Effects of Eddy Variability on the Circulation of the Japan/ East Sea

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Eddy Variability on the Circulation of the Japan/ East Sea Journal of Oceanography, Vol. 55, pp. 247 to 256. 1999 Effects of Eddy Variability on the Circulation of the Japan/ East Sea 1 1 2 G. A. JACOBS , P. J. HOGAN AND K. R. WHITMER 1Naval Research Laboratory, Stennis Space Center, Mississippi, U.S.A. 2Sverdrup Technology, Inc., Stennis Space Center, Mississippi, U.S.A. (Received 5 October 1998; in revised form 17 November 1998; accepted 19 November 1998) The effect of mesoscale eddy variability on the Japan/East Sea mean circulation is Keywords: examined from satellite altimeter data and results from the Naval Research Laboratory ⋅ Japan Sea, Layered Ocean Model (NLOM). Sea surface height variations from the Geosat-Exact ⋅ eddies, ⋅ altimeter, Repeat Mission and TOPEX/POSEIDON altimeter satellites imply geostrophic velocities. ⋅ At the satellite crossover points, the total velocity and the Reynolds stress due to numerical model- ing, geostrophic mesoscale turbulence are calculated. After spatial interpolation the momentum ⋅ Reynolds stress. flux and effect on geostrophic balance indicates that the eddy variability aids in the transport of the Polar Front and the separation of the East Korean Warm Current (EKWC). The NLOM results elucidate the impact of eddy variability on the EKWC separation from the Korean coast. Eddy variability is suppressed by either increasing the model viscosity or decreasing the model resolution. The simulations with decreased eddy variability indicate a northward overshoot of the EKWC. Only the model simulation with sufficient eddy variability depicts the EKWC separating from the Korean coast at the observed latitude. The NLOM simulations indicate mesoscale influence through upper ocean–topographic coupling. 1. Introduction Lie et al., 1995). The eddy variability has been observed The Japan/East Sea (JES) general circulation is forced through analysis of sea surface temperature (SST) data primarily by the inflow through the Tsushima Strait from the (Toba et al., 1984; Miyao, 1994). The length and time scales East China Sea and by the outflow through the Tsugaru and of the eddy field have been well characterized through these Soya Straits. Tsushima Island divides the strait into east and studies. The propagation of individual eddies has also been west channels. The total transport through the strait varies documented through the SST studies (Isoda and Saitoh, significantly in time, as does the transport distribution 1993; An et al., 1994; Isoda, 1994). Using SST to perform between the eastern and western branches. The main flow an evaluation of turbulence generated by the eddy field in occurs through the west channel with a smaller portion the JES, Toba et al. (1984) demonstrate that the synoptic through the east channel. The west channel flow enters the JES circulation is dominated by mesoscale eddies. The JES as the East Korean Warm Current (EKWC) and generally mean flow is visible only after averaging over long time separates from the Korean coast between 37° and 39°N. The periods, suggesting a strong influence of the eddy field on east channel flow enters the JES as the Nearshore Branch the mean flow. and generally follows the Japanese coast to the Tsugaru In pursuit of the same goal, we use two tools to attempt Strait. Wind stress also plays a part in the JES circulation to understand eddy variability effects that occur in the JES. with the wind stress curl aiding in generating the cyclonic In this study we use sea surface height (SSH) data from the circulation north of the front. Preller and Hogan (1998) Geosat-Exact Repeat Mission (Geosat-ERM) and TOPEX/ present a review of the historical research in the JES. POSEIDON (T/P) altimeters. Measuring the SSH, the al- Particularly ubiquitous in the JES is the mesoscale eddy timeter provides geostrophic speed estimates in a direction field. perpendicular to the satellite ground track. At points where In situ eddy observations are abundant throughout the each altimeter’s ground track crosses itself, the two cross- JES (Toba et al., 1984; Ichiye and Takano, 1988; Isoda and track estimates of geostrophic velocity may be transformed Saitoh, 1993; An et al., 1994; Isoda, 1994; Lie et al., 1995; into eastward and northward velocity components. From Shin et al., 1995). Eddies have been observed extensively these velocity components, the Reynolds stresses are esti- through temperature measurements off the Korean coast in mated at crossover points (Parke et al., 1987). Gradients of the Ullung basin (Isoda and Saitoh, 1993; An et al., 1994; the Reynolds stresses produce a force on the mean flow, and 247 Copyright The Oceanographic Society of Japan. the effects of this force may be examined through a balance Hurlburt (1998) indicate a horizontal resolution of 1/32° is with the Coriolis force. This provides a balance similar to required to generate the interaction between the eddy field the balance between the horizontal pressure gradient and and bottom topography without the parameterization of Coriolis force, and this is one method to understand the topostress. Using this resolution, we examine two mecha- relative importance of the geostrophic turbulence. nisms through which the mesoscale field may influence the Numerical models provide a useful capability to add mean circulation. Both the Reynolds stresses and the upper and remove dynamical processes and then examine the ocean–topographic coupling indicate influence on the mean. effects. Hogan and Hurlburt (1998) investigated the dynamics In this examination, we compute geostrophic velocities of the JES in a progressive fashion using the Naval Research from both the Geosat-ERM and T/P satellites at each of their Laboratory’s (NRL) Layered Ocean Model (NLOM). In this respective crossover points (Section 2). The numerical model study we use the NLOM with horizontal grid resolution of experiments of the isopycnal model then demonstrate the 1/32° (3.5 km) to simulate the mesoscale variability. To effects of eddy variability on the mean circulation (Section contrast the circulation with eddy variability to the circulation 3). The results are discussed in Section 4. with reduced variability, we perform simulations with higher eddy viscosity that suppresses the eddy variability. At least 2. Altimeter Data Sets and Reynolds Stresses 1/32° resolution is necessary to resolve the mesoscale fea- This study uses altimeter data from the T/P and Geosat- tures sufficiently to ensure upper ocean–topographic coupling ERM satellites. T/P data provided on the merged Geophysical in the JES (Hogan and Hurlburt, 1998). In one 1/32° ex- Data Records (GDRs) from the Physical Oceanography periment, the eddy viscosity is set to a relatively large value Distributed Active Archive Center (PO-DAAC) over the to intentionally suppress the mesoscale eddy field (experi- time period 1993–1997 are first broken into arcs composed ment A_High). The other 1/32° experiment uses a more of one satellite revolution. Arcs that fall on the same ground realistic value of eddy viscosity and contains much more track are grouped into a set of repeat (or collinear) passes. energy in the eddy field (experiment A_Low). The mean Computed orbits for T/P are based on the Joint Gravity circulation based on the two simulations represents the Model (JGM)-3 gravity field (Tapley et al., 1996). Atmo- effects of the mesoscale variability on the mean flow. spheric corrections (dry troposphere, wet troposphere, and At low horizontal model grid resolution, the EKWC ionosphere) are applied, as well as solid Earth tides, an typically separates from the Korean coast at a latitude ocean tide estimate from the Grenoble model (Le Provost et further north than the observed separation latitude (an over- al., 1994), tidal loading, an electromagnetic (EM) bias, and shoot). Sueng and Kim (1993) indicate that the EKWC an inverse barometer correction based on the local instanta- overshoot problem is diminished (but not eliminated) by neous barometric pressure. increasing horizontal resolution to 1/5° in the Cox (1984) The National Oceanic and Atmospheric Administration ocean model. One effect of the increased model resolution (NOAA) provides the Geosat-ERM data. The orbit solutions is to better resolve the mesoscale field, and thus the model in the Geosat-ERM altimeter data set are also based on will represent the eddy field more accurately. The interac- JGM-3. Atmospheric corrections (dry troposphere, wet tion of the eddy field with the bottom topography has been troposphere, and ionosphere from the International Refer- indicated in several JES in situ studies (Toba et al., 1984; An ence Ionosphere 1995, IRI95) are applied, as well as solid et al., 1994). and ocean tide estimates (Le Provost et al., 1994), an EM Holloway et al. (1995) use the Modular Ocean Model bias correction of 2.5% of the significant wave height (MOM) at 1/5° resolution with the addition of topostress to (Witter and Chelton, 1991), and a static inverse barometer understand the effects of seasonality, wind stress, buoyancy correction. forcing, latitudinal variations in Coriolis parameter, and SSH from all repeat passes is interpolated along ground bottom interaction in the JES. The topostress parameterizes tracks to points spaced by 1 s (i.e., about 6.5 km along track), the topographic influence on the circulation (Holloway, and the mean SSH at each point along the ground tracks is 1992). Without topostress, the model of Holloway et al. subtracted removing both the geoid signal and the mean (1995) indicates the EKWC separating from the coast at a dynamic topography. The T/P data covers 5 years while the latitude further north than observed (similar to Sueng and Geosat-ERM covers only about 2.5 years. The mean SSH Kim, 1993). The topostress has the effect of increasing the removed from each satellite’s data set is the mean over its strength of the North Korean Cold Current (NKCC), which own time period. There are about 65 measurements at each causes the EKWC to separate closer to the observed latitude.
Recommended publications
  • PICES Sci. Rep. No. 2, 1995
    TABLE OF CONTENTS Page FOREWORD vii Part 1. GENERAL INTRODUCTION AND RECOMMENDATIONS 1.0 RECOMMENDATIONS FOR INTERNATIONAL COOPERATION IN THE OKHOTSK SEA AND KURIL REGION 3 1.1 Okhotsk Sea water mass modification 3 1.1.1Dense shelf water formation in the northwestern Okhotsk Sea 3 1.1.2Soya Current study 4 1.1.3East Sakhalin Current and anticyclonic Kuril Basin flow 4 1.1.4West Kamchatka Current 5 1.1.5Tides and sea level in the Okhotsk Sea 5 1.2 Influence of Okhotsk Sea waters on the subarctic Pacific and Oyashio 6 1.2.1Kuril Island strait transports (Bussol', Kruzenshtern and shallower straits) 6 1.2.2Kuril region currents: the East Kamchatka Current, the Oyashio and large eddies 7 1.2.3NPIW transport and formation rate in the Mixed Water Region 7 1.3 Sea ice analysis and forecasting 8 2.0 PHYSICAL OCEANOGRAPHIC OBSERVATIONS 9 2.1 Hydrographic observations (bottle and CTD) 9 2.2 Direct current observations in the Okhotsk and Kuril region 11 2.3 Sea level measurements 12 2.4 Sea ice observations 12 2.5 Satellite observations 12 Part 2. REVIEW OF OCEANOGRAPHY OF THE OKHOTSK SEA AND OYASHIO REGION 15 1.0 GEOGRAPHY AND PECULIARITIES OF THE OKHOTSK SEA 16 2.0 SEA ICE IN THE OKHOTSK SEA 17 2.1 Sea ice observations in the Okhotsk Sea 17 2.2 Ease of ice formation in the Okhotsk Sea 17 2.3 Seasonal and interannual variations of sea ice extent 19 2.3.1Gross features of the seasonal variation in the Okhotsk Sea 19 2.3.2Sea ice thickness 19 2.3.3Polynyas and open water 19 2.3.4Interannual variability 20 2.4 Sea ice off the coast of Hokkaido 21
    [Show full text]
  • The Kuroshio Extension: a Leading Mechanism for the Seasonal Sea-Level Variability Along the West
    1 The Kuroshio Extension: A Leading Mechanism for the Seasonal Sea-level Variability along the West 2 Coast of Japan 3 4 Chao Ma1, 2, 3, Jiayan Yang3, Dexing Wu2, Xiaopei Lin2 5 6 1. College of Physical and Environmental Oceanography 7 Ocean University of China 8 Qingdao 266100, China 9 2. Physical Oceanography Laboratory 10 Ocean University of China 11 Qingdao 266100, China 12 3. Department of Physical Oceanography 13 Woods Hole Oceanographic Institution 14 Woods Hole, MA 02543, USA 15 16 Corresponding Author: Chao Ma ([email protected]) 17 Abstract 18 Sea level changes coherently along the two coasts of Japan on the seasonal time scale. AVISO 19 satellite altimetry data and OFES (OGCM for the Earth Simulator) results indicate that the variation 20 propagates clockwise from Japan's east coast through the Tsushima Strait into the Japan/East Sea (JES) 21 and then northward along the west coast. In this study, we hypothesize and test numerically that the sea 22 level variability along the west coast of Japan is remotely forced by the Kuroshio Extension (KE) off the 23 east coast. Topographic Rossby waves and boundary Kelvin waves facilitate the connection. Our 3-d 24 POM model when forced by observed wind stress reproduces well the seasonal changes in the vicinity 25 of JES. Two additional experiments were conducted to examine the relative roles of remote forcing and 26 local forcing. The sea level variability inside the JES was dramatically reduced when the Tsushima Strait 27 is blocked in one experiment. The removal of the local forcing, in another experiment, has little effect on 28 the JES variability.
    [Show full text]
  • Scouting, Signaling, and Gatekeeping: Chinese Naval
    U.S. NAVAL WAR COLLEGE CHINA MARITIME STUDIES Number 2 Scouting, Signaling, and Gatekeeping Chinese Naval Operations in Japanese Waters and the International Law Implications ISBN: 978-1-884733-60-4 Peter Dutton 9 781884 733604 Scouting, Signaling, and Gatekeeping Chinese Naval Operations in Japanese Waters and the International Law Implications Peter Dutton CHINA MARITIME STUDIES INSTITUTE U.S. NAVAL WAR COLLEGE NEWPORT, RHODE ISLAND www.usnwc.edu/cnws/cmsi/default.aspx Naval War College The China Maritime Studies are extended research projects Newport, Rhode Island that the editor, the Dean of Naval Warfare Studies, and the Center for Naval Warfare Studies President of the Naval War College consider of particular China Maritime Study No. 2 interest to policy makers, scholars, and analysts. February 2009 Correspondence concerning the China Maritime Studies may be addressed to the director of the China Maritime President, Naval War College Studies Institute, www.usnwc.edu/cnws/cmsi/default.aspx. Rear Admiral James P. Wisecup, U.S. Navy To request additional copies or subscription consideration, Provost please direct inquiries to the President, Code 32A, Naval Amb. Mary Ann Peters War College, 686 Cushing Road, Newport, Rhode Island 02841-1207, or contact the Press staff at the telephone, fax, Dean of Naval Warfare Studies or e-mail addresses given. Robert C. Rubel Reproduction and printing is subject to the Copyright Act Director of China Maritime Studies Institute of 1976 and applicable treaties of the United States. This Dr. Lyle J. Goldstein document may be freely reproduced for academic or other noncommercial use; however, it is requested that Naval War College Press reproductions credit the author and China Maritime Director: Dr.
    [Show full text]
  • Echinococcus Multilocularis Detected in Slaughtered Pigs in Aomori, The
    Jpn. J. Infect. Dis., 63, 2010 Laboratory and Epidemiology Communications Echinococcus multilocularis Detected in Slaughtered Pigs in Aomori, the Northernmost Prefecture of Mainland Japan Masaaki Kimura, Akira Toukairin, Hajime Tatezaki, Seiko Tanaka, Kunihiro Harada, Junichirou Araiyama, Hiroshi Yamasaki1, Hiromu Sugiyama1, Yasuyuki Morishima1, and Masanori Kawanaka1* Aomori Prefectural Towada Meat Inspection Center, Aomori 034-0001; and 1Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan Communicated by Tomoyoshi Nozaki (Accepted December 21, 2009) Echinococcus multilocularis is a causative agent of human Among inspections carried out from FY2005 to FY2008 alveolar echinococcosis. The distribution of the parasite in under this program, the number of pigs with liver samples Japan was thought to be limited to the northernmost insular displaying white nodular lesions suggestive of E. multilocula- prefecture of Hokkaido, where the Tsugaru Strait acts as a ris infection for each year was 27, 44, 25, and 13, represent- natural physical barrier against migration to Honshu, the ing a total of 109 (Table 1). Histopathological examination mainland of Japan; however, in Aomori Prefecture, situated of the lesions did not confirm a single case of E. multilocularis in the northernmost part of Honshu, E. multilocularis infec- infection, and the whitish nodules were diagnosed as lymph tion in pigs was first reported in August and December 1998, follicle formation, granulomatous inflammation, interstitial when Aomori Prefectural Towada Meat Inspection Center hepatitis, hepatic cysts, parasitic hepatitis (probably caused (Towada MIC) detected the parasite during postmortem in- by the passage of ascarid larvae), etc. In FY2008, liver tissue spections of livers from three pigs. The infected pigs had all was analyzed in 13 cases, and E.
    [Show full text]
  • Sea of Japan a Maritime Perspective on Indo-Pacific Security
    The Long Littoral Project: Sea of Japan A Maritime Perspective on Indo-Pacific Security Michael A. McDevitt • Dmitry Gorenburg Cleared for Public Release IRP-2013-U-002322-Final February 2013 Strategic Studies is a division of CNA. This directorate conducts analyses of security policy, regional analyses, studies of political-military issues, and strategy and force assessments. CNA Strategic Studies is part of the global community of strategic studies institutes and in fact collaborates with many of them. On the ground experience is a hallmark of our regional work. Our specialists combine in-country experience, language skills, and the use of local primary-source data to produce empirically based work. All of our analysts have advanced degrees, and virtually all have lived and worked abroad. Similarly, our strategists and military/naval operations experts have either active duty experience or have served as field analysts with operating Navy and Marine Corps commands. They are skilled at anticipating the “problem after next” as well as determining measures of effectiveness to assess ongoing initiatives. A particular strength is bringing empirical methods to the evaluation of peace-time engagement and shaping activities. The Strategic Studies Division’s charter is global. In particular, our analysts have proven expertise in the following areas: The full range of Asian security issues The full range of Middle East related security issues, especially Iran and the Arabian Gulf Maritime strategy Insurgency and stabilization Future national security environment and forces European security issues, especially the Mediterranean littoral West Africa, especially the Gulf of Guinea Latin America The world’s most important navies Deterrence, arms control, missile defense and WMD proliferation The Strategic Studies Division is led by Dr.
    [Show full text]
  • View Oirase’S Fresh Greenery in Spring and the Changing Colors of Tsutanuma in Autumn
    Aomori’s Nature Parks Majestic & Breathtaking Aomori Nature Parks Website http://www.shirakami-visitor.jp/aomoris-nature-parks The eternal colors of the four seasons continuing into future 01 The Milky Way at the Kayano Highlands Towada-Hachimantai National Park Aomori is an unexplored location in the north with flowers blossoming in spring and the blue ocean shining in summer. When the trees turn a burning red in autumn, it will soon be winter, a world of white and silver. The incredible scenery of mother nature will steal your heart. Be in awe of nature As one interacts with nature, slowly walking along a mountain road or shore, one begins to feel in awe of nature’s majesty. Enclosed by the ocean on three sides, Shimokita Hanto Aomori’s the climate differs between the Sea of Japan side and Quasi-National Park the Pacific Ocean side, allowing Aomori to boast of a wide variety of landscapes and plants. Nature Parks Aomori has 11 nature parks with outstanding scenery. Sanriku Fukko Towada-Hachimantai Tsugaru (Reconstruction) Quasi-National Park National Park National Park Asamushi-Natsudomari Ashino Chishogun Prefectural Natural Park Prefectural Natural Park National Park Iwaki Kogen Prefectural Natural Park Towada-Hachimantai National Park Shimokita Hanto Tsugaru Quasi-National Park Quasi-National Park Shirakami-Sanchi Natural World Heritage Site Kuroishi Onsenkyo Prefectural Natural Park Sanriku Fukko Tsugaru Shirakami (Reconstruction) Prefectural Natural Park Quasi-National Park National Park Owani Ikarigaseki Onsenkyo Nakuidake Prefectural
    [Show full text]
  • Scouting, Signaling, and Gatekeeping: Chinese Naval Operations in Japanese Waters and the International Law Implications
    U.S. Naval War College U.S. Naval War College Digital Commons CMSI Red Books China Maritime Studies Institute 2-2009 Scouting, Signaling, and Gatekeeping: Chinese Naval Operations in Japanese Waters and the International Law Implications Peter A. Dutton Follow this and additional works at: https://digital-commons.usnwc.edu/cmsi-red-books Recommended Citation Dutton, Peter, "Scouting, Signaling, and Gatekeeping: Chinese Naval Operations in Japanese Waters and the International Law Implications" (2009). CMSI Red Books, Study No. 2. This Book is brought to you for free and open access by the China Maritime Studies Institute at U.S. Naval War College Digital Commons. It has been accepted for inclusion in CMSI Red Books by an authorized administrator of U.S. Naval War College Digital Commons. For more information, please contact [email protected]. U.S. NAVAL WAR COLLEGE CHINA MARITIME STUDIES Number 2 Scouting, Signaling, and Gatekeeping Chinese Naval Operations in Japanese Waters and the International Law Implications ISBN: 978-1-884733-60-4 Peter Dutton 9 781884 733604 Scouting, Signaling, and Gatekeeping Chinese Naval Operations in Japanese Waters and the International Law Implications Peter Dutton CHINA MARITIME STUDIES INSTITUTE U.S. NAVAL WAR COLLEGE NEWPORT, RHODE ISLAND www.usnwc.edu/cnws/cmsi/default.aspx Naval War College The China Maritime Studies are extended research projects Newport, Rhode Island that the editor, the Dean of Naval Warfare Studies, and the Center for Naval Warfare Studies President of the Naval War College consider of particular China Maritime Study No. 2 interest to policy makers, scholars, and analysts. February 2009 Correspondence concerning the China Maritime Studies may be addressed to the director of the China Maritime President, Naval War College Studies Institute, www.usnwc.edu/cnws/cmsi/default.aspx.
    [Show full text]
  • INDEX of Records of the U. S. Strategic Bombing Survey; Entry 55, Carrier-Based Navy and Marine Corps Aircraft Action Reports, 1944-1945
    INDEX of Records of the U. S. Strategic Bombing Survey; Entry 55, Carrier-Based Navy and Marine Corps Aircraft Action Reports, 1944-1945 (1) Task Group 12.4 Action Report of Task Group 12.4 against Wake Island, 13 June 1945 through 20 June 1945 ※Commander Task Group 12.4 (Commander Carrier Division 11). (2) Task Group 38.1 Report of Operations of Task Group 38.1 against the Japanese Empire 1 July 1945 to 15 August 1945 ※Commander Task Group 38.1 (Commander Carrier Division 3 - Rear Admiral T. L. Sprague, USN, USS Bennington, Flagship). (3) Task Group 38.4 Action Report, Commander Task Group 38.4, 2 July to 15 August 1945, Strikes against Japanese Home Islands ※Commander Task Group 38.4 (Commander Carrier Division 6, Rear Admiral A. W. Radford, US Navy, USS Yorktown, Flagship). (4) Task Group 52.1.1 Report of Capture of Okinawa Gunto, Phases I and II, 24 May 1945 to 24 June 1945 ※Commander Task Unit 52.1.1(24 May to 28 May), Commander Task Unit 32.1.1. Action Report, Capture of Okinawa Gunto, Phases 1 and 2 - 21 March 1945 to 24 May 1945 ※Commander Task Unit 52.1.1 (Support Carrier Unit 1) from 9 March 1945 to 10 May 1945 and CTG Task Unit 52.1.1 from 17 May to 24 May 1945 (Commander Carrier Division 26). (5) Task Group 52.1.2 Action Report - Capture of Okinawa Gunto, Phases 1 and 2, 21 March to 29 April 1945 ※Commander Task Unit 52.1.2 (21 March - 29 April, incl) and Commander Task Unit 51.1.2 (21-25 March, inclusive) (Commander Car-rier Division 24).
    [Show full text]
  • Generation Mechanism of the Velocity Fluctuations Off Busan in The
    Generation mechanism of the velocity fluctuations off Busan in the Tsushima Strait ◯ Kioshi Mishiro1 Tetsuo Yanagi2 Jong Hwan Yoon2 1Department of Earth System Science and Technology Interdisciplinary Graduate School of Engineering Sciences, Kyushu University 2Research Institute for Applied Mechanics, Kyushu University 1 Introduction 2.3 Wind effect along the Korean coast The structure of the Tsushima Warm Current (TWC) It is considered that the southwestward current along across the Tsushima Straits has been studied using the re- the southern coast of Korea becomes strong due to the sult of long term Acoustic Doppler Current Profiler (ADCP) alongshore wind after the low pressure passes through the observation by a ferryboat between Hakata and Busan, Tsushima Straits except the effect of the sea level differ- which has been conducted from Feb. 1997 to Dec. 2009. ence between the east and south coasts of Korea. The ADCP observation shows the large velocity fluctuations NNE wind and the sea level height at Busan show the cor- along the southern coast of Korea within 10 km from Bu- relation, which is suggested that the anticlockwise wind san every summer, which are appeared with the geostrophic of the low pressure intensifies the alongshore wind com- balance and accompanied by the strong oscillation and ponent along the Korean coast, that is, the wind blows southwestward current with the periods from about 10 to toward the East China Sea from the Japan Sea along the 50 days and mean velocity fluctuations are in the range Korean coast when the low pressure is passed through the from 20 cm/s to 50 cm/s.
    [Show full text]
  • Aomori Cycling
    AOMORI CYCLING Up close and personal with the incredible nature and culture of Aomori Aomori Cycling Up close and personal with the incredible nature and culture of Aomori Surrounded by ocean on all sides and blessed by incredible nature such as Shirakami-Sanchi and Lake Towada, each region in Aomori Prefecture enjoys its own unique history, culture and delicacies. Cycling Aomori is the perfect way to discover the intricacies of these individual regions. If you are ready, then jump on your bike and let's head off to explore the beauty of Aomori! 9 1 Course 1 NATSUDOMARI 11 2 Course 2 TOWADA・OIRASE 13 3 Course 3 HIROSAKI 15 4 Course 4 NISHIKAIGAN 17 5 Course 5 OKU-TSUGARU AOMORI 19 6 Course 6 SHIMOKITA 21 7 Course 7 LAKE OGAWARA CYCLING 23 Course 8 HACHINOHE Up close and personal with the incredible nature and culture of Aomori 8 25 33 27 35 29 37 31 7 8 03 02 04 05 06 01/The masses of blue net stored at the port are shellfish baskets, used for cultivating scallops. It's like riding through a maze. 02/Old fishing vessels of all shapes and sizes are dotted around the Natsudomari Peninsula. 03/Showing off the size of the scallops at "Hotate Hiroba," which has a giant scallop as its signboard. You can learn about scallop cultivation on the second floor.04 /At Yogoshiyama Forest Park you can see over 3,000 varieties of succulents. 05/Two men and a cat taking a break from cycling beside the tetrapod seawall.
    [Show full text]
  • The Naming of the Korea Strait on Old Maps
    The Naming of the Korea Strait on Old Maps Bo-Kyung Yang (Director of Korean Institute of Geographical Research, Sungshin Women's University, the Republic of Korea) Preface In addition to naming the East Sea (Sea of Japan), which emerged as a subject of international dispute, the Korea Strait(大韓海峽), off the East Sea coast in the South, is also a matter of intense attention for Korea and Japan as they use different names for the Strait. The Korea Strait, a narrow strait with an average width of about 200km is located between the Southeast coast of Korea and the Japanese islands, linking the Yellow Sea, the South and East Sea, and the East China Sea. The Tsushima Island(對馬島) lies in the center of the Strait and the island is divided into a West channel(東水道) and East channel(西水道). The Korea Strait, which lies between Korea and the Kyushu Island, is about 200km in length and width but the width of the narrowest point extends only about 50km. It is a relatively shallow with a maximum depth of 210m. From ancient times, it has been an important sea route between Korea and Japan. Japan named the Strait ‘Tsushima Strait’ (對馬海峽), sometimes they called the Western part of the Tsushima ‘Korea Strait’ and Eastern part ‘Tsushima Strait’. This article examined the changes of the name of the Strait based on the old maps of Korea, Japan, and Western countries, which were produced between the 16th century and early 20th century. Maps used for analysis are Korean maps owned by libraries and museums and 74 Japanese maps from <Map of Eight Provinces of Korea> produced in 1747 to <Map of Korea> in 1941.
    [Show full text]
  • Important-Straits-Of-The-World
    IMPORTANT STRAITS OF THE WORLD 2020 IASGRAM WWW.IASGRAM.IN 1 IASGRAM Bab-el-Mandeb The Bab-el-Mandebis a strait located between Yemen on the Arabian Peninsula, and Djibouti and Eritrea in the Horn of Africa. It connects the Red Sea to the Gulf of Aden. The Bab-el-Mandeb acts as a strategic link between the Indian Ocean and the Mediterranean Sea via the Red Sea and the Suez Canal. 2 IASGRAM Bass Strait: Bass Strait is a sea strait separating Tasmania from the Australian mainland, specifically the state of Victoria. There are over 50 islands in Bass Strait. Major islands include: King Island Three Hummock Island Hunter Island Robbins Island 3 civilmentors.com Bering Strait: The Bering Strait is a strait of the Pacific, which separates Russia and the United States slightly south of the Arctic Circle at about 65° 40' N latitude. The eastern coast belongs to the U.S. state of Alaska. The western coast belongs to the Chukotka Autonomous Okrug, a federal subject of Russia. 4 civilmentors.com Bosporus strait: The Bosporus also known as the Strait of Istanbul, is a narrow, natural strait .It forms part of the continental boundary between Europe and Asia, and divides Turkey by separating Anatolia from Thrace. It is the world's narrowest strait used for international navigation, the Bosporus connects the Black Sea with the Sea of Marmara, and, by extension via the Dardanelles, the Aegean and Mediterranean seas. 5 civilmentors.com Cook Strait: Cook Strait is a strait that separates the North and South Islands of New Zealand.
    [Show full text]