ESCMID Online Lecture Library © by Author

Total Page:16

File Type:pdf, Size:1020Kb

ESCMID Online Lecture Library © by Author French team to win the European Championship © by author ESCMID Online Lecture Library Antistaphylococcal team to fight staphylococci Anti-staphylococcal Pristinamycine Staph 2016 Clindamycine Tigecycline Ceftaroline ceftobiprole © byDaptomycine author Linézolide Fluoroquinolone ESCMIDAminoside Online Lecture VancomycineLibrary Pénicilline M Antistaphylococcal team to fight staphylococci MRSA: b-lactam’exit © by author ESCMID Online Lecture Library Antistaphylococcal team to fight staphylococci MRSA: b-lactam’exit Vancomycine © by author ESCMID Online Lecture Library Antistaphylococcal team to fight staphylococci SARM : exit les péniM Vancomycine : excellent player… but old molecule, toxicity, side effects © by author ESCMID Online Lecture Library Antistaphylococcal team to fight staphylococci … anti-MRSA of the new century • Synergistine injectable: quinupristine/dalfopristine (2000) • Oxazolidinones: linezolid (2001), tedizolid (2015) • Lipopeptide: daptomycine (2006) • Glycylcycline: tigecyclin (2006) • New Cephalosporins : ceftaroline (2012), ceftobiprole (2015) • Lipoglycopeptides: telavancine, dalbavancine, oritavancine © by author Toxicity ComplexESCMID use Online Lecture Library No more available Antistaphylococcal team to fight staphylococci … anti-MRSA of the new century • Synergistine injectable: quinupristine/dalfopristine (2000) • Oxazolidinones: linezolid (2001), tedizolid (2015) • Lipopeptide: daptomycine (2006) • Glycylcycline: tigecyclin (2006) • New Cephalosporins : ceftaroline (2012), ceftobiprole (2015) • Lipoglycopeptides: telavancine, dalbavancine, oritavancine ©« Zahia by call-girl author » scandal involving Franck RIBERY Toxicity ComplexESCMID use Online Lecture Library No more available Antistaphylococcal team to fight staphylococci … anti-MRSA of the new century • Synergistine injectable: quinupristine/dalfopristine (2000) • Oxazolidinones: linezolid (2001), tedizolid (2015) • Lipopeptide: daptomycine (2006) • Glycylcycline: tigecyclin (2006) • New Cephalosporins : ceftaroline (2012), ceftobiprole (2015) • Lipoglycopeptides: telavancine, dalbavancine, oritavancine © by author ESCMID Online Lecture« super-vancomycine Library » so not innovative Renal toxicity ! Not available in France Antistaphylococcal team to fight staphylococci … anti-MRSA of the new century • Synergistine injectable: quinupristine/dalfopristine (2000) • Oxazolidinones: linezolid (2001), tedizolid (2015) • Lipopeptide: daptomycine (2006) • Glycylcycline: tigecyclin (2006) • New Cephalosporins : ceftaroline (2012), ceftobiprole (2015) • Lipoglycopeptides: telavancine, dalbavancine, oritavancine ”Sextape” scandal BENZEMA-VALBUENA© by author ESCMID Online Lecture« super-vancomycine Library » so not innovative Renal toxicity ! Not available in France Antistaphylococcal team to fight staphylococci … anti-MRSA of the new century • Synergistine injectable: quinupristine/dalfopristine (2000) • Oxazolidinones: linezolid (2001), tedizolid (2015) • Lipopeptide: daptomycine (2006) • Glycylcycline: tigecyclin (2006) • New Cephalosporins : ceftaroline (2012), ceftobiprole (2015) • Lipoglycopeptides: telavancine, dalbavancine, oritavancine © by author ESCMID Online LectureFDA and EMALibrary alert in 2011 due to overmortanlity in randomized study use of tigecyclin only in no other alternative Antistaphylococcal team to fight staphylococci … anti-MRSA of the new century • Synergistine injectable: quinupristine/dalfopristine (2000) • Oxazolidinones: linezolid (2001), tedizolid (2015) • Lipopeptide: daptomycine (2006) • Glycylcycline: tigecyclin (2006) • New Cephalosporins : ceftaroline (2012), ceftobiprole (2015) • Lipoglycopeptides: telavancine, dalbavancine, oritavancine ”Sextape” scandal BENZEMA-VALBUENA© by author ESCMID Online LectureFDA and EMALibrary alert in 2011 due to overmortanlity in randomized study use of tigecyclin only in no other alternative Antistaphylococcal team to fight staphylococci So the substitutes of vancomycine ? © by author ESCMID Online Lecture Library Antistaphylococcal team to fight staphylococci … anti-MRSA of the new century • Synergistine injectable: quinupristine/dalfopristine (2000) • Oxazolidinones: linezolid (2001), tedizolid (2015) • Lipopeptide: daptomycine (2006) • Glycylcycline: tigecyclin (2006) • New Cephalosporins : ceftaroline (2012), ceftobiprole (2015) • Lipoglycopeptides: telavancine, dalbavancine, oritavancine © by author ESCMID Online Lecture Library Oxazolidinone familly Linezolid - Tedizolid Real de Madrid Zinédine ZIDANE and his son, Enzo ZIDANE © by author ESCMID Online Lecture Library ESCMID Postgraduate Educaon Course Virulence and resistance in Staphylococcus aureus: 2016 state of the art OXAZOLIDINONES Céline DUPIEUX & Frédéric LAURENT French Naonal Reference Centre for Staphylococci, Lyon, France © by author ESCMID Online Lecture Library Summary • Structure and mechanism of acon • In vivo acvity and clinical use • Mutaonal and plasmidic resistances • Detecon of resistance in roune © by author • Tedizolid, a new oxazolidinone: which advantages? ESCMID Online Lecture Library • Examples of outbreaks of linezolid-resistant staphylococci Introducon • Linezolid ZYVOX®, ZYVOXID® - 1st oxazolidinone introduced into clinical use - FDA approval 2001 © by author • Tedizolid phosphate SIVEXTRO® - « New generaon » oxazolidinone - FDA approval 2014 ESCMID Online Lecture Library Structure of oxazolidinones Synthec anmicrobials Not related to another class of anbiocs Unique mechanism of acon and ≈ no cross-resistance © by author LZD ESCMID Online Lecture Library acetamide Rybak et al. Infect Dis Ther, 2015 Mechanism of acon • Early inhibion of protein synthesis (iniaon): - Binds to the 23S RNA of the 50S subunit of the ribosome (P site, pepdyl transferase centre) - Prevents the formaon of the 70S complex: stops the protein synthesis before © by author it begins ESCMID Online Lecture Library Swaney et al. AAC, 1998; Bozdogan et al. Int J Anmicrob Agent, 2004 Mechanism of acon © by author ESCMID Online Lecture Library Swaney et al. AAC, 1998; Bozdogan et al. Int J Anmicrob Agent, 2004 Mechanism of acon Oxazolidinone © by author ESCMID Online Lecture Library Swaney et al. AAC, 1998; Bozdogan et al. Int J Anmicrob Agent, 2004 Distorts the N-formyl-Met-tRNA Mechanism of acon (iniator tRNA) binding site overlapping both 50S and 30S subunits Oxazolidinone © by author ESCMID Online Lecture Library Swaney et al. AAC, 1998; Bozdogan et al. Int J Anmicrob Agent, 2004 Distorts the N-formyl-Met-tRNA Mechanism of acon (iniator tRNA) binding site overlapping both 50S and 30S subunits Oxazolidinone © by author ESCMID Online Lecture Library Swaney et al. AAC, 1998; Bozdogan et al. Int J Anmicrob Agent, 2004 Inhibits the formaon of a Mechanism of acon funconal 70S iniaon complex which is crucial for translaon Oxazolidinone © by author ESCMID Online Lecture Library Inhibion of protein synthesis Swaney et al. AAC, 1998; Bozdogan et al. Int J Anmicrob Agent, 2004 Mechanism of acon © by author ESCMID Online Lecture Library If 70S already formed, LNZ inhibits translocaon of the pepde chain to P site from A site during formaon of the pepde bond Bozdogan et al. Int J Anmicrob Agent, 2004 Spectrum and suscepbility • Gram-posive bacteria +++: • Staphylococci, including methicillin-resistant staphylococci • Streptococci and enterococci, including vancomycin-resistant enterococci • Corynebacterium sp, Listeria • Anaerobes (Clostridium, Peptostreptococcus, Fusobacterium) • Legionella, some Mycobacteria © by author ESCMID Online Lecture Library • Binding site conserved both in Gram-posive and Gram-negave bacteria but efflux pumps in most of Gram-negave aerobic or anaerobic bacteria Inac9ve on Pseudomonas, Enterobacteriaceae, Neisseria… In vivo acvity and clinical use • Bacteriostac acvity against staphylococci and enterococci • Time-dependent effect • Linezolid: - treatment of community acquired pneumonia and nosocomial pneumonia - treatment of complicated skin and so ssue infecons only when microbiological tesng has © established by author that the infecon is known to be caused by suscepble Gram posive bacteria ESCMID Online Lecture Library • Tedizolid: - treatment of acute bacterial skin and so ssue infecons - bacteriostac in vitro but bactericidal in vivo? Linezolid-resistant staphylococci Most common mechanisms = ribosomal modificaons • Mutaons ! domain V of 23S rRNA - G2576U+++ - Rare mutaons (G2447U, T2500A, T2504A…) © by author ! ribosomal proteins L3, L4, L22 • ESCMIDAcquision of transmissible Online Lecturecfr ribosomal methyltransferase Library (plasmids, transposons) Tsiodras et al. Lancet, 2001; Kehrenberg et al. AAC, 2006; Long et al. AAC, 2012 23S rRNA mutaons Mulple copies (5-6) of the 23S rRNA gene present in S. aureus Resistance usually requires mutaons in two or more copies (successive mutaons or one mutaon followed by homologous recombinaon) © by author Low rate of resistant mutants selecon in vitro (10-9-10-11) • Selecon oen occurred during prolonged treatment ESCMID Online Lecture Library • No cross-resistance with other families of anbiocs Tsiodras et al. Lancet, 2001; Kehrenberg et al. AAC, 2006; Long et al. AAC, 2012 Résistances23S rRNA mutaons par mutation sur l’ARN 23S © by author ESCMID Online Lecture Library Long et al. AAC, 2012 23S rRNA mutaons © by author ESCMID Online Lecture Library Iguchi et al. PloS One, 2016 RésistancesRibosomal proteins mutaons par mutation sur l’ARN 23S © by author ESCMID Online Lecture Library Long et al. AAC, 2012 Cfr methylaon of 23S rRNA Cfr gene = chloramphenicol-florfenicol
Recommended publications
  • Microbiological Profile of Telithromycin, the First Ketolide Antimicrobial
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Paperprovided by 48Elsevier Disc - Publisher Connector Microbiological profile of telithromycin, the first ketolide antimicrobial D. Felmingham GR Micro Ltd, London, UK ABSTRACT Telithromycin, the first of the ketolide antimicrobials, has been specifically designed to provide potent activity against common and atypical/intracellular or cell-associated respiratory pathogens, including those that are resistant to b-lactams and/or macrolide±lincosamide±streptograminB (MLSB) antimicrobials. Against Gram- positive cocci, telithromycin possesses more potent activity in vitro and in vivo than the macrolides clarithromycin and azithromycin. It retains its activity against erm-(MLSB)ormef-mediated macrolide-resistant Streptococcus pneumoniae and Streptococcus pyogenes and against Staphylococcus aureus resistant to macrolides through inducible MLSB mechanisms. Telithromycin also possesses high activity against the Gram-negative pathogens Haemophilus influenzae and Moraxella catarrhalis, regardless of b-lactamase production. In vitro, it shows similar activity to azithromycin against H. influenzae, while in vivo its activity against H. influenzae is higher than that of azithromycin. Telithromycin's spectrum of activity also extends to the atypical, intracellular and cell-associated pathogens Legionella pneumophila, Mycoplasma pneumoniae and Chlamydia pneumoniae. In vitro, telithromycin does not induce MLSB resistance and it shows low potential to select for resistance or cross-resistance to other antimicrobials. These characteristics indicate that telithromycin will have an important clinical role in the Ahed empirical treatment of community-acquired respiratory tract infections. Bhed Clin Microbiol Infect 2001: 7 (Supplement 3): 2±10 Ched Dhed Ref marker Fig marker these agents. Resistance to penicillin, particularly among S.
    [Show full text]
  • Ketek, INN-Telithromycin
    authorised ANNEX I SUMMARY OF PRODUCT CHARACTERISTICSlonger no product Medicinal 1 1. NAME OF THE MEDICINAL PRODUCT Ketek 400 mg film-coated tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each film-coated tablet contains 400 mg of telithromycin. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Film-coated tablet. Light orange, oblong, biconvex tablet, imprinted with ‘H3647’ on one side and ‘400’ on the other. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications authorised When prescribing Ketek, consideration should be given to official guidance on the appropriate use of antibacterial agents and the local prevalence of resistance (see also sections 4.4 and 5.1). Ketek is indicated for the treatment of the following infections: longer In patients of 18 years and older: • Community-acquired pneumonia, mild or moderate (see section 4.4). • When treating infections caused by knownno or suspected beta-lactam and/or macrolide resistant strains (according to history of patients or national and/or regional resistance data) covered by the antibacterial spectrum of telithromycin (see sections 4.4 and 5.1): - Acute exacerbation of chronic bronchitis, - Acute sinusitis In patients of 12 years and older: • Tonsillitis/pharyngitis caused by Streptococcus pyogenes, as an alternative when beta lactam antibiotics are not appropriateproduct in countries/regions with a significant prevalence of macrolide resistant S. pyogenes, when mediated by ermTR or mefA (see sections 4.4 and 5.1). 4.2 Posology and method of administration Posology The recommended dose is 800 mg once a day i.e. two 400 mg tablets once a day. In patients of 18 years and older, according to the indication, the treatment regimen will be: - Community-acquired pneumonia: 800 mg once a day for 7 to 10 days, Medicinal- Acute exacerbation of chronic bronchitis: 800 mg once a day for 5 days, - Acute sinusitis: 800 mg once a day for 5 days, - Tonsillitis/pharyngitis caused by Streptococcus pyogenes: 800 mg once a day for 5 days.
    [Show full text]
  • Linezolid - Tigecycline
    Linezolid - Tigecycline Paul M. Tulkens, MD, PhD Cellular and Molecular Pharmacology Louvain Drug Research Institute Catholic University of Louvain, Brussels, Belgium With the support of Wallonie-Bruxelles-International 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 1 Dong-A pharmaceuticals and tedizolid: step #1 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 2 Mode of action: • Protein synthesis inhibition: LZD binds to the 23S portion of the ribosomal 50S subunit (the centre of peptidyl transferase activity) → no initial complex 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 3 RNA interaction Karen L. Leach et al, Molecular Cell (2007) 26,393-402 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 4 Spectrum of activity No useful activity against other Gram-negative organisms because of constitutive efflux ! 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 5 Registered clinical indications Linezolid is often used off-label (endocarditis, osteomyelitis, ….) in pace of vancomycin 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 6 Linzezolid: mechanism of resistance 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 7 Can linzolid induce resistance ? 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 8 Linzolid can induce resistance… Locke et al. Antimicrob Agent Chemother 2009;53:5265-5274. 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 9 Linezolid pharmacokinetics 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 10 Linezolid human pharmacokinetics Oral therapeutic doses (600mg linezolid q12h for 21 days) Linezolid Tedizolid MIC 90 MIC90 Muñoz et al. ECCMID 2010; P1594 Flanagan SD, et al. Pharmacotherapy 2014;34(3):240–250.
    [Show full text]
  • Tigecycline: a Igecycline
    Molecules of the Millennium Tigecycline: A novel glycylcycline antibioticantibiotic Tetracycline antibiotics were first isolated at Lederle to occur.[5] Tigecycline is also active against organisms that Laboratories in 1945 and represented a significant display efflux-based resistance, which may be because of the advancement in the treatment of many infections. However, inability of the glycylcyclines to induce tetracycline efflux due to an increased incidence of resistance among various proteins, or because the efflux protein cannot export bacteria, the use of tetracyclines has been relegated to second tigecycline.[6] and third-line categories for most clinical indications. The two The binding site of tigecycline on the ribosome is common major mechanisms of resistance include tetracycline efflux to tetracyclines, but tigecycline binds 5-fold more strongly to and ribosomal protection, where tetracycline is prevented from the ribosome than tetracyclines and this enhanced binding is, binding to the ribosome. Research to find tetracycline probably, responsible for overcoming the ribosomal protection analogues, that circumvented these resistance mechanisms, mechanisms of tetracycline resistance.[5] The action of has led to the development of a novel group of drugs called tigecycline is bacteriostatic in nature, which is likely due to its glycylcyclines, the most promising compound being the 9-tert­ reversible interaction with the ribosome.[5] Its efficacy suggests butyl glycyclamido derivative of minocycline-tigecycline (GAR­ that traditional thinking about using bacteriostatic drugs in 936). treating serious infections needs to be revised.[7] Chemistry Antimicrobial activity The nucleus consists of four linear fused tetracyclic rings In vitro antibacterial activity of tigecycline has been and there is the addition of N, N-dimethylglycylamido (DMG) assessed against clinical isolates as a part of ongoing TEST group at C-9 position of minocycline.[1] initiative (Tigecycline Evaluation Surveillance Trial).
    [Show full text]
  • Progress in Pharmacokinetics and Pharmacodynamics - I
    274 Abstracts Progress in pharmacokinetics and pharmacodynamics - I P1022 Pharmacokinetics of telithromycin in plasma and was higher in young women than in young men (21% difference), soft tissue after single-dose administration in healthy volunteers with only a 4% difference between elderly women and men. At the target clinical dose of 100 mg load infused over 30–60 min fol- R. Gattringer, F. Traunmueller, E. Urbauer, M. Zeitlinger, lowed by 50 mg q12h, Cmax and AUCss (mean Æ SD) were M. Mueller, C. Joukhadar 621 Æ 93 ng/mL and 3069 Æ 381 ng h/mL, respectively. Vienna, A Objectives: Telithromycin was described to reach high concentra- Dose (mg), with MD given q 12h tions levels in inflammatory fluid, in bronchopulmonary tissues and in tonsillar tissue. Because of these data telithromycin is spe- Pk parameter 12.5 25 50 75 100 200 300 culated to be a new option in the therapy of skin and soft tissue infections. To determine the concentration of telithromycin in the SD CLt 0.29 Æ 0.20 0.20 Æ 0.10 0.28 Æ 0.04 0.29 Æ 0.04 0.30 Æ 0.08 0.23 Æ 0.04 0.25 Æ 0.03 interstitial space fluid, the pharmacokinetics of this new antibiotic (L/hr/kg) (n ¼ 6) (n ¼ 6) (n ¼ 6) (n ¼ 6) (n ¼ 57) (n ¼ 24) (n ¼ 12) were assessed after single dose administration in young healthy MD CLt ÁÁÁ 0.20 Æ 0.04 0.20 Æ 0.02 ÁÁÁ 0.24 Æ 0.045 ÁÁÁ ÁÁÁ (L/hr/kg) (n ¼ 5) (n ¼ 5) (n ¼ 3) volunteers by the use of microdialysis.
    [Show full text]
  • WHO Report on Surveillance of Antibiotic Consumption: 2016-2018 Early Implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some Rights Reserved
    WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early implementation WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • E3 Appendix 1 (Part 1 of 2): Search Strategy Used in MEDLINE
    This single copy is for your personal, non-commercial use only. For permission to reprint multiple copies or to order presentation-ready copies for distribution, contact CJHP at [email protected] Appendix 1 (part 1 of 2): Search strategy used in MEDLINE # Searches 1 exp *anti-bacterial agents/ or (antimicrobial* or antibacterial* or antibiotic* or antiinfective* or anti-microbial* or anti-bacterial* or anti-biotic* or anti- infective* or “ß-lactam*” or b-Lactam* or beta-Lactam* or ampicillin* or carbapenem* or cephalosporin* or clindamycin or erythromycin or fluconazole* or methicillin or multidrug or multi-drug or penicillin* or tetracycline* or vancomycin).kf,kw,ti. or (antimicrobial or antibacterial or antiinfective or anti-microbial or anti-bacterial or anti-infective or “ß-lactam*” or b-Lactam* or beta-Lactam* or ampicillin* or carbapenem* or cephalosporin* or c lindamycin or erythromycin or fluconazole* or methicillin or multidrug or multi-drug or penicillin* or tetracycline* or vancomycin).ab. /freq=2 2 alamethicin/ or amdinocillin/ or amdinocillin pivoxil/ or amikacin/ or amoxicillin/ or amphotericin b/ or ampicillin/ or anisomycin/ or antimycin a/ or aurodox/ or azithromycin/ or azlocillin/ or aztreonam/ or bacitracin/ or bacteriocins/ or bambermycins/ or bongkrekic acid/ or brefeldin a/ or butirosin sulfate/ or calcimycin/ or candicidin/ or capreomycin/ or carbenicillin/ or carfecillin/ or cefaclor/ or cefadroxil/ or cefamandole/ or cefatrizine/ or cefazolin/ or cefixime/ or cefmenoxime/ or cefmetazole/ or cefonicid/ or cefoperazone/
    [Show full text]
  • Supplementary Information Table of Contents Table S1
    Supplementary Information Table of Contents Table S1. Matched high-throughput sequencing reads of antibiotic resistance genes (ARGs) in sludge fed with 0 mg/L tetracycline. S1 Table S2. Matched high-throughput sequencing reads of antibiotic resistance genes (ARGs) in sludge fed with 20 mg/L tetracycline. S12 Table S3. Matched high-throughput sequencing reads of plasmids in sludge cultured with 0 mg/L tetracycline. S21 Table S4. Matched high-throughput sequencing reads of plasmids in sludge cultured with 20 mg/L tetracycline. S32 Table S5. PCR primers of the 15 tetracycline resistance genes detected in this study. S40 Figure S1. Occurrence patterns of 11 tet genes in activated sludge analyzed by electrophoresis of PCR products. S41 Table S1. Matched high-throughput sequencing reads of antibiotic resistance genes (ARGs) in sludge fed with 0 mg/L tetracycline of Day 6 against antibiotic resistance database (ARDB). ARDB Accession Identity Hit Length Number ARG No. E Value t Function Related Antibiotics Number (%) n (AA) u of Reads Name 1 CAE53425 90.62 25 7.0 × 10−8 1628 sul2 Sulfonamide-resistant dihydropteroate synthase sulfonamide 2 YP_001969930 90 28 6.0 × 10−9 182 sul2 Sulfonamide-resistant dihydropteroate synthase sulfonamide 3 YP_002112964 100 27 1.0 × 10−11 29 aph33ib Aminoglycoside O-phosphotransferase streptomycin 4 YP_001571041 90 28 5.0 × 10−9 21 macB Macrolide-specific efflux system macrolide 5 YP_002029849 90.32 27 2.0 × 10−8 21 smeE Multidrug resistance efflux pump fluoroquinolone 6 YP_002890644 90.32 31 3.0 × 10−10 21 bacA
    [Show full text]
  • Intracellular Penetration and Effects of Antibiotics On
    antibiotics Review Intracellular Penetration and Effects of Antibiotics on Staphylococcus aureus Inside Human Neutrophils: A Comprehensive Review Suzanne Bongers 1 , Pien Hellebrekers 1,2 , Luke P.H. Leenen 1, Leo Koenderman 2,3 and Falco Hietbrink 1,* 1 Department of Surgery, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; [email protected] (S.B.); [email protected] (P.H.); [email protected] (L.P.H.L.) 2 Laboratory of Translational Immunology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; [email protected] 3 Department of Pulmonology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands * Correspondence: [email protected] Received: 6 April 2019; Accepted: 2 May 2019; Published: 4 May 2019 Abstract: Neutrophils are important assets in defense against invading bacteria like staphylococci. However, (dysfunctioning) neutrophils can also serve as reservoir for pathogens that are able to survive inside the cellular environment. Staphylococcus aureus is a notorious facultative intracellular pathogen. Most vulnerable for neutrophil dysfunction and intracellular infection are immune-deficient patients or, as has recently been described, severely injured patients. These dysfunctional neutrophils can become hide-out spots or “Trojan horses” for S. aureus. This location offers protection to bacteria from most antibiotics and allows transportation of bacteria throughout the body inside moving neutrophils. When neutrophils die, these bacteria are released at different locations. In this review, we therefore focus on the capacity of several groups of antibiotics to enter human neutrophils, kill intracellular S. aureus and affect neutrophil function. We provide an overview of intracellular capacity of available antibiotics to aid in clinical decision making.
    [Show full text]
  • COMPLETE GENOME SEQUENCING of Pseudomonas Syringae Pv. Actinidiae BIOVAR 3, P155, KIWIFRUIT PATHOGEN ORIGINATING from CHINA SEQU
    2220 Bioscience Journal Original Article COMPLETE GENOME SEQUENCING OF Pseudomonas syringae pv. actinidiae BIOVAR 3, P155, KIWIFRUIT PATHOGEN ORIGINATING FROM CHINA SEQUENCIAMENTO COMPLETO DO GENOMA Pseudomonas syringae pv. actinidiae BIOVAR 3, P155, AGENTE PATOGÊNICO DO KIWI, ORIGINÁRIO DA CHINA Xin PAN1,2; Siyue ZHAO3; Yongzhi WANG2; Mingzhang LI2; Liqin HE2*; Qiguo ZHUANG2* 1. College of Tourism and Town and Country Planning, Chengdu University of Technology, Chengdu, Sichuan, China; 2. Kiwifruit Breeding and Utilization Key Laboratory, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China; 3. Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.*Corresponding author: Qiguo Zhuang, [email protected]; Liqin HE, [email protected] ABSTRACT: Pseudomonas syringae pv. actinidiae is a bacterial pathogen of kiwifruit. Based on the results of the pathogenicity assay, we sequenced the strain Pseudomonas syringae (Psa3) P155 which possesses a series of virulence and resistance genes, CRISPR candidate elements, prophage related sequences, methylation modifications, genomic islands as well as one plasmid. Most importantly, the copper resistance genes copA, copB, copC, copD, and copZ as well as aminoglycoside resistance gene ksgA were identified in strain P155, which would pose a threat to kiwifruit production. The complete sequence we reported here will provide valuable information for a better understanding of the genetic structure and pathogenic characteristics of the genome of P155. KEYWORDS: Actinidia sp. Bacterial canker. Complete sequence. Pathogenicity. Pac-Bio platform. INTRODUCTION the development of whole genome sequencing, virulence and antimicrobial resistance profile of Kiwifruit (Actinidia sp.), an economically bacteria can be predicted. Additionally, the sequence important fruit, is cultivated worldwide for its taste data also provide a level of strain discrimination and and nutritional value (Fujikawa and Sawada 2016).
    [Show full text]
  • Protein Synthesis Inhibitors Lecture Outline
    Protein Synthesis Inhibitors • Macrolides - Lincosamides • Aminoglycosides • Tetracyclines • Chloramphenicol • Oxazolidinones • Streptogramins Lecture Outline • Description of protein synthesis - translation • Antibiotics – Structure - function - classification – Mechanism(s) of action – Mechanism(s) of resistance – Spectrum of activity/Indications for use – Pharmacology – Toxicity • Clinical examples 1 Overview of Translation (1) Initiation: • 30S binds RBS of mRNA • AA binds tRNA using aminoacyl-tRNA synthetase • IF2 and fmet-tRNA binds 30S at P site • 50S binds complex 70S resulilting in th e f ormati on of the initiation complex Overview of Translation (2) Initiation – tRNA + AA binds translation elongation factor – Enters ribosome and attaches at the A site 2 Overview of Translation (3) Amino Acid Transfer – Petidyltransferase on 50S ribosome attaches the next AA to the polypeptide – Met added to Leu at A site Overview of Translation (4) Elongation tRNA moved to P site by EF-G creating room at A site for next tRNA Translation termination Occurs at nonsense codon sites e.g. UAA Release factors Ribosome dissociates 3 Mechanisms of Action - Protein Synthesis Inhibitors Macrolides • Broad spectrum antibiotics • Original agent: erythromycin • Azalides: azithromycin and clarithromycin – seltdtiilected antimicrobi bildhal and pharmacoki kitinetic advantages 4 Large 14 member macrolactone ring with one or more deoxy sugars attached. Inhibits formation of 50S ribosome blocking trans- peptidation or translocation. Large 14 member lactone ring
    [Show full text]
  • Antimicrobial Effects of Minocycline, Tigecycline, Ciprofloxacin
    antibiotics Article Antimicrobial Effects of Minocycline, Tigecycline, Ciprofloxacin, and Levofloxacin against Elizabethkingia anophelis Using In Vitro Time-Kill Assays and In Vivo Zebrafish Animal Models Jiun-Nong Lin 1,2,3,* , Chung-Hsu Lai 2,3, Yi-Han Huang 3 and Chih-Hui Yang 4 1 Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan 2 Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan; [email protected] 3 School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan; [email protected] 4 Department of Biological Science and Technology, Meiho University, Pingtung 912, Taiwan; [email protected] * Correspondence: [email protected] Abstract: Elizabethkingia anophelis is a multidrug-resistant pathogen. This study evaluated the antimicro- bial activity of minocycline, tigecycline, ciprofloxacin, and levofloxacin using in vitro time-kill assays and in vivo zebrafish animal models. The E. anophelis strain ED853-49 was arbitrarily selected from a bacterial collection which was concomitantly susceptible to minocycline, tigecycline, ciprofloxacin, and levofloxacin. The antibacterial activities of single agents at 0.5–4 × minimum inhibitory concentration Citation: Lin, J.-N.; Lai, C.-H.; (MIC) and dual-agent combinations at 2 × MIC using time-kill assays were investigated. The therapeutic Huang, Y.-H.; Yang, C.-H. Antimicrobial Effects of Minocycline, effects of antibiotics in E. anophelis-infected zebrafish were examined. Both minocycline and tigecycline Tigecycline, Ciprofloxacin, and demonstrated bacteriostatic effects but no bactericidal effect. Minocycline at concentrations ≥2 × Levofloxacin against Elizabethkingia MIC and tigecycline at concentrations ≥3 × MIC exhibited a long-standing inhibitory effect for 48 h.
    [Show full text]