Screening and Identification Methods for Official Control of Banned Antibiotics and Growth Promoters in Feedingstuffs

Total Page:16

File Type:pdf, Size:1020Kb

Screening and Identification Methods for Official Control of Banned Antibiotics and Growth Promoters in Feedingstuffs Screening and Identification Methods for official control of Banned Antibiotics and Growth promoters in Feedingstuffs SIMBAG FEED Competitive and sustainable growth programme (GROWTH) project G6RD-CT-2000-00413 Coordinator: Jacob de Jong RIKILT – Institute of Food Safety Wageningen, The Netherlands Method protocol for screening on (banned) antibiotics in complete feedingstuffs and milk replacers by the microbiological plate test Author : Harry van Egmond RIKILT – Institute of Food Safety, Wageningen, The Netherlands Workpackage : Microbiological screening system (WP 2) Workpackage leader: Harry van Egmond Date of deliverable : 14-07-2005 Harry van Egmond, 14-7-2005 1/10 Method protocol for screening on (banned) antibiotics in complete feedingstuffs and milk replacers by the microbiological plate test 1 SCOPE AND FIELD OF APPLICATION This method describes the screening on banned antibiotics in complete feeding stuffs and milk replacers by a microbiological 3-plate test. To recognize interference of (carry over) of veterinary medicines or high concentrations of avilamycin, three additional test plates (mentioned in appendix 1) are necessary. Screening on banned antibiotics (virginiamycin, tylosin, spiramycin, zinc bacitracin, avoparcin) in the presence of aminoglycosides, macrolides, furazolidon, tetracyclines or quinolones is impossible with the microbiological plate test. Furthermore high concentrations of metals (Cu, Zn) might interfere. The limit of detection of the method is 1 mg/kg for avoparcin, tylosin, spiramycin, virginiamycin and 3-5 mg/kg for zinc bacitracin. 2 PRINCIPLE The sample is extracted at low pH with a mixture of acetone, hydrochloric-acid (HCl) and water. After addition of phosphate buffer pH 6.5, and further extraction, the feed is centrifuged. The supernatant is adjusted to pH 6.0-6.5 and dispensed into wells in three different agar media. The agars differ in inoculated bacterial strains and pH. After incubation, presence of antibiotics is shown by the formation of zones of inhibition. An indication of the antibiotic present is possible by observing with which micro- organisms zones of inhibition are produced and comparison of inhibition patterns (appendix 2) with known standards. 3 MICRO-ORGANISM 3.1 Teststrains • Micrococcus luteus ATCC 10240 • Bacillus megatherium ATCC 10778 • Micrococcus luteus ATCC 9341 3.2 Preparation of the bacterial suspensions (1) Inoculate tubes containing slopes of culture medium (pH 6.5, 4.1.2) with the test strains (3.1) and incubate for 18-24 hours at 30°C (5.7). Harvest the growth with 2-3 ml of sodium chloride solution (4.8). Use this suspension to inoculate agarplates (pH 6.5, 4.1.2) and incubate for 18-20 hours at 30°C (5.7). Harvest the growth in 25 ml of sodium chloride solution (4.16) and mix. Add 12.5 ml sterile glycerol (4.14) and 12.5 ml sterile full-cream milk (4.15). Mix and distribute the bacterial suspension in suitable containers/ampoules. This suspension may be kept for at least one year at <-60°C. Determine (before use) the amount of viable bacterial cells conform ISO 4833. Suspensions with approximately 109 cells/ml are fit for use. 4 CULTURE MEDIA AND REAGENTS 4.1 Assay media 4.1.1 Assay medium M.luteus ATCC 9341(Antib. medium no. 1 + phosphate) (2) meat peptone 6 g tryptone 4 g yeast extract 3 g meat extract 1.5 g glucose 1 g agar 10-20 g dipotassium hydrogen phosphate (K2HPO4)(4.7) 20 g (addition direct after sterilisation) demineralised water 1000 ml Sterilise. Add the di-potassium hydrogen phosphate and cool to approx. 50°C. Adjust the pH to 8.0 ± 0.1. (1) Any other method of preparation of bacterial suspensions, giving the same, results may be used. (2) This medium from Difco gives good results, but any commercial culture medium of similar composition and giving the same results may be used. (3) mg/kg microbiological activity, 1 mg spiramycin-base = 3200 IU and 1 mg zinc bacitracin = 42 IU. Harry van Egmond, 14-7-2005 2/10 4.1.2: Assay medium M.luteus ATCC 10240 (Antib. medium no. 1) (2) meat peptone 6 g tryptone 4 g yeast extract 3 g meat extract 1.5 g glucose 1 g agar 10-20 g demineralised water 1000 ml Sterilise. Cool to approx. 50°C and adjust the pH to 6.5 ± 0.1 4.1.3: Assay medium B.megatherium ATCC 10778 (Plate count agar) (2) pancreatic digest of casein 5 g yeast extract 2.5 g glucose 1 g agar 15 g demineralised water 1000 ml Sterilise. Cool to approx. 50°C and adjust the pH to 6.0 ± 0.1. 4.2 Sodium chloride (NaCl) 4.3 Acetone p.a. 4.4 Hydrochloric acid (p20= 1.18) 4.5 Acetone (4.3)/hydrochloric acid (4.4)/water mixture (475/25/500)(v/v) 4.6 Potassium dihydrogen phosphate (KH2PO4) 4.7 diPotassium hydrogen phosphate (K2HPO4) 4.8 Sodium hydroxide (NaOH) 4.9 Methanol p.a. 4.10 Phosphate buffer pH 6.5 Dissolve 18.6 g potassium dihydrogen phosphate (4.6) and 14.8 g dipotassium hydrogen phosphate (4.7) in water. Adjust pH to 6.5 ± 0.1and make up to 1000 ml with water. 4.11 Standard neomycin of known activity (in neomycin-base) 4.11.1 Neomycin stock solution (500 µg/ml). Dissolve a quantity of neomycin-sulphate (4.11) corresponding to 50 mg neomycin-base in water, mix and make up to 100 ml. This solution is stable for one month at 4°C. 4.12 Standard tylosin of known activity (in tylosin-base) 4.12.1 Tylosin stock solution (50 µg/ml). Dissolve a quantity of tylosin (4.11) corresponding to 5 mg tylosin-base in 5 ml methanol (4.9) and make up to 100 ml with phosphate buffer pH 6.5 (4.10). This solution is stable for one month at 4°C. 4.12.2 Tylosin working solution (1 µg/ml) Dilute 2 ml tylosin stock solution to 100 ml final volume with water. 4.13 Penicillinase solution 10.000.000 IU/ml 4.14 Glycerol 4.15 Sterile full-cream milk (2) Any commercial culture medium of similar composition and giving the same results may be used. Harry van Egmond, 14-7-2005 3/10 4.16 Sodium chloride solution 0.85% (w/v) Dissolve 8.5 g sodium chloride (4.2) in 1000 ml water and autoclave. 4.17 Sodium hydroxide solution 5 mol/l Dissolve 20 g sodium hydroxide (4.8) in water and make up to 100 ml with water. 5 APPARATUS 5.1 Volumetric glassware 5.2 Analytical balance 5.3 Autoclave 5.4 Laboratory shaker or magnetic stirrer 5.5 Vernier caliper or equivalent equipment 5.6 Centrifuge (±3000xg) 5.7 Incubators at 25 ± 1°C and 30 ± 1°C 5.8 pH meter 5.9 Micropipets 5.10 Cork borer (diameter of 12 ± 0.5 mm) 5.11 Plastic (disposable) Petri dishes with a flat surface 6 PROCEDURE In each analysis run at least one positive control sample (= spike sample) should be included, to check the procedure. In Appendix 3, the procedure for preparation of these positive control samples is described. 6.1 Preparation of the extract Weigh out 10 g of sample, add 20 ml Acetone/hydrochloric acid/water mixture (4.5) and shake (5.4) for 15 minutes. Add 10 ml phosphate buffer pH 6.5 (4.10) and shake for another 15 minutes(1). Centrifuge (5.6) and take a suitable aliquot of the supernatant. Adjust the pH to 6.0 - 6.5 (5.8) by means of a 5 M sodium hydroxide solution (4.17). (2) 6.2 Inoculation of the assay media Inoculate the assay media (4.1.1 – 4.1.3) with the bacterial suspension (3.1) at about 50°C, to give approximately 105-106 colony forming units/ml agar. The following combinations of bacteria and pH are necessary: Bacterial suspension Medium pH assay medium Inoculum (cfu/ml agar) M.luteus ATCC 10240 AB 1 (*) 6.5 106 + neomycin (1 mg/l agar) M.luteus ATCC 9341 AB1+ phosp (**) 8 106 +tylosin (7.5 µg/l agar) B.megatherium ATCC 10778 PCA 6 105 (*) Add 0.2 ml of neomycin stock solution (4.11.1) per 100 ml of assay medium (1) If lumps/clods occur in (milk replacer) samples, use a spatula to completely wet the samples. (2) For the last part of this pH adjustment a diluted NaOH solution may be used. Harry van Egmond, 14-7-2005 4/10 (**) Add 0.75 ml of tylosin working solution (4.12.2) per 100 ml of assay medium 6.3 Preparation of the plates Diffusion through agar is carried out in plates (5.11). Pour into different plates a quantity of every medium inoculated with the different bacterial strains (6.2) to give a layer of about 2.5 mm thick. Allow to set in a level position and bore holes with a diameter of approx. 12 mm (minimal of 30 mm between centres) (5.10). 6.4 Filling of the holes Place (5.9) in every of the three plates 0,20 ml feed extract per hole. Use remaining wells on the plates for positive control samples or other sample extracts. 6.5 Incubation Incubate the plates for 16-18 hours at 30 ± 1°C except the B.megatherium ATCC 10778 testplate at 25 ± 1°C. 7 INTERPRETATION The presence of antibiotics is shown by the formation of zones of inhibition. Measure the diameter of the zones of inhibition to the nearest 0.1 mm, by direct measurement or projection (5.5). Small inhibition zones (smaller than “holes + 2 mm”) on the M.luteus ATCC 10240 and B.megatherium ATCC 10778 plates have to be interpreted as negative.
Recommended publications
  • Microbiological Profile of Telithromycin, the First Ketolide Antimicrobial
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Paperprovided by 48Elsevier Disc - Publisher Connector Microbiological profile of telithromycin, the first ketolide antimicrobial D. Felmingham GR Micro Ltd, London, UK ABSTRACT Telithromycin, the first of the ketolide antimicrobials, has been specifically designed to provide potent activity against common and atypical/intracellular or cell-associated respiratory pathogens, including those that are resistant to b-lactams and/or macrolide±lincosamide±streptograminB (MLSB) antimicrobials. Against Gram- positive cocci, telithromycin possesses more potent activity in vitro and in vivo than the macrolides clarithromycin and azithromycin. It retains its activity against erm-(MLSB)ormef-mediated macrolide-resistant Streptococcus pneumoniae and Streptococcus pyogenes and against Staphylococcus aureus resistant to macrolides through inducible MLSB mechanisms. Telithromycin also possesses high activity against the Gram-negative pathogens Haemophilus influenzae and Moraxella catarrhalis, regardless of b-lactamase production. In vitro, it shows similar activity to azithromycin against H. influenzae, while in vivo its activity against H. influenzae is higher than that of azithromycin. Telithromycin's spectrum of activity also extends to the atypical, intracellular and cell-associated pathogens Legionella pneumophila, Mycoplasma pneumoniae and Chlamydia pneumoniae. In vitro, telithromycin does not induce MLSB resistance and it shows low potential to select for resistance or cross-resistance to other antimicrobials. These characteristics indicate that telithromycin will have an important clinical role in the Ahed empirical treatment of community-acquired respiratory tract infections. Bhed Clin Microbiol Infect 2001: 7 (Supplement 3): 2±10 Ched Dhed Ref marker Fig marker these agents. Resistance to penicillin, particularly among S.
    [Show full text]
  • Ketek, INN-Telithromycin
    authorised ANNEX I SUMMARY OF PRODUCT CHARACTERISTICSlonger no product Medicinal 1 1. NAME OF THE MEDICINAL PRODUCT Ketek 400 mg film-coated tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each film-coated tablet contains 400 mg of telithromycin. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Film-coated tablet. Light orange, oblong, biconvex tablet, imprinted with ‘H3647’ on one side and ‘400’ on the other. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications authorised When prescribing Ketek, consideration should be given to official guidance on the appropriate use of antibacterial agents and the local prevalence of resistance (see also sections 4.4 and 5.1). Ketek is indicated for the treatment of the following infections: longer In patients of 18 years and older: • Community-acquired pneumonia, mild or moderate (see section 4.4). • When treating infections caused by knownno or suspected beta-lactam and/or macrolide resistant strains (according to history of patients or national and/or regional resistance data) covered by the antibacterial spectrum of telithromycin (see sections 4.4 and 5.1): - Acute exacerbation of chronic bronchitis, - Acute sinusitis In patients of 12 years and older: • Tonsillitis/pharyngitis caused by Streptococcus pyogenes, as an alternative when beta lactam antibiotics are not appropriateproduct in countries/regions with a significant prevalence of macrolide resistant S. pyogenes, when mediated by ermTR or mefA (see sections 4.4 and 5.1). 4.2 Posology and method of administration Posology The recommended dose is 800 mg once a day i.e. two 400 mg tablets once a day. In patients of 18 years and older, according to the indication, the treatment regimen will be: - Community-acquired pneumonia: 800 mg once a day for 7 to 10 days, Medicinal- Acute exacerbation of chronic bronchitis: 800 mg once a day for 5 days, - Acute sinusitis: 800 mg once a day for 5 days, - Tonsillitis/pharyngitis caused by Streptococcus pyogenes: 800 mg once a day for 5 days.
    [Show full text]
  • Pharmaceuticals and Endocrine Active Chemicals in Minnesota Lakes
    Pharmaceuticals and Endocrine Active Chemicals in Minnesota Lakes May 2013 Authors Mark Ferrey Contributors/acknowledgements The MPCA is reducing printing and mailing costs This report contains the results of a study that by using the Internet to distribute reports and characterizes the presence of unregulated information to wider audience. Visit our website contaminants in Minnesota’s lakes. The study for more information. was made possible through funding by the MPCA reports are printed on 100 percent post- Minnesota Clean Water Fund and by funding by consumer recycled content paper manufactured the U.S. Environmental Protection Agency without chlorine or chlorine derivatives. (EPA), which facilitated the sampling of lakes for this study. The Minnesota Pollution Control Agency (MPCA) thanks the following for assistance and advice in designing and carrying out this study: Steve Heiskary, Pam Anderson, Dereck Richter, Lee Engel, Amy Garcia, Will Long, Jesse Anderson, Ben Larson, and Kelly O’Hara for the long hours of sampling for this study. Cynthia Tomey, Kirsten Anderson, and Richard Grace of Axys Analytical Labs for the expert help in developing the list of analytes for this study and logistics to make it a success. Minnesota Pollution Control Agency 520 Lafayette Road North | Saint Paul, MN 55155-4194 | www.pca.state.mn.us | 651-296-6300 Toll free 800-657-3864 | TTY 651-282-5332 This report is available in alternative formats upon request, and online at www.pca.state.mn.us. Document number: tdr-g1-16 Contents Contents ...........................................................................................................................................
    [Show full text]
  • Screening of Pharmaceuticals in San Francisco Bay Wastewater
    Screening of Pharmaceuticals in San Francisco Bay Wastewater Prepared by Diana Lin Rebecca Sutton Jennifer Sun John Ross San Francisco Estuary Institute CONTRIBUTION NO. 910 / October 2018 Pharmaceuticals in Wastewater Technical Report Executive Summary Previous studies have shown that pharmaceuticals are widely detected in San Francisco Bay, and some compounds occasionally approach levels of concern for wildlife. In 2016 and 2017, seven wastewater treatment facilities located throughout the Bay Area voluntarily collected wastewater samples and funded analyses for 104 pharmaceutical compounds. This dataset represents the most comprehensive analysis of pharmaceuticals in wastewater to date in this region. On behalf of the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP), the complete dataset was reviewed utilizing RMP quality assurance methods. An analysis of influent and effluent information is summarized in this report, and is intended to inform future monitoring recommendations for the Bay. Influent and effluent concentration ranges measured were generally within the same order of magnitude as other US studies, with a few exceptions for effluent. Effluent concentrations were generally significantly lower than influent concentrations, though estimated removal efficiency varied by pharmaceutical, and in some cases, by treatment type. These removal efficiencies were generally consistent with those reported in other studies in the US. Pharmaceuticals detected at the highest concentrations and with the highest frequencies in effluent were commonly used drugs, including treatments for diabetes and high blood pressure, antibiotics, diuretics, and anticonvulsants. For pharmaceuticals detected in discharged effluent, screening exercises were conducted to determine which might be appropriate candidates for further examination and potential monitoring in the Bay.
    [Show full text]
  • WHO Report on Surveillance of Antibiotic Consumption: 2016-2018 Early Implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some Rights Reserved
    WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early implementation WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • E3 Appendix 1 (Part 1 of 2): Search Strategy Used in MEDLINE
    This single copy is for your personal, non-commercial use only. For permission to reprint multiple copies or to order presentation-ready copies for distribution, contact CJHP at [email protected] Appendix 1 (part 1 of 2): Search strategy used in MEDLINE # Searches 1 exp *anti-bacterial agents/ or (antimicrobial* or antibacterial* or antibiotic* or antiinfective* or anti-microbial* or anti-bacterial* or anti-biotic* or anti- infective* or “ß-lactam*” or b-Lactam* or beta-Lactam* or ampicillin* or carbapenem* or cephalosporin* or clindamycin or erythromycin or fluconazole* or methicillin or multidrug or multi-drug or penicillin* or tetracycline* or vancomycin).kf,kw,ti. or (antimicrobial or antibacterial or antiinfective or anti-microbial or anti-bacterial or anti-infective or “ß-lactam*” or b-Lactam* or beta-Lactam* or ampicillin* or carbapenem* or cephalosporin* or c lindamycin or erythromycin or fluconazole* or methicillin or multidrug or multi-drug or penicillin* or tetracycline* or vancomycin).ab. /freq=2 2 alamethicin/ or amdinocillin/ or amdinocillin pivoxil/ or amikacin/ or amoxicillin/ or amphotericin b/ or ampicillin/ or anisomycin/ or antimycin a/ or aurodox/ or azithromycin/ or azlocillin/ or aztreonam/ or bacitracin/ or bacteriocins/ or bambermycins/ or bongkrekic acid/ or brefeldin a/ or butirosin sulfate/ or calcimycin/ or candicidin/ or capreomycin/ or carbenicillin/ or carfecillin/ or cefaclor/ or cefadroxil/ or cefamandole/ or cefatrizine/ or cefazolin/ or cefixime/ or cefmenoxime/ or cefmetazole/ or cefonicid/ or cefoperazone/
    [Show full text]
  • Danmap 2006.Pmd
    DANMAP 2006 DANMAP 2006 DANMAP 2006 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark Statens Serum Institut Danish Veterinary and Food Administration Danish Medicines Agency National Veterinary Institute, Technical University of Denmark National Food Institute, Technical University of Denmark Editors: Hanne-Dorthe Emborg Danish Zoonosis Centre National Food Institute, Technical University of Denmark Mørkhøj Bygade 19 Contents DK - 2860 Søborg Anette M. Hammerum National Center for Antimicrobials and Contributors to the 2006 Infection Control DANMAP Report 4 Statens Serum Institut Artillerivej 5 DK - 2300 Copenhagen Introduction 6 DANMAP board: National Food Institute, Acknowledgements 6 Technical University of Denmark: Ole E. Heuer Frank Aarestrup List of abbreviations 7 National Veterinary Institute, Tecnical University of Denmark: Sammendrag 9 Flemming Bager Danish Veterinary and Food Administration: Summary 12 Justin C. Ajufo Annette Cleveland Nielsen Statens Serum Institut: Demographic data 15 Dominique L. Monnet Niels Frimodt-Møller Anette M. Hammerum Antimicrobial consumption 17 Danish Medicines Agency: Consumption in animals 17 Jan Poulsen Consumption in humans 24 Layout: Susanne Carlsson Danish Zoonosis Centre Resistance in zoonotic bacteria 33 Printing: Schultz Grafisk A/S DANMAP 2006 - September 2007 Salmonella 33 ISSN 1600-2032 Campylobacter 43 Text and tables may be cited and reprinted only with reference to this report. Resistance in indicator bacteria 47 Reprints can be ordered from: Enterococci 47 National Food Institute Escherichia coli 58 Danish Zoonosis Centre Tecnical University of Denmark Mørkhøj Bygade 19 DK - 2860 Søborg Resistance in bacteria from Phone: +45 7234 - 7084 diagnostic submissions 65 Fax: +45 7234 - 7028 E.
    [Show full text]
  • Intracellular Penetration and Effects of Antibiotics On
    antibiotics Review Intracellular Penetration and Effects of Antibiotics on Staphylococcus aureus Inside Human Neutrophils: A Comprehensive Review Suzanne Bongers 1 , Pien Hellebrekers 1,2 , Luke P.H. Leenen 1, Leo Koenderman 2,3 and Falco Hietbrink 1,* 1 Department of Surgery, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; [email protected] (S.B.); [email protected] (P.H.); [email protected] (L.P.H.L.) 2 Laboratory of Translational Immunology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; [email protected] 3 Department of Pulmonology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands * Correspondence: [email protected] Received: 6 April 2019; Accepted: 2 May 2019; Published: 4 May 2019 Abstract: Neutrophils are important assets in defense against invading bacteria like staphylococci. However, (dysfunctioning) neutrophils can also serve as reservoir for pathogens that are able to survive inside the cellular environment. Staphylococcus aureus is a notorious facultative intracellular pathogen. Most vulnerable for neutrophil dysfunction and intracellular infection are immune-deficient patients or, as has recently been described, severely injured patients. These dysfunctional neutrophils can become hide-out spots or “Trojan horses” for S. aureus. This location offers protection to bacteria from most antibiotics and allows transportation of bacteria throughout the body inside moving neutrophils. When neutrophils die, these bacteria are released at different locations. In this review, we therefore focus on the capacity of several groups of antibiotics to enter human neutrophils, kill intracellular S. aureus and affect neutrophil function. We provide an overview of intracellular capacity of available antibiotics to aid in clinical decision making.
    [Show full text]
  • Antimicrobial Susceptibility and Association with Toxin Determinants in Clostridium Perfringens Isolates from Chickens
    microorganisms Article Antimicrobial Susceptibility and Association with Toxin Determinants in Clostridium perfringens Isolates from Chickens 1, 1, 1 1 2 Bai Wei y, Se-Yeoun Cha y, Jun-Feng Zhang , Ke Shang , Hae-Chul Park , JeongWoo Kang 2 , Kwang-Jick Lee 2, Min Kang 1,* and Hyung-Kwan Jang 1,* 1 Center for Poultry Diseases Control, Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Jeonbuk National University, Iksan 54596, Korea; [email protected] (B.W.); [email protected] (S.-Y.C.); [email protected] (J.-F.Z.) [email protected] (K.S.) 2 Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency (QIA), Gimcheon 39660, Korea; [email protected] (H.-C.P.); [email protected] (J.K.); [email protected] (K.-J.L.) * Correspondence: [email protected] (M.K.); [email protected] (H.-K.J.); Tel.: +82-63-850-0690 (M.K.); +82-63-850-0945 (H.-K.J.); Fax: +82-858-0686 (M.K.); +82-858-9155 (H.-K.J.) These authors contributed equally to this study. y Received: 25 October 2020; Accepted: 17 November 2020; Published: 19 November 2020 Abstract: The aim of the present study was to investigate variation in antimicrobial resistance in Clostridium perfringens (C. perfringens) isolated from chickens after withdrawal of antimicrobial growth promoters (AGPs); and to investigate the correlation between the presence of toxin genes (cpb2, netB, and tpeL) and antimicrobial resistance. Altogether, 162 isolates of C. perfringens were obtained from chickens displaying clinical signs of necrotic enteritis (n = 65) and from healthy chickens (n = 97) in Korea during 2010–2016.
    [Show full text]
  • ARCH-Vet Anresis.Ch
    Usage of Antibiotics and Occurrence of Antibiotic Resistance in Bacteria from Humans and Animals in Switzerland Joint report 2013 ARCH-Vet anresis.ch Publishing details © Federal Office of Public Health FOPH Published by: Federal Office of Public Health FOPH Publication date: November 2015 Editors: Federal Office of Public Health FOPH, Division Communicable Diseases. Elisabetta Peduzzi, Judith Klomp, Virginie Masserey Design and layout: diff. Marke & Kommunikation GmbH, Bern FOPH publication number: 2015-OEG-17 Source: SFBL, Distribution of Publications, CH-3003 Bern www.bundespublikationen.admin.ch Order number: 316.402.eng Internet: www.bag.admin.ch/star www.blv.admin.ch/gesundheit_tiere/04661/04666 Table of contents 1 Foreword 4 Vorwort 5 Avant-propos 6 Prefazione 7 2 Summary 10 Zusammenfassung 12 Synthèse 14 Sintesi 17 3 Introduction 20 3.1 Antibiotic resistance 20 3.2 About anresis.ch 20 3.3 About ARCH-Vet 21 3.4 Guidance for readers 21 4 Abbreviations 24 5 Antibacterial consumption in human medicine 26 5.1 Hospital care 26 5.2 Outpatient care 31 5.3 Discussion 32 6 Antibacterial sales in veterinary medicines 36 6.1 Total antibacterial sales for use in animals 36 6.2 Antibacterial sales – pets 37 6.3 Antibacterial sales – food producing animals 38 6.4 Discussion 40 7 Resistance in bacteria from human clinical isolates 42 7.1 Escherichia coli 42 7.2 Klebsiella pneumoniae 44 7.3 Pseudomonas aeruginosa 48 7.4 Acinetobacter spp. 49 7.5 Streptococcus pneumoniae 52 7.6 Enterococci 54 7.7 Staphylococcus aureus 55 Table of contents 1 8 Resistance in zoonotic bacteria 58 8.1 Salmonella spp.
    [Show full text]
  • New Livestock Antibiotic Rules for California
    New Livestock Antibiotic Rules for California alifornia Senate Bill 27 was signed by Governor Brown on October 10, 2015 with an • MIADs may not be administered for purposes of Cimplementation date of January 1, 2018. It set promoting weight gain or improving feed effi ciency. aggressive, groundbreaking standards for antimicrobial drug use in California livestock and was supported by the • Livestock owners, including apiculturists, backyard poul- try owners, small livestock herd or fl ock owners, or hobby CVMA. farmers may only purchase and administer MIADs with a prescription from a California licensed veterinarian with a As of January 1, all medically important antimicrobial valid VCPR, unless intended to be fed to livestock which drugs (MIADs) used in livestock may only be obtained requires a veterinary feed directive. through a veterinary prescription or a veterinary feed directive pursuant to a valid veterinarian-client-patient • Feed stores will no longer sell MIADs over the counter relationship (VCPR). In order for a VCPR to be valid, and feed mills will no longer add MIADs to feed without the client must authorize the veterinarian to assume a veterinary feed directive (VFD) (the latter commenced responsibility for making medical judgments regarding in 2017 pursuant to federal regulations). the health of the animal and the veterinarian must assume this responsibility. The veterinarian must then have Many livestock owners are not accustomed to having a suffi cient knowledge of the animal(s) to initiate at least a veterinarian and have been purchasing MIADs at the feed general or preliminary diagnosis. This can only be done store. This is no longer an option and they may ask where through an in-person physical exam of the animal(s) or by they can get their prescription fi lled.
    [Show full text]
  • Swedres-Svarm 2005
    SVARM Swedish Veterinary Antimicrobial Resistance Monitoring Preface .............................................................................................4 Summary ..........................................................................................6 Sammanfattning................................................................................7 Use of antimicrobials (SVARM 2005) .................................................8 Resistance in zoonotic bacteria ......................................................13 Salmonella ..........................................................................................................13 Campylobacter ...................................................................................................16 Resistance in indicator bacteria ......................................................18 Escherichia coli ...................................................................................................18 Enterococcus .....................................................................................................22 Resistance in animal pathogens ......................................................32 Pig ......................................................................................................................32 Cattle ..................................................................................................................33 Horse ..................................................................................................................36 Dog
    [Show full text]