New Classification Framework of Tetracyclines And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Technical Information
Technical Information Antibiotic Assay Medium No.1 (Seed Agar) Product Code : DM1003 Application: - Antibiotic Assay Medium No.1 (Seed Agar) is used in the microbiological assay of beta-lactam and other antibiotics. Composition** Ingredients Gms / Litre Peptic digest of animal tissue (Peptone) 6.000 or detecting faecal coliforms drinking in water waste water, seawater and foods samples by MPN Method. Casein enzymic hydrolysate 4.000 Yeast extract 3.000 Beef extract 1.500 Dextrose 1.000 Agar 15.000 Final pH (at 25°C) 6.6±0.2 **Formula adjusted, standardized to suit performance parameters Principle & Interpretation The potency of an antibiotic can be determined by chemical, physical and biological methods. An assay is performed to determine the ability of an antibiotic to kill or inhibit the growth of living microorganisms. Biological tests offer the most convenient m eans of performing an assay (1), since a reduction in the antimicrobial activity of a specific antibiotic reveals changes that is not usually displayed by chemical methods (2). Antibacterial susceptibility testing may be performed by either dilution (turbidimetric) or diffusion methods. The choice o f methodology is based on many factors, including ease of performance, flexibility and use of automated or semi-automated devices for both identification and susceptibility testing (3). Grove and Randall have elucidated antibiotic assays and media in their comprehensive treatise on antibiotic assays (4). Antibiotic Assay Medium No.1 is used in the microbiological assay of ß-lactam and other antibiotics. These media are prepared according to the specifications detailed in various pharmacopoeias (2-6) and by the FDA (7). -
(12) United States Patent (10) Patent No.: US 9,662.400 B2 Smith Et Al
USOO9662400B2 (12) United States Patent (10) Patent No.: US 9,662.400 B2 Smith et al. (45) Date of Patent: *May 30, 2017 (54) METHODS FOR PRODUCING A (2013.01); C08B 37/003 (2013.01); C08L 5/08 BODEGRADABLE CHITOSAN (2013.01); A6 IK 38/00 (2013.01); A61 L COMPOSITION AND USES THEREOF 2300/404 (2013.01) (58) Field of Classification Search (71) Applicant: University of Memphis Research CPC ...... A61K 47/36; A61K 31/00; A61K 9/7007; Foundation, Memphis, TN (US) A61K 9/0024; A61 L 15/28: A61L 27/20; A61L 27/58: A61L 31/042; C08B 37/003 (72) Inventors: James Keaton Smith, Memphis, TN USPC ................................ 514/23, 40, 777; 536/20 (US); Ashley C. Parker, Memphis, TN See application file for complete search history. (US); Jessica A. Jennings, Memphis, (56) References Cited TN (US); Benjamin T. Reves, Memphis, TN (US); Warren O. U.S. PATENT DOCUMENTS Haggard, Bartlett, TN (US) 4,895,724. A * 1/1990 Cardinal .............. A61K9/0024 424,278.1 (73) Assignee: The University of Memphis Research 5,541,233 A 7/1996 Roenigk Foundation, Memphis, TN (US) 5,958,443 A 9/1999 Viegas et al. 6,699,287 B2 3/2004 Son et al. (*) Notice: Subject to any disclaimer, the term of this 6,989,157 B2 1/2006 Gillis et al. patent is extended or adjusted under 35 7,371.403 B2 5/2008 McCarthy et al. 2003, OO15825 A1 1/2003 Sugie et al. U.S.C. 154(b) by 0 days. 2003/0206958 A1 11/2003 Cattaneo et al. -
Antibiotic Assay Medium No. 3 (Assay Broth) Is Used for Microbiological Assay of Antibiotics. M042
HiMedia Laboratories Technical Data Antibiotic Assay Medium No. 3 (Assay Broth) is used for M042 microbiological assay of antibiotics. Antibiotic Assay Medium No. 3 (Assay Broth) is used for microbiological assay of antibiotics. Composition** Ingredients Gms / Litre Peptic digest of animal tissue (Peptone) 5.000 Beef extract 1.500 Yeast extract 1.500 Dextrose 1.000 Sodium chloride 3.500 Dipotassium phosphate 3.680 Potassium dihydrogen phosphate 1.320 Final pH ( at 25°C) 7.0±0.2 **Formula adjusted, standardized to suit performance parameters Directions Suspend 17.5 grams in 1000 ml distilled water. Heat if necessary to dissolve the medium completely. Sterilize by autoclaving at 15 lbs pressure (121°C) for 15 minutes. Advice:Recommended for the Microbiological assay of Amikacin, Bacitracin, Capreomycin, Chlortetracycline,Chloramphenicol,Cycloserine,Demeclocycline,Dihydrostreptomycin, Doxycycline, Gentamicin, Gramicidin, Kanamycin, Methacycline, Neomycin, Novobiocin, Oxytetracycline, Rolitetracycline, Streptomycin, Tetracycline, Tobramycin, Trolendomycin and Tylosin according to official methods . Principle And Interpretation Antibiotic Assay Medium is used in the performance of antibiotic assays. Grove and Randall have elucidated those antibiotic assays and media in their comprehensive treatise on antibiotic assays (1). Antibiotic Assay Medium No. 3 (Assay Broth) is used in the microbiological assay of different antibiotics in pharmaceutical and food products by the turbidimetric method. Ripperre et al reported that turbidimetric methods for determining the potency of antibiotics are inherently more accurate and more precise than agar diffusion procedures (2). Turbidimetric antibiotic assay is based on the change or inhibition of growth of a test microorganims in a liquid medium containing a uniform concentration of an antibiotic. After incubation of the test organism in the working dilutions of the antibiotics, the amount of growth is determined by measuring the light transmittance using spectrophotometer. -
Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy Using Machine Learning
Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy using Machine Learning Kate Wang et al. Supplemental Table S1. Drugs selected by Pharmacophore-based, ML-based and DL- based search in the FDA-approved drugs database Pharmacophore WEKA TF 1-Palmitoyl-2-oleoyl-sn-glycero-3- 5-O-phosphono-alpha-D- (phospho-rac-(1-glycerol)) ribofuranosyl diphosphate Acarbose Amikacin Acetylcarnitine Acetarsol Arbutamine Acetylcholine Adenosine Aldehydo-N-Acetyl-D- Benserazide Acyclovir Glucosamine Bisoprolol Adefovir dipivoxil Alendronic acid Brivudine Alfentanil Alginic acid Cefamandole Alitretinoin alpha-Arbutin Cefdinir Azithromycin Amikacin Cefixime Balsalazide Amiloride Cefonicid Bethanechol Arbutin Ceforanide Bicalutamide Ascorbic acid calcium salt Cefotetan Calcium glubionate Auranofin Ceftibuten Cangrelor Azacitidine Ceftolozane Capecitabine Benserazide Cerivastatin Carbamoylcholine Besifloxacin Chlortetracycline Carisoprodol beta-L-fructofuranose Cilastatin Chlorobutanol Bictegravir Citicoline Cidofovir Bismuth subgallate Cladribine Clodronic acid Bleomycin Clarithromycin Colistimethate Bortezomib Clindamycin Cyclandelate Bromotheophylline Clofarabine Dexpanthenol Calcium threonate Cromoglicic acid Edoxudine Capecitabine Demeclocycline Elbasvir Capreomycin Diaminopropanol tetraacetic acid Erdosteine Carbidopa Diazolidinylurea Ethchlorvynol Carbocisteine Dibekacin Ethinamate Carboplatin Dinoprostone Famotidine Cefotetan Dipyridamole Fidaxomicin Chlormerodrin Doripenem Flavin adenine dinucleotide -
Linezolid - Tigecycline
Linezolid - Tigecycline Paul M. Tulkens, MD, PhD Cellular and Molecular Pharmacology Louvain Drug Research Institute Catholic University of Louvain, Brussels, Belgium With the support of Wallonie-Bruxelles-International 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 1 Dong-A pharmaceuticals and tedizolid: step #1 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 2 Mode of action: • Protein synthesis inhibition: LZD binds to the 23S portion of the ribosomal 50S subunit (the centre of peptidyl transferase activity) → no initial complex 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 3 RNA interaction Karen L. Leach et al, Molecular Cell (2007) 26,393-402 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 4 Spectrum of activity No useful activity against other Gram-negative organisms because of constitutive efflux ! 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 5 Registered clinical indications Linezolid is often used off-label (endocarditis, osteomyelitis, ….) in pace of vancomycin 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 6 Linzezolid: mechanism of resistance 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 7 Can linzolid induce resistance ? 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 8 Linzolid can induce resistance… Locke et al. Antimicrob Agent Chemother 2009;53:5265-5274. 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 9 Linezolid pharmacokinetics 12-11-2015 WBI - HUP Cooperation - Bach Mai Hospital 10 Linezolid human pharmacokinetics Oral therapeutic doses (600mg linezolid q12h for 21 days) Linezolid Tedizolid MIC 90 MIC90 Muñoz et al. ECCMID 2010; P1594 Flanagan SD, et al. Pharmacotherapy 2014;34(3):240–250. -
Application of Various Chemotherapeutic Agents in Experimental Bovine Anaplasmosis S.K
APPLICATION OF VARIOUS CHEMOTHERAPEUTIC AGENTS IN EXPERIMENTAL BOVINE ANAPLASMOSIS S.K. Sharma, D.P. Banerjee, O.P. Gautam To cite this version: S.K. Sharma, D.P. Banerjee, O.P. Gautam. APPLICATION OF VARIOUS CHEMOTHERAPEUTIC AGENTS IN EXPERIMENTAL BOVINE ANAPLASMOSIS. Annales de Recherches Vétérinaires, INRA Editions, 1977, 8 (3), pp.307-313. hal-00900943 HAL Id: hal-00900943 https://hal.archives-ouvertes.fr/hal-00900943 Submitted on 1 Jan 1977 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. APPLICATION OF VARIOUS CHEMOTHERAPEUTIC AGENTS IN EXPERIMENTAL BOVINE ANAPLASMOSIS S.K. SHARMA, D.P. BANERJEE O.P. GAUTAM Department of Veterinary Medicine, College of Veterinary Sciences, Haryana Agricultural University, Hlssar-125004, Haryana, India ’ Résumé UTILISATION DE DIVERS AGENTS CHIMIOTHERAPEUTIQUES AU COURS DE L’ANAPLAS- MOSE BOVINE EXPERIMENTALE. ― Un essai de traitement a été réalisé avec différents agents ehimiothérapeutiques, sur des cas cliniques ou des porteurs inapparents d’ana- plasmose bovine expérimentale. La Dithiosemicarbazone (associée à l’Oxytétracycline), le Chloramphénicol et la Rolitétracycline ont très efficacement entraîné la guérison clinique et l’élimination des agents pathogènes. L’imidocarb a entraîné la guérison clinique sans supprimer complètement les microorganismes. -
Tigecycline: a Igecycline
Molecules of the Millennium Tigecycline: A novel glycylcycline antibioticantibiotic Tetracycline antibiotics were first isolated at Lederle to occur.[5] Tigecycline is also active against organisms that Laboratories in 1945 and represented a significant display efflux-based resistance, which may be because of the advancement in the treatment of many infections. However, inability of the glycylcyclines to induce tetracycline efflux due to an increased incidence of resistance among various proteins, or because the efflux protein cannot export bacteria, the use of tetracyclines has been relegated to second tigecycline.[6] and third-line categories for most clinical indications. The two The binding site of tigecycline on the ribosome is common major mechanisms of resistance include tetracycline efflux to tetracyclines, but tigecycline binds 5-fold more strongly to and ribosomal protection, where tetracycline is prevented from the ribosome than tetracyclines and this enhanced binding is, binding to the ribosome. Research to find tetracycline probably, responsible for overcoming the ribosomal protection analogues, that circumvented these resistance mechanisms, mechanisms of tetracycline resistance.[5] The action of has led to the development of a novel group of drugs called tigecycline is bacteriostatic in nature, which is likely due to its glycylcyclines, the most promising compound being the 9-tert reversible interaction with the ribosome.[5] Its efficacy suggests butyl glycyclamido derivative of minocycline-tigecycline (GAR that traditional thinking about using bacteriostatic drugs in 936). treating serious infections needs to be revised.[7] Chemistry Antimicrobial activity The nucleus consists of four linear fused tetracyclic rings In vitro antibacterial activity of tigecycline has been and there is the addition of N, N-dimethylglycylamido (DMG) assessed against clinical isolates as a part of ongoing TEST group at C-9 position of minocycline.[1] initiative (Tigecycline Evaluation Surveillance Trial). -
EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use
Ref. Ares(2019)6843167 - 05/11/2019 31 October 2019 EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use Advice on implementing measures under Article 37(4) of Regulation (EU) 2019/6 on veterinary medicinal products – Criteria for the designation of antimicrobials to be reserved for treatment of certain infections in humans Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Introduction On 6 February 2019, the European Commission sent a request to the European Medicines Agency (EMA) for a report on the criteria for the designation of antimicrobials to be reserved for the treatment of certain infections in humans in order to preserve the efficacy of those antimicrobials. The Agency was requested to provide a report by 31 October 2019 containing recommendations to the Commission as to which criteria should be used to determine those antimicrobials to be reserved for treatment of certain infections in humans (this is also referred to as ‘criteria for designating antimicrobials for human use’, ‘restricting antimicrobials to human use’, or ‘reserved for human use only’). The Committee for Medicinal Products for Veterinary Use (CVMP) formed an expert group to prepare the scientific report. The group was composed of seven experts selected from the European network of experts, on the basis of recommendations from the national competent authorities, one expert nominated from European Food Safety Authority (EFSA), one expert nominated by European Centre for Disease Prevention and Control (ECDC), one expert with expertise on human infectious diseases, and two Agency staff members with expertise on development of antimicrobial resistance . -
Progress in Pharmacokinetics and Pharmacodynamics - I
274 Abstracts Progress in pharmacokinetics and pharmacodynamics - I P1022 Pharmacokinetics of telithromycin in plasma and was higher in young women than in young men (21% difference), soft tissue after single-dose administration in healthy volunteers with only a 4% difference between elderly women and men. At the target clinical dose of 100 mg load infused over 30–60 min fol- R. Gattringer, F. Traunmueller, E. Urbauer, M. Zeitlinger, lowed by 50 mg q12h, Cmax and AUCss (mean Æ SD) were M. Mueller, C. Joukhadar 621 Æ 93 ng/mL and 3069 Æ 381 ng h/mL, respectively. Vienna, A Objectives: Telithromycin was described to reach high concentra- Dose (mg), with MD given q 12h tions levels in inflammatory fluid, in bronchopulmonary tissues and in tonsillar tissue. Because of these data telithromycin is spe- Pk parameter 12.5 25 50 75 100 200 300 culated to be a new option in the therapy of skin and soft tissue infections. To determine the concentration of telithromycin in the SD CLt 0.29 Æ 0.20 0.20 Æ 0.10 0.28 Æ 0.04 0.29 Æ 0.04 0.30 Æ 0.08 0.23 Æ 0.04 0.25 Æ 0.03 interstitial space fluid, the pharmacokinetics of this new antibiotic (L/hr/kg) (n ¼ 6) (n ¼ 6) (n ¼ 6) (n ¼ 6) (n ¼ 57) (n ¼ 24) (n ¼ 12) were assessed after single dose administration in young healthy MD CLt ÁÁÁ 0.20 Æ 0.04 0.20 Æ 0.02 ÁÁÁ 0.24 Æ 0.045 ÁÁÁ ÁÁÁ (L/hr/kg) (n ¼ 5) (n ¼ 5) (n ¼ 3) volunteers by the use of microdialysis. -
Supplementary Information Table of Contents Table S1
Supplementary Information Table of Contents Table S1. Matched high-throughput sequencing reads of antibiotic resistance genes (ARGs) in sludge fed with 0 mg/L tetracycline. S1 Table S2. Matched high-throughput sequencing reads of antibiotic resistance genes (ARGs) in sludge fed with 20 mg/L tetracycline. S12 Table S3. Matched high-throughput sequencing reads of plasmids in sludge cultured with 0 mg/L tetracycline. S21 Table S4. Matched high-throughput sequencing reads of plasmids in sludge cultured with 20 mg/L tetracycline. S32 Table S5. PCR primers of the 15 tetracycline resistance genes detected in this study. S40 Figure S1. Occurrence patterns of 11 tet genes in activated sludge analyzed by electrophoresis of PCR products. S41 Table S1. Matched high-throughput sequencing reads of antibiotic resistance genes (ARGs) in sludge fed with 0 mg/L tetracycline of Day 6 against antibiotic resistance database (ARDB). ARDB Accession Identity Hit Length Number ARG No. E Value t Function Related Antibiotics Number (%) n (AA) u of Reads Name 1 CAE53425 90.62 25 7.0 × 10−8 1628 sul2 Sulfonamide-resistant dihydropteroate synthase sulfonamide 2 YP_001969930 90 28 6.0 × 10−9 182 sul2 Sulfonamide-resistant dihydropteroate synthase sulfonamide 3 YP_002112964 100 27 1.0 × 10−11 29 aph33ib Aminoglycoside O-phosphotransferase streptomycin 4 YP_001571041 90 28 5.0 × 10−9 21 macB Macrolide-specific efflux system macrolide 5 YP_002029849 90.32 27 2.0 × 10−8 21 smeE Multidrug resistance efflux pump fluoroquinolone 6 YP_002890644 90.32 31 3.0 × 10−10 21 bacA -
Of Significant in Vitro Antagonism Between Penicillin, Cephalothin, and Rolitetracycline FRANZ D
ANTIMICROBIAL AGENTS AND CHEmoTHzRAPY, Nov. 1976, p. 802-808 Vol. 10, No. 5 Copyright © 1976 American Society for Microbiology Printed in U.S.A. Combination of Bacteriostatic and Bactericidal Drugs: Lack of Significant In Vitro Antagonism Between Penicillin, Cephalothin, and Rolitetracycline FRANZ D. DASCHNERI Children Hospital, Division ofAntimicrobial Therapy, University ofMunich, 8 Munich 2, Germany Received for publication 16 April 1976 Although it is generally believed that bactericidal and bacteriostatic drugs should not be combined in vivo, in vitro experiments using the checkerboard dilution technique revealed no antagonism between penicillin/cephalothin and rolitetracycline but rather additive or synergistic activity of either drug combi- nation in 40 to 50% of20 Escherichia coli and 14 Staphylococcus aureus strains. Slight antagonism occurred only between 3 and 8 h after combining penicillin/ cephalothin and rolitetracycline in either bacteriostatic or bactericidal concen- trations, but not after 24 h of incubation, nor was antagonism found with combinations of these drugs in bacteriostatic concentrations. Neither bacterio- static nor bactericidal activity of penicillin/cephalothin and rolitetracycline was inhibited by pretreatment of one E. coli strain with bacteriostatic rolitetracyc- line or bacteriostatic penicillin/cephalothin concentrations. Penicillin and ceph- alothin could exert a bactericidal effect after 2-h exposure of theE. coli strain to bacteriostatic rolitetracycline concentrations. Combined action of subinhibitory penicillin and rolitetracycline concentrations resulted in more pronounced inhi- bition of growth than either drug alone. The higher activity of penicillin/ cephalothin in combination with rolitetracycline on some E. coli and S. aureus strains might be due to a better access of rolitetracycline into bacterial cells whose cell walls have been weakened by cell wall-active, bactericidal drugs. -
COMPLETE GENOME SEQUENCING of Pseudomonas Syringae Pv. Actinidiae BIOVAR 3, P155, KIWIFRUIT PATHOGEN ORIGINATING from CHINA SEQU
2220 Bioscience Journal Original Article COMPLETE GENOME SEQUENCING OF Pseudomonas syringae pv. actinidiae BIOVAR 3, P155, KIWIFRUIT PATHOGEN ORIGINATING FROM CHINA SEQUENCIAMENTO COMPLETO DO GENOMA Pseudomonas syringae pv. actinidiae BIOVAR 3, P155, AGENTE PATOGÊNICO DO KIWI, ORIGINÁRIO DA CHINA Xin PAN1,2; Siyue ZHAO3; Yongzhi WANG2; Mingzhang LI2; Liqin HE2*; Qiguo ZHUANG2* 1. College of Tourism and Town and Country Planning, Chengdu University of Technology, Chengdu, Sichuan, China; 2. Kiwifruit Breeding and Utilization Key Laboratory, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China; 3. Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China.*Corresponding author: Qiguo Zhuang, [email protected]; Liqin HE, [email protected] ABSTRACT: Pseudomonas syringae pv. actinidiae is a bacterial pathogen of kiwifruit. Based on the results of the pathogenicity assay, we sequenced the strain Pseudomonas syringae (Psa3) P155 which possesses a series of virulence and resistance genes, CRISPR candidate elements, prophage related sequences, methylation modifications, genomic islands as well as one plasmid. Most importantly, the copper resistance genes copA, copB, copC, copD, and copZ as well as aminoglycoside resistance gene ksgA were identified in strain P155, which would pose a threat to kiwifruit production. The complete sequence we reported here will provide valuable information for a better understanding of the genetic structure and pathogenic characteristics of the genome of P155. KEYWORDS: Actinidia sp. Bacterial canker. Complete sequence. Pathogenicity. Pac-Bio platform. INTRODUCTION the development of whole genome sequencing, virulence and antimicrobial resistance profile of Kiwifruit (Actinidia sp.), an economically bacteria can be predicted. Additionally, the sequence important fruit, is cultivated worldwide for its taste data also provide a level of strain discrimination and and nutritional value (Fujikawa and Sawada 2016).