Pest Risk Assessment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BIAWAK Quarterly Journal of Varanid Biology and Husbandry
BIAWAK Quarterly Journal of Varanid Biology and Husbandry Volume 4 Number 2 ISSN: 1936-296X On the Cover: Varanus obor Varanus obor is the most recent species of monitor lizard to be described from Indonesia. Discovered by Weijola and Sweet (2010. A new melanistic species of monitor [Reptilia: Squa- mata: Varanidae] from Sanana Island, Indone- sia. Zootaxa 2434: 17-32.), V. obor also repre- sents the most recently described member of the V. indicus complex. Data and observations on its natural history and ecology are included within the species description. The specimens depicted on the cover and inset of this issue were photographed by Valter Wei- jola on Sanana Island, Maluku, Indonesia on 28 March and 3 April 2009. The specimen depicted on the cover and to the left was observed around 1600 h in a coastal Sago area of northeastern Sanana. The specimen depicted below was first observed foraging in coastal vegetation, but as- cended a coconut palm when it noticed the ob- server. BIAWAK Quarterly Journal of Varanid Biology and Husbandry Editor Editorial Review ROBERT W. MENDYK MICHAEL J. BALSAI Center for Science Teaching and Learning Department of Biology, Temple University 1 Tanglewood Road Philadelphia, PA 19122, US Rockville Centre, NY 11570, US [email protected] [email protected] BERND EIDENMÜLLER Griesheimer Ufer 53 Associate Editors 65933 Frankfurt, DE [email protected] DANIEL BENNETT School of Biology, Leeds University MICHAEL FOST Leeds LS2 9JT, UK Department of Math and Statistics [email protected] Georgia State University Atlanta, GA 30303, US MICHAEL Cota [email protected] Thailand Natural History Museum, National Science Museum, RUston W. -
Dietary Behavior of the Mangrove Monitor Lizard (Varanus Indicus)
DIETARY BEHAVIOR OF THE MANGROVE MONITOR LIZARD (VARANUS INDICUS) ON COCOS ISLAND, GUAM, AND STRATEGIES FOR VARANUS INDICUS ERADICATION A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI’I AT HILO IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL CONSERVATION BIOLOGY AND ENVIRONMENTAL SCIENCE MAY 2016 By Seamus P. Ehrhard Thesis Committee: William Mautz, Chairperson Donald Price Patrick Hart Acknowledgements I would like to thank Guam’s Department of Agriculture, the Division of Aquatic and Wildlife Resources, and wildlife biologist, Diane Vice, for financial assistance, research materials, and for offering me additional staffing, which greatly aided my fieldwork on Guam. Additionally, I would like to thank Dr. William Mautz for his consistent help and effort, which exceeded all expectations of an advisor, and without which I surely would have not completed my research or been inspired to follow my passion of herpetology to the near ends of the earth. 2 Abstract The mangrove monitor lizard (Varanus indicus), a large invasive predator, can be found on all areas of the 38.6 ha Cocos Island at an estimated density, in October 2011, of 6 V. Indicus per hectare on the island. Plans for the release of the endangered Guam rail (Gallirallus owstoni) on Cocos Island required the culling of V. Indicus, because the lizards are known to consume birds and bird eggs. Cocos Island has 7 different habitats; resort/horticulture, Casuarina forest, mixed strand forest, Pemphis scrub, Scaevola scrub, sand/open area, and wetlands. I removed as many V. Indicus as possible from the three principal habitats; Casuarina forest, mixed scrub forest, and a garbage dump (resort/horticulture) using six different trapping methods. -
A Record of Spencer's Skink Pseudemoia Spenceri from The
Contributions A record of Spencer’s Skink Pseudemoia spenceri from the Victorian Volcanic Plain Peter Homan School of Life & Physical Sciences, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001. Email: [email protected] Abstract During a survey of vertebrate fauna at a site in Yan Yean, north of Melbourne on the Victorian Volcanic Plain, a small population of Spencer’s Skink Pseudemoia spenceri was found inhabiting a heritage dry stone fence. Spencer’s Skink is normally found in wet schlerophyll forest and cool temperate environments, and the species is not considered a grassland inhabitant. There are no other records of Spencer’s Skink occurring in any part of the Victorian Volcanic Plain. (The Victorian Naturalist 128(3) 2011, 106-110) Keywords: Spencer’s Skink Pseudemoia spenceri, Volcanic Plain, grasslands, dry stone fences. Introduction The Growling Frog Golf Course (GFGC) is the dry stone fences as habitat. These include situated on the Victorian Volcanic Plain in Yan Large Striped Skink Ctenotus robustus, Bou- Yean (37° 33'S, 145° 04'E), approximately 33 km gainville’s Skink Lerista bougainvillii, Lowland north-north-east of the Melbourne Central Copperhead Austrelaps superbus, Little Whip Business District. The course was established Snake Parasuta flagellum, Southern Bullfrog in 2005 by the City of Whittlesea under strict Limnodynastes dumerilii and Spotted Marsh environmental conditions that required the Frog Limnodynastes tasmaniensis. preservation of important natural and herit- Record of Spencer’s Skink Pseudemoia spen- age features. These included protection of ceri inhabiting dry stone fence stony knolls, ephemeral wetlands and an area On 26 March 2010, staff and students from the of Plains Grassy Woodland; preservation of all School of Life and Physical Sciences, RMIT River Red Gums Eucalyptus camaldulensis and University, visited the GFGC to examine a hab- several rare plant species; and retention of her- itat enhancement program near the dry stone itage dry stone fences. -
Life-Saving Lesson: Goannas Taught to Spurn the Taste of Toad
www.ecosmagazine.com Published: 2 July 2014 Life-saving lesson: goannas taught to spurn the taste of toad Researchers are investigating whether goannas can be taught to avoid eating cane toads – in an approach similar to previous studies involving native marsupials – in the remote east Kimberley, close to the invasion front of cane toads. Credit: Thinkstock The study team comprises researchers from the University of Sydney and the WA Department of Parks and Wildlife, and the Balanggarra Rangers with support from the Kimberley Land Council. Three of the five species of goannas found in the region are thought to be heavily impacted by toads. The team studied two of these species, the yellow spotted monitor (Varanus panoptes) and the sand goanna (Varanus gouldii), to learn more about their ecology. The goannas are regularly radio-tracked and offered small non-lethal cane toads. The team found goannas that previously ate the small toads tended not eat them in subsequent trials. This taste aversion training could prevent goannas from eating larger toads that could kill them when the main toad front arrives during the wet season later this year. Cane toads entered the Kimberley region from the Northern Territory in 2009 and are moving at around 50 kilometres per year. Earlier research has shown that the speed of their progress has increased as the species evolves. The invasion front is larger than previously thought, with faster, bigger toads evolving to have longer legs and moving up to eight months in front of the main pack. The research is partly supported by the Australian Government’s National Environmental Research Program (NERP) The research is partly supported by the Australian Government’s National Environmental Research Program (NERP) Northern Australia Hub. -
Observations on Varanus S. Salvator in North Sulawesi
ARTICLES Biawak 1(2): 59-66 © 2007. International Varanid Interest Group Observations on Varanus s. salvator in North Sulawesi HAROLD F. DE LISLE P.O. Box 1975 Twentynine Palms, CA 92277, US [email protected] Abstract: Asian Water Monitors (Varanus s. salvator) are widespread on the main island of Sulawesi, Indonesia, but rather rare in the province of North Sulawesi because of human predation. This study documents observations on the daily behavior of a small coastal population over a two week period. Observations of aquatic behavior led to discussion of the possibility that this population is able to catch live fish in a particular coastal lagoon. Introduction The Asian Water Monitor (Varanus salvator salvator) is perhaps the most wide-spread of all varanids. It is found from Sri Lanka, northern India, Bangladesh, Burma, Vietnam and Hainan (China) through Malaysia east to the Indonesian islands of Sulawesi and Wetar (De Lisle, 1996). Its ability to colonize the remote islands of Malaysia and Indonesia might be due to its adaptability towards freshwater and saltwater (Traeholt, 1994a), and also its large size is an advantage, giving both the energy reserves and power to survive an extended sea voyage and a greater potential to actually achieve a landfall. Backwash from tsunamis could start this process frequently enough. Figures 1A and B. Remnant primary forest on North Sulawesi Biawak 2007 Vol. 1 No. 2 60 Figure 2. Coastal stream, North Sulawesi Figure 3. Coast of the Moluccan Sea In March 2001, a month was spent in North Sulawesi Province, Indonesia (island of Sulawesi) to observe the northeastern-most populations of the Asian Water Monitor (V. -
Iguanid and Varanid CAMP 1992.Pdf
CONSERVATION ASSESSMENT AND MANAGEMENT PLAN FOR IGUANIDAE AND VARANIDAE WORKING DOCUMENT December 1994 Report from the workshop held 1-3 September 1992 Edited by Rick Hudson, Allison Alberts, Susie Ellis, Onnie Byers Compiled by the Workshop Participants A Collaborative Workshop AZA Lizard Taxon Advisory Group IUCN/SSC Conservation Breeding Specialist Group SPECIES SURVIVAL COMMISSION A Publication of the IUCN/SSC Conservation Breeding Specialist Group 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124 USA A contribution of the IUCN/SSC Conservation Breeding Specialist Group, and the AZA Lizard Taxon Advisory Group. Cover Photo: Provided by Steve Reichling Hudson, R. A. Alberts, S. Ellis, 0. Byers. 1994. Conservation Assessment and Management Plan for lguanidae and Varanidae. IUCN/SSC Conservation Breeding Specialist Group: Apple Valley, MN. Additional copies of this publication can be ordered through the IUCN/SSC Conservation Breeding Specialist Group, 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124. Send checks for US $35.00 (for printing and shipping costs) payable to CBSG; checks must be drawn on a US Banlc Funds may be wired to First Bank NA ABA No. 091000022, for credit to CBSG Account No. 1100 1210 1736. The work of the Conservation Breeding Specialist Group is made possible by generous contributions from the following members of the CBSG Institutional Conservation Council Conservators ($10,000 and above) Australasian Species Management Program Gladys Porter Zoo Arizona-Sonora Desert Museum Sponsors ($50-$249) Chicago Zoological -
Incidence of Fish Hook Ingestion by Komodo Dragons
Biawak. 2008. 2(3): 121-123 © 2008 by International Varanid Interest Group Incidence of Fish Hook Ingestion by Komodo dragons TIM JESSOP1,2, JERI IMANSYAH2, DENI PURWANDANA2, ACHMAD ARIEFIANDY2 and DEVI S. OPAT3 1Department of Wildlife Conservation and Research, Zoos Victoria, PO Box 74 Parkville VIC 3052, Australia 2 Komodo Dragon Species Survival Program Indonesia, Denpasar, Bali, Indonesia 3 Komodo National Park, Labuan Bajo, Flores, NTT, Indonesia Correspondence to Tim Jessop e-mail: tjessop@ zoo.org.au The Komodo dragon (Varanus komodoensis), a large robust monitor lizard, persists on the 5 islands in Eastern Indonesia (Ciofi and de Boer 2004). The waters surrounding these islands are intensively utilized for marine resources and in particular line and net fishing are prolific. For other reptiles, particularly freshwater and marine turtles, incidental injury and mortality through ingestion of fishing hooks during routine foraging activities are not uncommon (Polovina et al. 2000). However, similar incidents of reptile by-catch in terrestrial species is poorly documented, even though many large lizards such as monitors are semi-aquatic, or cohabit and forage within coastal areas in which intense fishing activities persist. Here we report two incidents of ingestion of fishing hooks by Komodo dragons during routine monitoring of island populations between 2002 and 2006. Annual mark-recapture studies were conducted at 10 sites across 4 islands within Komodo National Park between 2002 and 2006 and resulted in 827 individual dragons captures. From this sample, 2 cases of fishhook ingestion were reported. The first case, comprised a small monitor (Animal ID: 00063A9978, 69.35 cm SVL, 7 kg) captured at Loh Buaya (8° 39’ 21.7” S; 119° 43’ 06.2” E) on Rinca Island and appeared to have occurred recently as the line protruding from its mouth was still relatively long and the nylon in good condition (Figure 1). -
LISTING STATEMENT Ptunarra Brown Butterfly, Oreixencia Ptunarra Couchman 1953
THREATENED SPECIES LISTING STATEMENT Ptunarra Brown Butterfly, Oreixencia ptunarra Couchman 1953 Status Commonwealth Endangered Species Protection Act Illustration: Karen Richards 1.25 cm 1992…………………………...…………………...Not listed Tasmanian Threatened Species Protection Act 1995………………………………………………Vulnerable Description Northwest Plains The Ptunarra brown butterfly is a small brown and orange Central Plateau butterfly belonging to the family Nymphalidae. Three Eastern Highlands sub-species of the butterfly were described by Couchman Steppes (1953). O. p. roonina, from the Midlands, North-west Midlands Plains and lower Steppes is the largest of the three, with a wingspan of 30-33 mm. The white background colour in the male sometimes extends as bands across the wing. O. Known distribution p. angeli from the Eastern Highlands is intermediate in of the Ptunarra brown butterfly size to the other two races, with a wingspan of 27-29 mm. The background colour in the male is yellow, not white as in O. o. roonina. The Central Plateau form, O. p. Distribution and Habitat ptunarra, is the smallest and darkest, with a wing span of The Ptunarra brown butterfly is endemic to Tasmania and 25-26 mm with the cream background colour in the male restricted to five areas of the state: the Midlands, Steppes, appearing only as small spots. The females are similar in Northwest Plains, Eastern Highlands and the Central Plateau. size to the males but are distinctly different in colour. The female is light orange-yellow with faint light brown basal The range of the Ptunarra brown butterfly is determined by a areas and two short bars on the front margins of the fore variety of environmental factors. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
The Radiation of Satyrini Butterflies (Nymphalidae: Satyrinae): A
Zoological Journal of the Linnean Society, 2011, 161, 64–87. With 8 figures The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods CARLOS PEÑA1,2*, SÖREN NYLIN1 and NIKLAS WAHLBERG1,3 1Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden 2Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Apartado 14-0434, Lima-14, Peru 3Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland Received 24 February 2009; accepted for publication 1 September 2009 We have inferred the most comprehensive phylogenetic hypothesis to date of butterflies in the tribe Satyrini. In order to obtain a hypothesis of relationships, we used maximum parsimony and model-based methods with 4435 bp of DNA sequences from mitochondrial and nuclear genes for 179 taxa (130 genera and eight out-groups). We estimated dates of origin and diversification for major clades, and performed a biogeographic analysis using a dispersal–vicariance framework, in order to infer a scenario of the biogeographical history of the group. We found long-branch taxa that affected the accuracy of all three methods. Moreover, different methods produced incongruent phylogenies. We found that Satyrini appeared around 42 Mya in either the Neotropical or the Eastern Palaearctic, Oriental, and/or Indo-Australian regions, and underwent a quick radiation between 32 and 24 Mya, during which time most of its component subtribes originated. Several factors might have been important for the diversification of Satyrini: the ability to feed on grasses; early habitat shift into open, non-forest habitats; and geographic bridges, which permitted dispersal over marine barriers, enabling the geographic expansions of ancestors to new environ- ments that provided opportunities for geographic differentiation, and diversification. -
North Central Waterwatch Frogs Field Guide
North Central Waterwatch Frogs Field Guide “This guide is an excellent publication. It strikes just the right balance, providing enough information in a format that is easy to use for identifying our locally occurring frogs, while still being attractive and interesting to read by people of all ages.” Rodney Orr, Bendigo Field Naturalists Club Inc. 1 The North Central CMA Region Swan Hill River Murray Kerang Cohuna Quambatook Loddon River Pyramid Hill Wycheproof Boort Loddon/Campaspe Echuca Watchem Irrigation Area Charlton Mitiamo Donald Rochester Avoca River Serpentine Avoca/Avon-Richardson Wedderburn Elmore Catchment Area Richardson River Bridgewater Campaspe River St Arnaud Marnoo Huntly Bendigo Avon River Bealiba Dunolly Loddon/Campaspe Dryland Area Heathcote Maryborough Castlemaine Avoca Loddon River Kyneton Lexton Clunes Daylesford Woodend Creswick Acknowledgement Of Country The North Central Catchment Management Authority (CMA) acknowledges Aboriginal Traditional Owners within the North Central CMA region, their rich culture and their spiritual connection to Country. We also recognise and acknowledge the contribution and interests of Aboriginal people and organisations in the management of land and natural resources. Acknowledgements North Central Waterwatch would like to acknowledge the contribution and support from the following organisations and individuals during the development of this publication: Britt Gregory from North Central CMA for her invaluable efforts in the production of this document, Goulburn Broken Catchment Management Authority for allowing use of their draft field guide, Lydia Fucsko, Adrian Martins, David Kleinert, Leigh Mitchell, Peter Robertson and Nick Layne for use of their wonderful photos and Mallee Catchment Management Authority for their design support and a special thanks to Ray Draper for his support and guidance in the development of the Frogs Field Guide 2012. -
Science for Saving Species Research Findings Factsheet Project 2.1
Science for Saving Species Research findings factsheet Project 2.1 Butterflies on the brink: identifying the Australian butterflies most at risk of extinction In brief Background Terrestrial invertebrates and their Invertebrates are declining globally in high (greater than 30%) chance of habitats are increasingly threatened both diversity and abundance, with extinction. We also identified key by human disturbances, particularly potentially serious consequences threatening processes affecting habitat loss and fragmentation, for ecosystem functioning. Many these species (chiefly inappropriate invasive species, inappropriate fire Australian butterflies are imperilled fire regimes, habitat loss and regimes and climate change. or declining but few are listed fragmentation, invasive species and Continuing declines and extinctions for protection by legislation. climate change), and the research in native terrestrial invertebrate We identified the 26 Australian and management actions needed communities are likely to negatively butterflies at most immediate risk to save them. Mapping of the 26 affect ecosystem functioning. This is of extinction within a 20-year time butterflies’ distributions revealed that because invertebrates play a central frame. We found that one butterfly most are now found only in a single role in many ecological processes, is facing a greater than 90% chance state or territory and many occupy including pollination, herbivory, the of extinction in the next 20 years narrow ranges. Increased resourcing consumption of dead plant and (and may already be extinct), and and management intervention is animal matter, and nutrient cycling, four species have a moderate to required to avert future extinctions. as well as providing a good source of food for other animals. There is urgent need to explore the causes of these declines, and the implications for ecosystems and ecosystem services.