Under the Direction of Dr. David J. Dix, Dr

Total Page:16

File Type:pdf, Size:1020Kb

Under the Direction of Dr. David J. Dix, Dr ABSTRACT GOETZ, AMBER KRISTINA. Toxicogenomic Study of Triazole Antifungal Modes of Action. (Under the direction of Dr. David J. Dix, Dr. Ernest Hodgson.) Common modes and mechanisms of hepatic and reproductive toxicity were characterized for a set of triazole antifungals. Wistar Han rats were fed myclobutanil, propiconazole, or triadimefon from gestation day 6 to postnatal day (PND) 120. Anogenital distance, body and organ weights, serum hormone levels, age at preputial separation, sperm morphology and motility, fertility and fecundity assays were selected to evaluate effects on development and adult reproductive function. All three triazoles increased anogenital distance, increased relative liver weights, induced hepatomegaly, increased absolute testis weights and serum testosterone levels. Myclobutanil and triadimefon impaired insemination and fertility, myclobutanil decreased pituitary weights, and triadimefon delayed puberty and decreased total serum thyroxine levels. The reproductive effects are consistent with disruption of testosterone homeostasis as a key event for triazole reproductive toxicity. To investigate common mechanisms of triazole toxicity, a toxicogenomic study was performed using liver and testis samples from PND92. Pathway and gene-level analysis of the liver highlighted biological processes affected by all three triazoles, including phase I-III; fatty acid, steroid, and xenobiotic metabolism; and lipid homeostasis. Triadimefon had a distinctive impact on sterol biosynthesis related genes in the liver. No common pathways were affected in the testis. To explore common mechanisms of action between in vivo and in vitro model systems, a series of comparative toxicogenomic studies were conducted on rat liver at multiple time points, rat and human primary hepatocytes, H295R cells, and PND92 liver and testis. Comparison between liver and rat hepatocytes showed consistent effect on fatty acid catabolism, sterol metabolism, and phase III transporters. Conserved effects between rat and human primary hepatocytes concluded triazole- and species-specific effects. The modulated genes affect a network of pathways regulating lipid and testosterone homeostasis through the constitutive androstane and pregnane X receptors. The gene expression results from this study suggest triazoles increase fatty acid catabolism, reduce bile acid biosynthesis, increase cholesterol biosynthesis, and induce steroid metabolism in the liver. These changes in the liver likely contribute to the observed disruption in testosterone homeostasis. TOXICOGENOMIC STUDY OF TRIAZOLE ANTIFUNGAL MODES OF ACTION by AMBER KRISTINA GOETZ A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirement for the Degree of Doctor of Philosophy TOXICOLOGY Raleigh, North Carolina 2007 APPROVED BY: ____________________________ Dr. Charlotte Farin ____________________________ ____________________________ Dr. Andrew Wallace Dr. Russ Wolfinger ___________________________ ____________________________ Dr. David Dix Dr. Ernest Hodgson Co-chair of Advisory Committee Co-chair of Advisory Committee DEDICATION This dissertation and all the work that has been put into it are dedicated to my parents and fiancé who have provided unconditional support and guidance throughout my studies and research. Their relentless motivation, humor, understanding, patience and prayers were always there, through the good times and the bad, the ebbs and flows. ii BIOGRAPHY I was born into an Air Force family in Ohio, moving rapidly to Florida and Maine where I attended a rural school emphasizing strong family values and involvement in community life. Throughout my early years I assisted my family in caring for a variety of farm animals and at the age of 10 decided to breed rabbits. This interest expanded to extensive volunteer work at the Caribou veterinary clinic. As a Girl Scout, I was selected to represent the State of Maine at a National training program in Animal Care and Management at the Bronx Zoological Park. Each of these experiences and opportunities led me to the Zoology program at the University of Maine Orono. At UMaine Orono I was introduced to the study of the taxonomy of cumaceans as well as work in the field of DNA analysis. Due to my interest and skill in the laboratory, I was selected as an undergraduate to participate in a graduate research program off the coast of Mexico. Following graduation, I continued to work in a veterinary clinic and than as a zoo attendant specializing in the care of domestic and exotic animals. In the fall of 2001 I entered the graduate program in Zoology at North Carolina State University with the support of the U.S. Environmental Protection Agency (EPA). My interest in research was refocused to toxicology, such that shortly after my admittance in the Zoology program I transferred into North Carolina State’s Molecular and Cellular Toxicology program. By the time I completed my masters in the fall of 2003, I had already begun designing the research project presented here. Upon completion of my doctorate, I will continue in the field of molecular toxicology with an avid interest in reproductive toxicology and toxicogenomic research. iii ACKNOWLEDGEMENTS First and foremost, thanks to Dr. David Dix for providing the opportunities to not only volunteer in his lab when I first began my journey towards graduate school in early 2001, but continued support throughout my years of research under his direction. His leadership, guidance, assiduous determination, and parallel interest in my research unremittingly drove my enthusiasm to learn new and polish existing skills. Thanks to the members of my advisory committee, the late Dr. Randy Rose, Dr. Charlotte Farin, Dr. Andrew Wallace, Dr. Ernest Hodgson, and Dr. Russ Wolfinger for providing encouragement, constructive criticism and guidance throughout. Of course, thanks to all of my professors for opening my eyes, broadening my mind and testing my abilities. iv TABLE OF CONTENTS Page LIST OF TABLES ….………………………………………………………………………………….. vi LIST OF FIGURES ……………………………………………………………………………………. ix CHAPTER ONE: INTRODUCTION …………………………………………………………………. 1 CHAPTER TWO: DISRUPTION OF TESTOSTERONE HOMEOSTASIS AS A MODE OF ACTION FOR THE REPRODUCTIVE TOXICITY OF TRIAZOLE ANTIFUNGALS IN THE MALE RAT Introduction …………………………………………………………………………………... 12 Materials and Methods ……………………………………………………………………… 13 Results ………………………………………………………………………………………... 18 Discussion ……………………………………………………………………………………. 22 CHAPTER THREE: MECHANISMS OF TRIAZOLE ANTIFUNGAL REPRODUCTIVE TOXICITY INFERRED FROM TOXICOGENOMICS Introduction …………………………………………………………………………………... 40 Materials and Methods ……………………………………………………………………… 41 Results ……………………………………………………………………………………….. 46 Discussion ……………………………………………………………………………………. 50 CHAPTER FOUR: COMMON AND CONSERVED TOXICOGENOMIC RESPONSES TO TRIAZOLE ANTIFUNGALS Introduction …………………………………………………………………………………... 73 Materials and Methods ……………………………………………………………………… 74 Results …………………………………………………………………………………......... 82 Discussion ……………………………………………………………………………………. 88 CHAPTER FIVE: CONCLUSIONS ………………………………………………………………….. 126 REFERENCES ………………………………………………………………………………………... 137 APPENDICIES APPENDIX A: Workflow for JMP Genomics Analysis of Affymetrix GeneChip® Data…. 147 APPENDIX B: Supplemental data from toxicogenomic studies ………………………… 153 v LIST OF TABLES Page CHAPTER TWO Table 1 Daily feed consumption and calculated dose levels …………………………… 26 Table 2 Weekly body weights ……………………………………………………………... 27 Table 3 Survival rates ………………………………………………………………………. 28 Table 4 Triazole dose, age and body weight at preputial separation ………………….. 29 Table 5 Liver weights ……………………………………………………………………….. 30 Table 6 Testis and accessory sex gland weights ……………………………………….. 31 Table 7 Pituitary and brain weights ……………………………………………………….. 32 Table 8 Liver histopathology ………………………………………………………………. 33 Table 9 Breeding performance of male rats exposed to triazole antifungals ………… 34 Table 10 Modes of action and potential mechanisms of triazole-induced reproductive toxicity ……………………………………………………………….. 35 CHAPTER THREE Table 1 Probe sets significantly modulated in adult liver and testis …………………… 57 Table 2 Pathways affected by triazoles in adult liver: GD6-PND92 exposure ……….. 58 Table 3 Pathways affected by triazoles in adult testis: GD6-PND92 exposure ………. 60 Table 4 Common gene expression changes by all three triazoles in the liver ……….. 61 Table 5 Gene expression changes by two or more triazoles in the testis …………….. 62 Table 6 Comparisons between microarray and relative qPCR fold changes …………. 63 CHAPTER FOUR Table 1 Probe sets significantly modulated in adult liver and primary hepatocytes …. 97 Table 2 Probe sets significantly modulated in adult testis and H295R cells ………….. 98 Table 3A Pathways consistently affected across time in liver and hepatocytes by myclobutanil ……………………………………………………... 99 Table 3B Pathways consistently affected across time in liver and hepatocytes by propiconazole ……………………………………………………. 100 Table 3C Pathways consistently affected across time in liver and hepatocytes by triadimefon ……………………………………………………….. 101 Table 3D Pathways conserved across rat and human hepatocytes by triazoles …….. 102 Table 4A Conserved pathways affected in the testis and H295R cells by myclobutanil 103 Table 4B Conserved pathways affected in the testis and H295R cells by propiconazole 104 Table 4C Conserved pathways affected in the testis and H295R cells by triadimefon 105 Table 5 Common gene
Recommended publications
  • Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
    Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P.
    [Show full text]
  • The Role of Genetic Variation in Predisposition to Alcohol-Related Chronic Pancreatitis
    The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Marianne Lucy Johnstone April 2015 The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis 2015 Abstract Background Chronic pancreatitis (CP) is a disease of fibrosis of the pancreas for which alcohol is the main causative agent. However, only a small proportion of alcoholics develop chronic pancreatitis. Genetic polymorphism may affect pancreatitis risk. Aim To determine the factors required to classify a chronic pancreatic population and identify genetic variations that may explain why only some alcoholics develop chronic pancreatitis. Methods The most appropriate method of diagnosing CP was assessed using a systematic review. Genetics of different populations of alcohol-related chronic pancreatitics (ACP) were explored using four different techniques: genome-wide association study (GWAS); custom arrays; PCR of variable nucleotide tandem repeats (VNTR) and next generation sequencing (NGS) of selected genes. Results EUS and sMR were identified as giving the overall best sensitivity and specificity for diagnosing CP. GWAS revealed two associations with CP (identified and replicated) at PRSS1-PRSS2_rs10273639 (OR 0.73, 95% CI 0.68-0.79) and X-linked CLDN2_rs12688220 (OR 1.39, 1.28-1.49) and the association was more pronounced in the ACP group (OR 0.56, 0.48-0.64)and OR 2.11, 1.84-2.42). The previously identified VNTR in CEL was shown to have a lower frequency of the normal repeat in ACP than alcoholic liver disease (ALD; OR 0.61, 0.41-0.93).
    [Show full text]
  • Oxidative Stress and Inflammation in Hepatic Diseases
    Review Oxidative Stress and Inflammation in Hepatic Diseases: Therapeutic Possibilities of N-Acetylcysteine Kívia Queiroz de Andrade 1, Fabiana Andréa Moura 1,2, John Marques dos Santos 3, Orlando Roberto Pimentel de Araújo 3, Juliana Célia de Farias Santos 2 and Marília Oliveira Fonseca Goulart 3,* Received: 10 October 2015; Accepted: 4 December 2015; Published: 18 December 2015 Academic Editor: Guido Haenen 1 Pós Graduação em Ciências da Saúde (PPGCS), Campus A. C. Simões, Tabuleiro dos Martins, 57072-970 Maceió, AL, Brazil; [email protected] (K.Q.A.); [email protected] (F.A.M.) 2 Faculdade de Nutrição/Universidade Federal de Alagoas (FANUT/UFAL), Campus A. C. Simões, Tabuleiro dos Martins, 57072-970 Maceió, AL, Brazil; [email protected] 3 Instituto de Química e Biotecnologia (IQB), Universidade Federal de Alagoas (UFAL), Campus A. C. Simões, Tabuleiro dos Martins, 57072-970 Maceió, AL, Brazil; [email protected] (J.M.S.); [email protected] (O.R.P.A.) * Correspondence: [email protected]; Tel.: +55-82-98818-0463 Abstract: Liver disease is highly prevalent in the world. Oxidative stress (OS) and inflammation are the most important pathogenetic events in liver diseases, regardless the different etiology and natural course. N-acetyl-L-cysteine (the active form) (NAC) is being studied in diseases characterized by increased OS or decreased glutathione (GSH) level. NAC acts mainly on the supply of cysteine for GSH synthesis. The objective of this review is to examine experimental and clinical studies that evaluate the antioxidant and anti-inflammatory roles of NAC in attenuating markers of inflammation and OS in hepatic damage.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,530,724 B2 Whitelaw Et Al
    US008530724B2 (12) United States Patent (10) Patent No.: US 8,530,724 B2 Whitelaw et al. (45) Date of Patent: Sep. 10, 2013 (54) ALTERING THE FATTY ACID COMPOSITION 2011/0054198 A1 3/2011 Singh et al. OF RICE 2011/O190521 A1 8/2011 Damcevski et al. 2011/02O1065 A1 8/2011 Singh et al. 2011/02233.11 A1 9, 2011 Liu et al. (75) Inventors: Ella Whitelaw, Albury (AU); Sadequr 2011/0229623 A1 9, 2011 Liu et al. Rahman, Nicholls (AU); Zhongyi Li, 2012/0041218 A1 2/2012 Singh et al. Kaleen (AU); Qing Liu, Girralang (AU); Surinder Pal Singh, Downer (AU): FOREIGN PATENT DOCUMENTS WO WO99,049050 9, 1999 Robert Charles de Feyter, Monash WO WOO3,080802 10, 2003 (AU) WO WO 2003/080802 A2 10/2003 WO WO 2004/001001 12/2003 (73) Assignee: Commonwealth Scientific and WO WO 2004/001001 A2 12/2003 Industrial Research Organisation, WO WO 2008/O25068 6, 2008 Campbell (AU) WO WO 2009/12958 10/2009 WO WO 2010/009:500 1, 2010 (*) Notice: Subject to any disclaimer, the term of this WO WO 2010/057246 5, 2010 patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 772 days. Supplementary European Search Report issued Feb. 23, 2010 in connection with corresponding European Patent Application No. (21) Appl. No.: 12/309.276 0776.37759. Taira et al. (1989) “Fatty Acid Composition of Indica-Types and (22) PCT Filed: Jul. 13, 2007 Japonica-Types of Rice Bran and Milled Rice' Journal of the Ameri can Oil Chemists’ Society; vol.
    [Show full text]
  • Identification of a Distinct Metabolomic Subtype of Sporadic ALS Patients
    bioRxiv preprint doi: https://doi.org/10.1101/416396; this version posted September 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Identification of a Distinct Metabolomic Subtype of Sporadic ALS Patients Running title – Increased cysteine and glucose metabolism in sALS cases Qiuying Chen, PhD1*, Davinder Sandhu, M.S.1*, Csaba Konrad, PhD2, Dipa Roychoudhury, PhD3, Benjamin I. Schwartz1, Roger R. Cheng1, Kirsten Bredvik2, Hibiki Kawamata, PhD2, Elizabeth L. Calder, PhD4, Lorenz Studer, MD4, Steven. M. Fischer3, Giovanni Manfredi MD/PhD2* and Steven. S. Gross, PhD1* *Joint first/senior authors 1Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA 2Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA 3Agilent Technology, Santa Clara, CA, USA 4The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Center, New York, NY. Keywords: sporadic amyotrophic lateral sclerosis, metabolomics, stable isotope tracing, trans-sulfuration, hypermetabolism, disease stratification, energy metabolism Co-Corresponding Authors: Steven S. Gross, PhD Department of Pharmacology Weill Cornell Medicine Phone: 212-746-6257 Email: [email protected] Giovanni Manfredi, MD/PhD Brain and Mind Research Institute Weill Cornell Medicine Phone: 646-962-8172 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/416396; this version posted September 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Number of characters: Title --- 94 Running head---48 Number of words: Title --- 13 Running head --- 8 Abstract---232 Introduction --- 549 Discussion --- 1126 Body of manuscript --- 5706 Number of figures: 8 Number of color figures: 8 Number of tables:1 2 bioRxiv preprint doi: https://doi.org/10.1101/416396; this version posted September 13, 2018.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,906,710 B2 Karunanandaa Et Al
    US00790671 OB2 (12) United States Patent (10) Patent No.: US 7,906,710 B2 Karunanandaa et al. (45) Date of Patent: *Mar. 15, 2011 (54) TRANSGENIC PLANTS CONTAINING FOREIGN PATENT DOCUMENTS ALTERED LEVELS OF STEROD EP 0486290 11, 1991 COMPOUNDS EP O480730 4f1992 JP O9121863 5, 1997 WO WO93,021.87 2, 1993 (75) Inventors: Balasulojini Karunanandaa, St. Louis, WO WO97/032O2 1, 1997 MO (US); Martha Post-Beittenmiller, WO WO97/34003 9, 1997 St. Louis, MO (US); Mylavarapu WO WO 98.45457 10, 1998 Venkatramesh, St. Louis, MO (US); WO WO99,04622 2, 1999 Ganesh M. Kishore, St. Louis, MO WO WOOOf 61771 10, 2000 (US); Gregory M. Thorne, St. Louis, WO WOO1/31027 3, 2001 MO (US); John R. LeDeaux, St. Louis, MO (US) OTHER PUBLICATIONS Bach et al., “Cloning of cDNAS or genes encoding enzymes of sterol (73) Assignee: Monsanto Company, St. Louis,MO biosynthesis from plants and other eukaryotes: heterologous expres (US) sion and complementation analysis of mutations for functional char acterization.” Progress in Lipid Research, 36(2/3): 197-226, 1997. (*) Notice: Subject to any disclaimer, the term of this Bak et al., “Cloning and expression in Escherichia coli of the patent is extended or adjusted under 35 obtusifoliol 14-alpha-demethylase of Sorghum bicolor (L.) Moench, U.S.C. 154(b) by 0 days. a cytochrome P450 orthologous to the sterol 14-alpha-demethylases This patent is Subject to a terminal dis (CYP51) from fungi and mammals.” Plant Journal, 11(2):191-201, claimer. 1997. Bak et al., “Cloning and expression in Escherichia coli of the obtusifoliol 14-alpha-demethylase of Sorghum bicolor (L.) Moench, (21) Appl.
    [Show full text]
  • Transcriptomic and Proteomic Profiling Provides Insight Into
    BASIC RESEARCH www.jasn.org Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy † † ‡ Peidi Liu,* Emelie Lassén,* Viji Nair, Celine C. Berthier, Miyuki Suguro, Carina Sihlbom,§ † | † Matthias Kretzler, Christer Betsholtz, ¶ Börje Haraldsson,* Wenjun Ju, Kerstin Ebefors,* and Jenny Nyström* *Department of Physiology, Institute of Neuroscience and Physiology, §Proteomics Core Facility at University of Gothenburg, University of Gothenburg, Gothenburg, Sweden; †Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan; ‡Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan; |Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; and ¶Integrated Cardio Metabolic Centre, Karolinska Institutet Novum, Huddinge, Sweden ABSTRACT IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type–specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell–positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell–positive standard genes.
    [Show full text]
  • Supplemental Table 1. Differences in Fasting Metabolites (All) by CKD Status in Plasma
    Supplemental table 1. Differences in fasting metabolites (all) by CKD status in plasma. Metabolites in bold show hits controlling FDR at 10%, in a model that controls for age, sex, race (white versus not), and weight. Ordered by subclasses of metabolites followed by adjusted percent difference between CKD and controls and adjusted p-value for difference. Metabolite % Difference p-value q-value Pathway in CKD, compared with controls Cystine (241.1 / 120.0) 33 2.60E-09 1.52E-08 Amino Acid Proline (116.1 / 70.0) 20 0.000195 0.000692 Amino Acid 2-Hydroxyisovaleric Acid (117.0 / 71.0) 47 0.000331 0.001139 Amino Acid Tyrosine (182.1 / 136.0) -13 0.000633 0.002014 Amino Acid Serine (106.0 / 60.0) -8 0.029507 0.065132 Amino Acid Glycine (76.0 / 30.1) 13 0.032003 0.06842 Amino Acid Leucine (132.1 / 86.0) -5 0.067499 0.139499 Amino Acid 5-Aminovaleric Acid (118.0 / 55.0) -4 0.127339 0.253324 Amino Acid Threonine (120.1 / 74.0 (2)) -7 0.145125 0.281179 Amino Acid Glutamine (147.1 / 84.0) 3 0.169291 0.318061 Amino Acid Valine (118.1 / 72.0) -4 0.201091 0.36138 Amino Acid Arginine (175.1 / 70.0) 5 0.209045 0.362752 Amino Acid Sarcosine (89.9 / 44.0) -7 0.209395 0.362752 Amino Acid Cadaverine (103.0 / 86.0) 4 0.281896 0.459935 Amino Acid Histidine (156.1 / 110.0) 3 0.319987 0.495386 Amino Acid Alanine (90.0 / 44.0) 5 0.330111 0.499193 Amino Acid iso-Leucine (132.1 / 86.0 (2)) -3 0.336431 0.50262 Amino Acid Phenylalanine (166.1 / 120.0) 2 0.461445 0.61526 Amino Acid Methionine (150.1 / 61.0) -3 0.516557 0.681415 Amino Acid Pipecolate (130.0 / 84.0) -2
    [Show full text]
  • Supplementary Table 9. Functional Annotation Clustering Results for the Union (GS3) of the Top Genes from the SNP-Level and Gene-Based Analyses (See ST4)
    Supplementary Table 9. Functional Annotation Clustering Results for the union (GS3) of the top genes from the SNP-level and Gene-based analyses (see ST4) Column Header Key Annotation Cluster Name of cluster, sorted by descending Enrichment score Enrichment Score EASE enrichment score for functional annotation cluster Category Pathway Database Term Pathway name/Identifier Count Number of genes in the submitted list in the specified term % Percentage of identified genes in the submitted list associated with the specified term PValue Significance level associated with the EASE enrichment score for the term Genes List of genes present in the term List Total Number of genes from the submitted list present in the category Pop Hits Number of genes involved in the specified term (category-specific) Pop Total Number of genes in the human genome background (category-specific) Fold Enrichment Ratio of the proportion of count to list total and population hits to population total Bonferroni Bonferroni adjustment of p-value Benjamini Benjamini adjustment of p-value FDR False Discovery Rate of p-value (percent form) Annotation Cluster 1 Enrichment Score: 3.8978262119731335 Category Term Count % PValue Genes List Total Pop Hits Pop Total Fold Enrichment Bonferroni Benjamini FDR GOTERM_CC_DIRECT GO:0005886~plasma membrane 383 24.33290978 5.74E-05 SLC9A9, XRCC5, HRAS, CHMP3, ATP1B2, EFNA1, OSMR, SLC9A3, EFNA3, UTRN, SYT6, ZNRF2, APP, AT1425 4121 18224 1.18857065 0.038655922 0.038655922 0.086284383 UP_KEYWORDS Membrane 626 39.77128335 1.53E-04 SLC9A9, HRAS,
    [Show full text]
  • Taurine Supplementation Improves the Utilization of Sulfur
    Available online at www.sciencedirect.com Journal of Nutritional Biochemistry 20 (2009) 132–139 Taurine supplementation improves the utilization of sulfur-containing amino acids in rats continually administrated alcohol Hui-Ting Yanga, Yi-Wen Chienb, Jen-Horng Tsenc, Ching-Chien Changb,d, ⁎ ⁎ Jer-Hwa Change, ,1, Shih-Yi Huangb, ,1 aSchool of Pharmaceutical Science, Taipei Medical University, Taipei bSchool of Nutrition and Health Sciences, Taipei Medical University, Taipei cSchool of Nutrition, China Medical University, Taichung, Taiwan dGeneral Education Center, Northern Taiwan Institute of Science and Technology, Taipei eDepartment of Internal Medicine, Taipei Medical University Wan Fang Hospital, Taipei, Taiwan Received 27 September 2007; received in revised form 18 December 2007; accepted 4 January 2008 Abstract The main purpose of this study was to evaluate changes in brain sulfur-containing amino acid (SCAA) metabolism to determine whether taurine intervened under continuous alcohol intake. We fed 80 male Sprague–Dawley rats 30% alcohol-containing water for 4 weeks. Eighty animals were divided into two groups (with or without 2 g/kg body weight taurine supplementation), and five were killed every week in each group for monitoring SCAA changes in the brain, liver, kidneys and heart. Results indicated that the plasma alcohol concentration increased from Weeks 1–4; however, animals with taurine supplementation showed a lower plasma concentration of ethanol in Week 2. As to SCAA concentrations, cysteine and taurine were both lower after a week of alcohol ingestion in the brain and plasma; the same declining trend was shown in the liver in Week 2. In contrast, plasma and hepatic concentrations of homocysteine were elevated in Week 2, and the plasma S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio also decreased in Week 1.
    [Show full text]
  • Electronic Supplementary Material (ESI) for Metallomics
    Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2018 Uniprot Entry name Gene names Protein names Predicted Pattern Number of Iron role EC number Subcellular Membrane Involvement in disease Gene ontology (biological process) Id iron ions location associated 1 P46952 3HAO_HUMAN HAAO 3-hydroxyanthranilate 3,4- H47-E53-H91 1 Fe cation Catalytic 1.13.11.6 Cytoplasm No NAD biosynthetic process [GO:0009435]; neuron cellular homeostasis dioxygenase (EC 1.13.11.6) (3- [GO:0070050]; quinolinate biosynthetic process [GO:0019805]; response to hydroxyanthranilate oxygenase) cadmium ion [GO:0046686]; response to zinc ion [GO:0010043]; tryptophan (3-HAO) (3-hydroxyanthranilic catabolic process [GO:0006569] acid dioxygenase) (HAD) 2 O00767 ACOD_HUMAN SCD Acyl-CoA desaturase (EC H120-H125-H157-H161; 2 Fe cations Catalytic 1.14.19.1 Endoplasmic Yes long-chain fatty-acyl-CoA biosynthetic process [GO:0035338]; unsaturated fatty 1.14.19.1) (Delta(9)-desaturase) H160-H269-H298-H302 reticulum acid biosynthetic process [GO:0006636] (Delta-9 desaturase) (Fatty acid desaturase) (Stearoyl-CoA desaturase) (hSCD1) 3 Q6ZNF0 ACP7_HUMAN ACP7 PAPL PAPL1 Acid phosphatase type 7 (EC D141-D170-Y173-H335 1 Fe cation Catalytic 3.1.3.2 Extracellular No 3.1.3.2) (Purple acid space phosphatase long form) 4 Q96SZ5 AEDO_HUMAN ADO C10orf22 2-aminoethanethiol dioxygenase H112-H114-H193 1 Fe cation Catalytic 1.13.11.19 Unknown No oxidation-reduction process [GO:0055114]; sulfur amino acid catabolic process (EC 1.13.11.19) (Cysteamine
    [Show full text]
  • Combined Metabolic Activators Improve Cognitive Functions Without Altering Motor
    medRxiv preprint doi: https://doi.org/10.1101/2021.07.28.21261293; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Combined Metabolic Activators Improve Cognitive Functions without Altering Motor Scores in Parkinson’s Disease Burak Yulug1,#, Ozlem Altay2,#, Xiangyu Li2, #, Lutfu Hanoglu3, Seyda Cankaya1, Simon Lam4, Hong Yang2, Ebru Coskun3, Ezgi İdil1, Rahim Nogaylar1, Ahmet Hacımuftuoglu5, Muhammad Arif2, Saeed Shoaie2,4, Cheng Zhang2.6, Jens Nielsen7, Hasan Turkez8, Jan Borén9, Mathias Uhlén2,*, Adil Mardinoglu2,4,* 1Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey 2Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden 3Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey 4Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom 5Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey. 6School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China 7Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden 8Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey 9Department
    [Show full text]