Paleohydrology of the Western Outlets of Glacial Lake Duluth
Total Page:16
File Type:pdf, Size:1020Kb
: . :·:... ' : ;. Jhi torapkifun & tMs W21:$ Zttyp1.wh-,d, ih fiward 1:tt }J.s 1 to 111tot:her- oubtattdittB _g:r1tdrtate stttdt:itt · t}i.t ikivt f ot ratfL1tf ;>JiJb1 l)ttlu11t. UNIVERSITY OF MINNESOTA This is to certify that I have examined this bound copy of a master's thesis by Scott James Carney and have found it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made HOWARD MOOERS Name of Facility Advisor Signature of Facility Advisor Date GRADUATE SCHOOL PALEOHYDROLOGY OF THE WESTERN OUTLETS OF GLACIAL LAKE DULUTH A THESIS SUBMITIED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Scott James Carney IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE September, 1996 ABSTRACT Glacial Lake Duluth occupied the western end of the Lake Superior Basin, dammed between the retreating Superior lobe and a series of moraines. Lake Duluth is identified by a series of discontinuous strandlines observed throughout the western portion of the lake basin. Two prominent outlets have long been recognized, the Portage outlet in Minnesota, which drained southward along the Kettle channel, and the Brule outlet in Wisconsin, which drained along the St. Croix channel. However, the relative role of each outlet in the drainage of the lake has never been adequately explained. The Brule and Portage outlets formed early during ice retreat and they drained small ice marginal lakes. Further ice retreat allowed the small lakes to coalesce forming Lake Duluth. Because of isostatic tilting, the Lake Duluth strandlines rise about 0.5 meters per kilometer eastward between the Portage and Brule outlets from 323 m to 335 m. After adjustment for rebound, the Brule outlet is estimated to be about 10 m below the elevation of the Portage outlet. The paleodischarge of the outlets and their associated channels was estimated using the U.S. Army Corps of Engineers water surface modeling package, HEC-2. Inputs to the model included topographic cross-section of the outlets and channels constructed at 1500 meter spacing from the lake outlets to a distance of 60 km downstream. Analysis of glaciofluvial sediments were used to estimate a range of Manning's roughness coefficients. The model was run with various discharges to construct stage/discharge relations. Maximum lake discharges were detennined by minimum channel cross sections. To check the validity of the discharge estimates, an atmospheric energy-balance approach utilized to estimate potential maximum meltwater availability. Peak channel discharges estimated using HEC-2 and peak summer meltwater production form the energy-balance approach are in remarkably close agreement, ranging from 30,000- 45,0000 m3/s. The Brule outlet served as the primary drainage channel for Lake Duluth. Stage/discharge relations indicate that the Portage outlet could only have been active during the peak of seasonal meltwater II production or because of extraordinary inputs of water. III TABLE OF CONTENTS TI1LE .............................................................................................. I ABS'fRACT ...................................................................................... II TABLE OF CONTENTS ...................................................................... IV LIST OF FIGURES ............................................................................ VI LIST OF TABLES ............................................................................. IX LIST OF APPENDICES ....................................................................... X ACKNOWLEDGMENTS .................................................................... XI INTRODUCTION ............................................................................... 1 Late Quaternary Glacial history of the Western Lake Superior Basin ................. 5 METHODS OF INVESTIGATION Geomorphic Analysis ...................................................................... 21 Field Investigation .......................................................................... 21 Laboratory Methods Channel Geometry ..................................................................... 22 Paleohydrological Analyses The Manning Equation ............................................................ 23 Largest Clast Discharge Calculations ........................................... 24 Development of Stage/Discharge Rating Curves .............................. 27 Water-Surface Profile Modeling (HEC-2) ................................. 27 Specified Variables for HEC-2 Modeling .................................. 30 Correction for Differential Rebound ........................................ 32 Independant Confirmation of Estimated Discharge............................ 32 RESULTS ....................................................................................... 35 General Geomorphology and Channel Geometry St. Croix Channel characteristics Geomorphology of the Island Lake quadrangle ............................... 37 Geomorphology of the Webb Lake quadrangle................................ 41 Channel geometry relationships ...................................................... 44 Channel sediment descriptions ....................................................... 46 Kettle Channel characteristics General geomorphology and channel geometry .................................... 46 Channel geometry relationships ...................................................... 48 Channel sediment descriptions Kettle Channel sediments......................................................... 51 Pre-Lake Duluth channel sediments ............................................. 55 Paleohydrologic calculations .............................................................. 55 The Manning Equation ................................................................ 55 Largest clast calculations .............................................................. 57 Energy Balance discharge ............................................................. 60 Isostatic adjustment ........................................................................ 60 HEC-2: Water surface profile modeling ................................................. 63 DISCUSSIONS ................................................................................. 65 Channel history St. Croix Channel. ..................................................................... 66 Kettle Channel. ......................................................................... 70 CONCLUSIONS ............................................................................... 75 REFERENCES APPENDIX A APPENDIXB APPENDIXC PLATE 1 LIST OF FIGURES 1 Geography Of Field Area ......................................................................... 2 2 Geographic locations of the study area .......................................................... 3 3 Phases of glaciation in Minnesota 3a Bedrock topography ......................................................................... 6 3b Deposition of Hawk Creek till .............................................................. 6 3c Deposition of Granite Falls till. ............................................................ 6 3d Hewitt phase of the Wadena lobe .......................................................... 6 3e St. Croix phase ............................................................................... 7 3f Erosion of tunnel valleys by subglacial streams .......................................... 7 3g Deposition of eskers in tunnel valleys ..................................................... 7 3h Automba phase ............................................................................... 7 3i Spilt Rock-Pine City phase ................................................................. 8 3j Bemis phase .................................................................................. 8 3k Nickerson-Alborn phase .................................................................... 8 31 Formation of Lake Agassiz ................................................................. 8 4 Phases of glaciation in Wisconsin 4a Tiger Cat advance ............................................................................ 9 4b Hayward advance ............................................................................ 9 4c Swiss advance ................................................................................ 10 4d Airport advance ............................................................................... 10 4e Lake Ruth advance ........................................................................... 11 4 f Porcupine advance ........................................................................... 11 4g Lake View advance .......................................................................... 12 5 Channelized outwash of the Minong Quadrangle .............................................. 14 6 Drainage Sequence of Lake Koochiching and Lakes Aitkin II and Upham II .............. 15 7 Lake Superior Region ............................................................................. 18 8 Water level curves in the Lake Superior Basin ................................................. 19 9 Channel dimension measurements ............................................................... 25 10 Total conveyance for a cross section ............................................................ 30 11 Glacial lake shoreline features ...................................................................