert Schleipman, Ph.D. (ACMUI Vice-Chair) – ACMUI’s Comments on the Staff’s Evaluation of Training and Experience for Radiopharmaceuticals Requiring a Written Directive • Ms. Melissa Martin (ACMUI Nuclear Medicine Physicist) – ACMUI’s Comments on Extravasations 2 Today’s Agenda cont’d • Mr. Michael Sheetz (ACMUI Radiation Safety Officer) – ACMUI’s Comments on Patient Intervention and Other Actions Exclusive of Medical Events • Hossein Jadvar, M.D., Ph.D. (ACMUI Nuclear Medicine Physician) – Trending Radiopharmaceuticals 3 Overview of the ACMUI • ACMUI Role • Membership • 2019-2020 Topics • Current Subcommittees • Future 4 Role of the ACMUI • Advise the U.S. Nuclear Regulatory Commission (NRC) staff on policy & technical issues that arise in the regulation of the medical use of radioactive material in diagnosis & therapy. • Comment on changes to NRC regulations & guidance. • Evaluate certain non-routine uses of radioactive material. 5 Role of the ACMUI (cont’d) • Provide technical assistance in licensing, inspection & enforcement cases. • Bring key issues to the attention of the Commission for appropriate action. 6 ACMUI Membership (12 members) • Healthcare Administrator (Dr. Arthur Schleipman) • Nuclear Medicine Physician (Dr. Hossein Jadvar) • 2 Radiation Oncologists (Drs. Ronald Ennis & Harvey Wolkov) • Nuclear Cardiologist (Dr. Vasken Dilsizian) • Diagnostic Radiologist (Dr. Darlene Metter) • Nuclear Pharmacist (Mr. Richard Green) 7 7 ACMUI Membership (12 members) • 2 Medical Physicists Nuclear Medicine (Ms. Melissa Martin) Radiation Therapy (Mr. Zoubir Ouhib) • Radiation Safety Officer (Mr. Michael Sheetz) • Patients’ Rights Advocate (Mr. Gary Bloom*) • FDA Representative (Dr. Michael O’Hara) • Agreement State Representative (Ms.
    [Show full text]
  • Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience
    REVIEW published: 27 November 2019 doi: 10.3389/fmed.2019.00268 Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience Marie Beaurain 1,2*, Anne-Sophie Salabert 1,2, Maria Joao Ribeiro 3,4,5, Nicolas Arlicot 3,4,5, Philippe Damier 6, Florence Le Jeune 7, Jean-François Demonet 8 and Pierre Payoux 1,2 1 CHU de Toulouse, Toulouse, France, 2 ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France, 3 UMR 1253, iBrain, Université de Tours, Inserm, Tours, France, 4 Inserm CIC 1415, University Hospital, Tours, France, 5 CHRU Tours, Tours, France, 6 Inserm U913, Neurology Department, University Hospital, Nantes, France, 7 Centre Eugène Marquis, Rennes, France, 8 Leenards Memory Centre, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland Over the past few decades, several radiotracers have been developed for neuroimaging applications, especially in PET. Because of their low steric hindrance, PET radionuclides can be used to label molecules that are small enough to cross the blood brain barrier, without modifying their biological properties. As the use of 11C is limited by Edited by: Samer Ezziddin, its short physical half-life (20min), there has been an increasing focus on developing Saarland University, Germany tracers labeled with 18F for clinical use. The first such tracers allowed cerebral blood Reviewed by: flow and glucose metabolism to be measured, and the development of molecular Puja Panwar Hazari, imaging has since enabled to focus more closely on specific targets such as receptors, Institute of Nuclear Medicine & Allied Sciences (DRDO), India neurotransmitter transporters, and other proteins. Hence, PET and SPECT biomarkers Anupama Datta, have become indispensable for innovative clinical research.
    [Show full text]
  • Programmflyer – Stand Vom 14
    GRUßWORT NUKLEARMEDIZIN 2021 –DIGITAL Liebe Kolleginnen und Kollegen, sehr geehrte Damen und Herren, hiermit möchte ich Sie ganz herzlich zu unserer 59. Jahrestagung der Deutschen Gesellschaft für Nuklearmedizin, der „NuklearMedizin 2021 – digital“, einladen, die vom 14. – 17. April 2021 stattfinden wird. Unsere erste digitale Jah- restagung liegt noch nicht lange zurück. Trotz der damaligen und auch aktuellen schwierigen Rahmenbedingungen 2021 – DIGITAL 2021 – DIGITAL haben uns etliche positive Rückmeldungen erreicht, was uns sehr freut. NUKMED21.NUKLEARMEDIZIN.DE Das diesjährige Format des digitalen Kongresses bietet im Gegensatz zu unserem Kongress im Jahr 2020 nun drei statt zwei parallele Streaming-Slots. Dies ermöglicht ein deutliches Mehr an wissenschaftlichem Programm: 3 Leucht- turmsitzungen mit den best-bewerteten interdisziplinären Beiträgen – vom Jungen Talent bis zum/zur etablierten Forscher/in, 10 Vortragssitzungen mit über 90 Live-Beiträgen, Moderation und Diskussion, sowie eine ständige Kongressvorstand Postersitzung mit aufgezeichneten Kurzbeiträgen. Prof. Dr. Michael Schäfers (Münster) Erneut werden umfassende, interaktive CME-Fortbildungen mit 7 Sitzungen angeboten, hierunter neben Themen aus dem 3-jährigen DGN-Curriculum, 2 weitere Sitzungen mit einem Medizinphysik Curriculum und einer Sonderveran- staltung zu aktuellen Themen der „Auxillären CT in der Hybridbildgebung“. Vorsitz des Wissenschaftlichen Komitees Wie in jedem Jahr freuen wir uns auch wieder auf eine sehr gut organisierte und spannende MTRA-Tagung, die mit Prof. Dr. Michael Schäfers (Münster) 5 Sitzungen vorgesehen ist und die aktuellen Themen „Künstliche Intelligenz“ und „Covid-19“ aufgreift. 2021 – DIGITAL Preisträger und ihre Arbeiten werden in einer speziellen „Winners Lounge“ mit interaktiven Beiträgen geehrt. Wäh- Organisation MTRA-Tagung rend der Tagung werden Sie online in unserem Kongressportal, das in diesem Jahr einen virtuellen Kongress inkl.
    [Show full text]
  • IAEA TECDOC SERIES Production and Quality Control of Fluorine-18 Labelled Radiopharmaceuticals
    IAEA-TECDOC-1968 IAEA-TECDOC-1968 IAEA TECDOC SERIES Production and Quality Control of Fluorine-18 Labelled Radiopharmaceuticals IAEA-TECDOC-1968 Production and Quality Control of Fluorine-18 Labelled Radiopharmaceuticals International Atomic Energy Agency Vienna @ PRODUCTION AND QUALITY CONTROL OF FLUORINE-18 LABELLED RADIOPHARMACEUTICALS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GEORGIA OMAN ALBANIA GERMANY PAKISTAN ALGERIA GHANA PALAU ANGOLA GREECE PANAMA ANTIGUA AND BARBUDA GRENADA PAPUA NEW GUINEA ARGENTINA GUATEMALA PARAGUAY ARMENIA GUYANA PERU AUSTRALIA HAITI PHILIPPINES AUSTRIA HOLY SEE POLAND AZERBAIJAN HONDURAS PORTUGAL BAHAMAS HUNGARY QATAR BAHRAIN ICELAND REPUBLIC OF MOLDOVA BANGLADESH INDIA ROMANIA BARBADOS INDONESIA RUSSIAN FEDERATION BELARUS IRAN, ISLAMIC REPUBLIC OF RWANDA BELGIUM IRAQ SAINT LUCIA BELIZE IRELAND SAINT VINCENT AND BENIN ISRAEL THE GRENADINES BOLIVIA, PLURINATIONAL ITALY SAMOA STATE OF JAMAICA SAN MARINO BOSNIA AND HERZEGOVINA JAPAN SAUDI ARABIA BOTSWANA JORDAN SENEGAL BRAZIL KAZAKHSTAN SERBIA BRUNEI DARUSSALAM KENYA SEYCHELLES BULGARIA KOREA, REPUBLIC OF SIERRA LEONE BURKINA FASO KUWAIT SINGAPORE BURUNDI KYRGYZSTAN SLOVAKIA CAMBODIA LAO PEOPLE’S DEMOCRATIC SLOVENIA CAMEROON REPUBLIC SOUTH AFRICA CANADA LATVIA SPAIN CENTRAL AFRICAN LEBANON SRI LANKA REPUBLIC LESOTHO SUDAN CHAD LIBERIA SWEDEN CHILE LIBYA CHINA LIECHTENSTEIN SWITZERLAND COLOMBIA LITHUANIA SYRIAN ARAB REPUBLIC COMOROS LUXEMBOURG TAJIKISTAN CONGO MADAGASCAR THAILAND COSTA RICA MALAWI TOGO CÔTE D’IVOIRE
    [Show full text]
  • Nuclear Medicine in the Context of Personalized Medicine
    NUCLEAR MEDICINE IN THE CONTEXT OF PERSONALIZED MEDICINE EDITED BY : Françoise Kraeber-Bodéré, Francesco Cicone, Pierre Payoux and Myriam Bernaudin PUBLISHED IN : Frontiers in Medicine Frontiers eBook Copyright Statement About Frontiers The copyright in the text of individual articles in this eBook is the Frontiers is more than just an open-access publisher of scholarly articles: it is a property of their respective authors or their respective institutions or pioneering approach to the world of academia, radically improving the way scholarly funders. The copyright in graphics research is managed. The grand vision of Frontiers is a world where all people have and images within each article may be subject to copyright of other an equal opportunity to seek, share and generate knowledge. Frontiers provides parties. In both cases this is subject immediate and permanent online open access to all its publications, but this alone to a license granted to Frontiers. is not enough to realize our grand goals. The compilation of articles constituting this eBook is the property of Frontiers. Frontiers Journal Series Each article within this eBook, and the eBook itself, are published under The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, the most recent version of the Creative Commons CC-BY licence. online journals, promising a paradigm shift from the current review, selection and The version current at the date of dissemination processes in academic publishing. All Frontiers journals are driven publication of this eBook is CC-BY 4.0. If the CC-BY licence is by researchers for researchers; therefore, they constitute a service to the scholarly updated, the licence granted by community.
    [Show full text]
  • FDA-Approved Radiopharmaceuticals
    Medication Management FDA-approved radiopharmaceuticals This is a current list of all FDA-approved radiopharmaceuticals. USP <825> requires the use of conventionally manufactured drug products (e.g., NDA, ANDA) for Immediate Use. Nuclear medicine practitioners that receive radiopharmaceuticals that originate from sources other than the manufacturers listed in these tables may be using unapproved copies. Radiopharmaceutical Manufacturer Trade names Approved indications in adults (Pediatric use as noted) 1 Carbon-11 choline Various - Indicated for PET imaging of patients with suspected prostate cancer recurrence based upon elevated blood prostate specific antigen (PSA) levels following initial therapy and non-informative bone scintigraphy, computerized tomography (CT) or magnetic resonance imaging (MRI) to help identify potential sites of prostate cancer recurrence for subsequent histologic confirmation 2 Carbon-14 urea Halyard Health PYtest Detection of gastric urease as an aid in the diagnosis of H.pylori infection in the stomach 3 Copper-64 dotatate Curium Detectnet™ Indicated for use with positron emission tomography (PET) for localization of somatostatin receptor positive neuroendocrine tumors (NETs) in adult patients 4 Fluorine-18 florbetaben Life Molecular Neuraceq™ Indicated for Positron Emission Tomography (PET) imaging of the brain to Imaging estimate β amyloid neuritic plaque density in adult patients with cognitive impairment who are being evaluated for Alzheimer’s disease (AD) or other causes of cognitive decline 5 Fluorine-18
    [Show full text]
  • Spill-In Counts in the Quantification of 18F-Florbetapir on Aβ-Negative Subjects: the Effect of Including White Matter in the R
    López-González et al. EJNMMI Physics (2019) 6:27 EJNMMI Physics https://doi.org/10.1186/s40658-019-0258-7 ORIGINAL RESEARCH Open Access Spill-in counts in the quantification of 18F- florbetapir on Aβ-negative subjects: the effect of including white matter in the reference region Francisco Javier López-González1, Alexis Moscoso2, Nikos Efthimiou3, Anxo Fernández-Ferreiro4, Manuel Piñeiro-Fiel1, Stephen J. Archibald3, Pablo Aguiar1,2* , Jesús Silva-Rodríguez2,5 and for the Alzheimer’s Disease Neuroimaging Initiative * Correspondence: pablo.aguiar. [email protected] Abstract Data used in preparation of this article were obtained from the Background: We aim to provide a systematic study of the impact of white matter Alzheimer’s Disease Neuroimaging (WM) spill-in on the calculation of standardized uptake value ratios (SUVRs) on Aβ- Initiative (ADNI) database negative subjects, and we study the effect of including WM in the reference region (adni.loni.usc.edu). As such, the investigators within the ADNI as a compensation. In addition, different partial volume correction (PVC) methods are contributed to the design and applied and evaluated. implementation of ADNI and/or 18 provided data but did not Methods: We evaluated magnetic resonance imaging and F-AV-45 positron participate in analysis or writing of emission tomography data from 122 cognitively normal (CN) patients recruited at this report. A complete listing of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Cortex SUVRs were obtained ADNI investigators can be found at:http://adni.loni.usc.edu/wp- by using the cerebellar grey matter (CGM) (SUVRCGM) and the whole cerebellum content/uploads/how_to_apply/ (SUVRWC) as reference regions.
    [Show full text]
  • Brain2019 Final Program
    TABLE OF CONTENTS Congress Information ISCBFM Welcome Letter .................................................. 2 Committees ...................................................................... 3 About ISCBFM ................................................................. 4 About Yokohama .............................................................. 5 Awards ............................................................................. 6 Information A to Z ............................................................. 8 Information for Chairs & Speakers ..................................12 Access and Floor Guide ..................................................16 Scientific Program ISCBFM Meetings ...........................................................19 Social Events ................................................................. 20 Official Brain & Brain PET 2019 Satellites ...................... 21 Program at a Glance ...................................................... 24 Thursday, July 4th .......................................................... 30 Friday, July 5th ............................................................... 36 Saturday, July 6th ........................................................... 48 Sunday, July 7th ............................................................. 62 Poster Session Friday, July 5th ............................................................... 77 Saturday, July 6th ..........................................................104 Sunday, July 7th ............................................................130
    [Show full text]