The' 1972 Annual Meeting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Surveys for Dun Skipper (Euphyes Vestris) in the Harrison Lake Area, British Columbia, July 2009
Surveys for Dun Skipper (Euphyes vestris) in the Harrison Lake Area, British Columbia, July 2009 Report Citation: Parkinson, L., S.A. Blanchette, J. Heron. 2009. Surveys for Dun Skipper (Euphyes vestris) in the Harrison Lake Area, British Columbia, July 2009. B.C. Ministry of Environment, Ecosystems Branch, Wildlife Science Section, Vancouver, B.C. 51 pp. Cover illustration: Euphyes vestris, taken 2007, lower Fraser Valley, photo by Denis Knopp. Photographs may be used without permission for non-monetary and educational purposes, with credit to this report and photographer as the source. The cover photograph is credited to Denis Knopp. Contact Information for report: Jennifer Heron, Invertebrate Specialist, B.C. Ministry of Environment, Ecosystems Branch, Wildlife Science Section, 316 – 2202 Main Mall, Vancouver, B.C., Canada, V6T 1Z1. Phone: 604-222-6759. Email: [email protected] Acknowledgements Fieldwork was conducted by Laura Parkinson and Sophie-Anne Blanchette, B.C. Conservation Corps Invertebrate Species at Risk Crew. Jennifer Heron (B.C. Ministry of Environment) provided maps, planning and guidance for this project. The B.C. Invertebrate Species at Risk Inventory project was administered by the British Columbia Conservation Foundation (Joanne Neilson). Funding was provided by the B.C. Ministry of Environment through the B.C. Conservation Corp program (Ben Finkelstein, Manager and Bianka Sawicz, Program Coordinator), the B.C. Ministry of Environment Wildlife Science Section (Alec Dale, Manager) and Conservation Framework Funding (James Quayle, Manager). Joanne Neilson (B.C. Conservation Foundation) was a tremendous support to this project. This project links with concurrent invertebrate stewardship projects funded by the federal Habitat Stewardship Program for species at risk. -
9 2013, No.1136
2013, No.1136 8 LAMPIRAN I PERATURAN MENTERI PERDAGANGAN REPUBLIK INDONESIA NOMOR 50/M-DAG/PER/9/2013 TENTANG KETENTUAN EKSPOR TUMBUHAN ALAM DAN SATWA LIAR YANG TIDAK DILINDUNGI UNDANG-UNDANG DAN TERMASUK DALAM DAFTAR CITES JENIS TUMBUHAN ALAM DAN SATWA LIAR YANG TIDAK DILINDUNGI UNDANG-UNDANG DAN TERMASUK DALAM DAFTAR CITES No. Pos Tarif/HS Uraian Barang Appendix I. Binatang Hidup Lainnya. - Binatang Menyusui (Mamalia) ex. 0106.11.00.00 Primata dari jenis : - Macaca fascicularis - Macaca nemestrina ex. 0106.19.00.00 Binatang menyusui lain-lain dari jenis: - Pteropus alecto - Pteropus vampyrus ex. 0106.20.00.00 Binatang melata (termasuk ular dan penyu) dari jenis: · Ular (Snakes) - Apodora papuana / Liasis olivaceus papuanus - Candoia aspera - Candoia carinata - Leiopython albertisi - Liasis fuscus - Liasis macklotti macklotti - Morelia amethistina - Morelia boeleni - Morelia spilota variegata - Naja sputatrix - Ophiophagus hannah - Ptyas mucosus - Python curtus - Python brongersmai - Python breitensteini - Python reticulates www.djpp.kemenkumham.go.id 9 2013, No.1136 No. Pos Tarif/HS Uraian Barang · Biawak (Monitors) - Varanus beccari - Varanus doreanus - Varanus dumerili - Varanus jobiensis - Varanus rudicollis - Varanus salvadori - Varanus salvator · Kura-Kura (Turtles) - Amyda cartilaginea - Calllagur borneoensis - Carettochelys insculpta - Chelodina mccordi - Cuora amboinensis - Heosemys spinosa - Indotestudo forsteni - Leucocephalon (Geoemyda) yuwonoi - Malayemys subtrijuga - Manouria emys - Notochelys platynota - Pelochelys bibroni -
Checklist of Fish and Invertebrates Listed in the CITES Appendices
JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No. -
Superior National Forest
Admirals & Relatives Subfamily Limenitidinae Skippers Family Hesperiidae £ Viceroy Limenitis archippus Spread-wing Skippers Subfamily Pyrginae £ Silver-spotted Skipper Epargyreus clarus £ Dreamy Duskywing Erynnis icelus £ Juvenal’s Duskywing Erynnis juvenalis £ Northern Cloudywing Thorybes pylades Butterflies of the £ White Admiral Limenitis arthemis arthemis Superior Satyrs Subfamily Satyrinae National Forest £ Common Wood-nymph Cercyonis pegala £ Common Ringlet Coenonympha tullia £ Northern Pearly-eye Enodia anthedon Skipperlings Subfamily Heteropterinae £ Arctic Skipper Carterocephalus palaemon £ Mancinus Alpine Erebia disa mancinus R9SS £ Red-disked Alpine Erebia discoidalis R9SS £ Little Wood-satyr Megisto cymela Grass-Skippers Subfamily Hesperiinae £ Pepper & Salt Skipper Amblyscirtes hegon £ Macoun’s Arctic Oeneis macounii £ Common Roadside-Skipper Amblyscirtes vialis £ Jutta Arctic Oeneis jutta (R9SS) £ Least Skipper Ancyloxypha numitor Northern Crescent £ Eyed Brown Satyrodes eurydice £ Dun Skipper Euphyes vestris Phyciodes selenis £ Common Branded Skipper Hesperia comma £ Indian Skipper Hesperia sassacus Monarchs Subfamily Danainae £ Hobomok Skipper Poanes hobomok £ Monarch Danaus plexippus £ Long Dash Polites mystic £ Peck’s Skipper Polites peckius £ Tawny-edged Skipper Polites themistocles £ European Skipper Thymelicus lineola LINKS: http://www.naba.org/ The U.S. Department of Agriculture (USDA) prohibits discrimination http://www.butterfliesandmoths.org/ in all its programs and activities on the basis of race, color, national -
Butterflies of Kootenai County 958 South Lochsa St Post Falls, ID 83854
Butterflies of Kootenai County 958 South Lochsa St Post Falls, ID 83854 Phone: (208) 292-2525 Adapted from Oregon State University Extension FAX: (208) 292-2670 Booklet EC 1549 and compiled by Mary V., Certified E-mail: [email protected] Idaho Master Gardener. Web: uidaho.edu/kootenai By growing a bounty of native plants, mixed with nearly-natives or non-natives, you can attract a variety of butterflies. Additional reading: https://xerces.org/your-pollinator-garden/ Butterflies favor platform-shaped flowers but will feed on a diversity of nectar-rich http://millionpollinatorgardens.org/ flowers. They prefer purple, red, orange, https://www.fs.fed.us/wildflowers/pollinator violet, and yellow flower colors with sweet s/documents/AttractingPollinatorsV5.pdf scents. Butterflies love warm, sunny and http://xerces.org/pollinators-mountain- windless weather. region/ Planning your garden – Think like a o Tolerate Damage on your Plants: A butterfly Pollinator garden needs plants that feed larvae o Go Native: Pollinators are best adapted to (caterpillars). They feed on leaves and plant local, native plants which often need less material. If you do not feed the young, the water than ornamentals. adults will not stay in your landscapes. o Plant in Groups of three or more: Planting o Provide a puddle as a water source: Allow large patches of each plant species for better water to puddle in a rock or provide a foraging efficiency. shallow dish filled with sand as a water source for butterflies. Float corks or a stick o Blooming All Season: Flowers should bloom in your garden throughout the in the puddles to allow insects that fall in to growing season. -
Special Issue3.7 MB
Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird -
LISTING STATEMENT Ptunarra Brown Butterfly, Oreixencia Ptunarra Couchman 1953
THREATENED SPECIES LISTING STATEMENT Ptunarra Brown Butterfly, Oreixencia ptunarra Couchman 1953 Status Commonwealth Endangered Species Protection Act Illustration: Karen Richards 1.25 cm 1992…………………………...…………………...Not listed Tasmanian Threatened Species Protection Act 1995………………………………………………Vulnerable Description Northwest Plains The Ptunarra brown butterfly is a small brown and orange Central Plateau butterfly belonging to the family Nymphalidae. Three Eastern Highlands sub-species of the butterfly were described by Couchman Steppes (1953). O. p. roonina, from the Midlands, North-west Midlands Plains and lower Steppes is the largest of the three, with a wingspan of 30-33 mm. The white background colour in the male sometimes extends as bands across the wing. O. Known distribution p. angeli from the Eastern Highlands is intermediate in of the Ptunarra brown butterfly size to the other two races, with a wingspan of 27-29 mm. The background colour in the male is yellow, not white as in O. o. roonina. The Central Plateau form, O. p. Distribution and Habitat ptunarra, is the smallest and darkest, with a wing span of The Ptunarra brown butterfly is endemic to Tasmania and 25-26 mm with the cream background colour in the male restricted to five areas of the state: the Midlands, Steppes, appearing only as small spots. The females are similar in Northwest Plains, Eastern Highlands and the Central Plateau. size to the males but are distinctly different in colour. The female is light orange-yellow with faint light brown basal The range of the Ptunarra brown butterfly is determined by a areas and two short bars on the front margins of the fore variety of environmental factors. -
Volume 2. Animals
AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations. -
The Radiation of Satyrini Butterflies (Nymphalidae: Satyrinae): A
Zoological Journal of the Linnean Society, 2011, 161, 64–87. With 8 figures The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods CARLOS PEÑA1,2*, SÖREN NYLIN1 and NIKLAS WAHLBERG1,3 1Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden 2Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Apartado 14-0434, Lima-14, Peru 3Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland Received 24 February 2009; accepted for publication 1 September 2009 We have inferred the most comprehensive phylogenetic hypothesis to date of butterflies in the tribe Satyrini. In order to obtain a hypothesis of relationships, we used maximum parsimony and model-based methods with 4435 bp of DNA sequences from mitochondrial and nuclear genes for 179 taxa (130 genera and eight out-groups). We estimated dates of origin and diversification for major clades, and performed a biogeographic analysis using a dispersal–vicariance framework, in order to infer a scenario of the biogeographical history of the group. We found long-branch taxa that affected the accuracy of all three methods. Moreover, different methods produced incongruent phylogenies. We found that Satyrini appeared around 42 Mya in either the Neotropical or the Eastern Palaearctic, Oriental, and/or Indo-Australian regions, and underwent a quick radiation between 32 and 24 Mya, during which time most of its component subtribes originated. Several factors might have been important for the diversification of Satyrini: the ability to feed on grasses; early habitat shift into open, non-forest habitats; and geographic bridges, which permitted dispersal over marine barriers, enabling the geographic expansions of ancestors to new environ- ments that provided opportunities for geographic differentiation, and diversification. -
Fremontii, Populus Angustfolia, and Their Hybrids
aCICNCC DIRECT. DIocnemlcal 8 systematics and ecoloav-, ELSEVIER Biochemical Systematics and Ecology 33 (2005) 125-131 Foliar phenolic glycosides from Populus fremontii, Populus angustfolia, and their hybrids Brian ~ehill~.*,Allen claussb, Lindsay Wieczoreka, Thomas Whithamc, Richard Lindrotha aDepartment of Entomology. University of Wisconsin, 1630 Linden Road, Madison, WI 53706, USA b~epartmentof Chemistry, University of Wisconsin, I101 University Avenue, Madison, WI 53706, USA CDepartmentof Biological Sciences & The Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA Received 28 February 2004; accepted 16 June 2004 Abstract Salicortin (1) and HCH-salicortin (2) were isolated and identified from the foliage of Populus fremontii and its F1 hybrids with Populus angust$olia. Salicortin, but not HCH-salicortin, also occurred in P. angustifolia and complex backcrosses to angustifolia. Concentrations ranged from 0 to 17.5% dry weight for salicortin and 0 to 5.9% dry weight for HCH-salicortin. HCH- salicortin may possess potent anti-herbivore activity as it contains two of the hydroxycyclo- hexen-on-oyl moieties known to confer such activity to salicortin. Further, this compound may be a useful chemotaxonomic character within the genus Populus, since it appears to occur in section Aigeiros but not in section Tacamahaca. O 2004 Elsevier Ltd. All rights resewed. Keywords: Populus fremontii; Populus angustifolia; Salicaceae; Ecological biochemistry; Salicortin; HCH- salicortin; Anti-herbivore compounds * Corresponding author. Department of Chemistry, United States Naval Academy, 572 Holloway Road, Annapolis, MD 21402, USA. Tel.: + 1 410 293 6637; fax: + 1 410 293 2218. E-mail address: [email protected] (B. Rehill). 0305-1978/$ - see front matter O 2004 Elsevier Ltd. -
Science for Saving Species Research Findings Factsheet Project 2.1
Science for Saving Species Research findings factsheet Project 2.1 Butterflies on the brink: identifying the Australian butterflies most at risk of extinction In brief Background Terrestrial invertebrates and their Invertebrates are declining globally in high (greater than 30%) chance of habitats are increasingly threatened both diversity and abundance, with extinction. We also identified key by human disturbances, particularly potentially serious consequences threatening processes affecting habitat loss and fragmentation, for ecosystem functioning. Many these species (chiefly inappropriate invasive species, inappropriate fire Australian butterflies are imperilled fire regimes, habitat loss and regimes and climate change. or declining but few are listed fragmentation, invasive species and Continuing declines and extinctions for protection by legislation. climate change), and the research in native terrestrial invertebrate We identified the 26 Australian and management actions needed communities are likely to negatively butterflies at most immediate risk to save them. Mapping of the 26 affect ecosystem functioning. This is of extinction within a 20-year time butterflies’ distributions revealed that because invertebrates play a central frame. We found that one butterfly most are now found only in a single role in many ecological processes, is facing a greater than 90% chance state or territory and many occupy including pollination, herbivory, the of extinction in the next 20 years narrow ranges. Increased resourcing consumption of dead plant and (and may already be extinct), and and management intervention is animal matter, and nutrient cycling, four species have a moderate to required to avert future extinctions. as well as providing a good source of food for other animals. There is urgent need to explore the causes of these declines, and the implications for ecosystems and ecosystem services. -
Intraspecific Body Size Variation in Macrolepidotera
7272 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY Journal of the Lepidopterists’ Society 61(2), 2007, 72–77 INTRASPECIFIC BODY SIZE VARIATION IN MACROLEPIDOPTERA AS RELATED TO ALTITUDE OF CAPTURE SITE AND SEASONAL GENERATION J. BOLLING SULLIVAN 200 Craven St., Beaufort, North Carolina 28516 U. S. A., [email protected] AND WILLIAM E. MILLER Department of Entomology, University of Minnesota 55108 U. S. A., [email protected] Abstract. As a proxy for body size, forewing lengths of individual geometrids and noctuids were measured with respect to altitude of capture site in five species in North Carolina and one in Costa Rica. Number of specimens ranged 48–373 per species, number of capture sites 2–15 per species, and site altitudes ranged 2–2209 m. Forewing length in all six species increased significantly with increasing altitude at rates of ≈ 0.3–≈ 1.1 mm/500 m. These relations held where investigated for both first and second annual generations and for both sexes even though second-generation individuals were smaller-bodied. Thus examples of Geometridae and Noctuidae are added to a list mainly of micromoths previously known to exhibit positive size–altitude relations. Some adaptive and nonadaptive body-size hypotheses are discussed as possible explanatory factors, but thus far no explanation is fully satisfactory. In contrast to measurement results in these six macromoths, other moths known to be widely dispersive appeared to display flat size–altitude relations, and published butterfly size–altitude data varied irregularly. Degree of dispersiveness is hypothesized as a condition to the manifestation of size–altitude phenomena in lepidopterans. Many more minimally dispersive moths will likely be found to increase in body size with increasing altitude.