Spatiotemporal Variations in the Stress Field In

Total Page:16

File Type:pdf, Size:1020Kb

Spatiotemporal Variations in the Stress Field In Maeda et al. Earth, Planets and Space (2020) 72:117 https://doi.org/10.1186/s40623-020-01245-8 EXPRESS LETTER Open Access Spatiotemporal variations in the stress feld in the northeasternmost part of the NE Japan arc: constraints from microearthquakes Sumire Maeda1* , Toru Matsuzawa2 , Tomomi Okada2, Hiroshi Katao3, Takeyoshi Yoshida2 , Masahiro Kosuga4 and Makoto Otsubo1 Abstract We determined focal mechanism solutions of microearthquakes and examined the stress feld in the low-seismicity region from southern Hokkaido to eastern Aomori, NE Japan. The stress felds determined in this study comprise (1) a reverse faulting stress regime in southern Hokkaido with the axis of maximum compressional stress (σ1) being sub- horizontal and trending WNW–ESE, and (2) a stress regime in eastern Aomori to Tsugaru Strait that shows temporal variations and diferential stress of less than tens of MPa. The spatiotemporal variation in stress from eastern Aomori to Tsugaru Strait might refect the efects of the upper-plate bending and the 2011 Mw 9.0 Tohoku-Oki earthquake. It also indicates that the compressional stress caused by the descending Pacifc plate is relatively weak, which is similar to other areas in eastern parts of the NE Japan arc. Keywords: Focal mechanism, Stress feld, Low-seismicity area, Microseismicity, Forearc, Northeastern Japan, Pacifc plate subduction, Kurile arc Introduction in low-seismicity areas. However, to properly understand Te stress feld in inland areas of NE Japan is generally earthquake generation mechanisms, it is necessary to recognized as being associated with a WNW–ESE com- investigate the stress feld in low-seismicity areas as well pressional reverse-faulting stress regime (e.g., Townend as in areas with high seismicity. and Zoback 2006; Terakawa and Matsu’ura 2010; Yuku- In Japan, the High-Sensitivity Seismograph Network take et al. 2015) related to subduction of the Pacifc (Hi-net) has been deployed nationwide by the National plate. However, recent studies have revealed that there Research Institute for Earth Science and Disaster Resil- is a localized stress feld in these areas which is diferent ience (NIED) since the 1995 Mj 7.2 Hyogo-ken-Nanbu from that expected from the subduction of the Pacifc (Kobe) earthquake, which has been greatly improved Plate and that the stress feld is spatially inhomogene- the ability for detecting microearthquakes (Obara et al. ous (e.g., Terakawa and Matsu’ura 2010; Imanishi et al. 2005). Applying the inversion method developed by 2012, 2013; Yoshida et al. 2012, 2015, 2019). Given that Michael (1984, 1987) to micro- and small-earthquake the stress distribution is commonly estimated using focal focal mechanism data, Yoshida et al. (2015) defned the mechanism data, it is difcult to estimate the stress feld stress regime in the forearc region of the NE Japan, where the stress feld had not previously been defned in detail owing to the low seismicity in the region. *Correspondence: [email protected] Here, we focus on the low-seismicity area from 1 Geological Survey of Japan, AIST Tsukuba Central, National Institute southern Hokkaido (region N) to eastern Aomori of Advanced Industrial Science and Technology, 7, Higashi-1-1-1, Tsukuba, Ibaraki 305-8567, Japan (region S), Japan (Fig. 1), where the stress feld was not Full list of author information is available at the end of the article previously estimated by Yoshida et al. (2015, 2019). Tis © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. Maeda et al. Earth, Planets and Space (2020) 72:117 Page 2 of 7 46.0˚ 0 Mj 4 Mj 3 5 00 200 3 42.5˚ Mj 2 250 Mj 1 10 44.0˚ 0 15 20 Hokkaido 150 30 Depth (km) 90 20 80 70 60 50 40 42.0˚ ) 0 30 25 42.0˚ Region N (southern Hokkaido) 250 sugaru Strait 41.5˚ Aomori Pref. 0 0 30 60 50 40 70 150 80 90 20 20 ) 0 1 40.0˚ Region C (T 5 Iwate Pref. Aomori 41.0˚ 10 38.0˚ 15 0 Honshu 25 Depth (km) Region S (eastern 40.5˚ 40 km 20 1 0 12 100 80 70 km 60 50 0 30 140 40 0 100 36.0˚ 120 25 138.0˚140.0˚142.0˚144.0˚146.0˚ 141.0˚ 141.5˚ 142.0˚ Fig. 1 Tectonic setting and hypocenter distribution in and around the study area. (Left) Hypocenter distribution in NE Japan. The red rectangle indicates the location of the study area shown in the right-hand panel. Thin broken black and orange lines show the position of the Japan trench and depth contours (in km) for the upper surface of the Pacifc slab, respectively (Nakajima and Hasegawa, 2006; Kita et al. 2010). The arrow shows the direction of plate motion of the Pacifc plate relative to the Okhotsk plate (Wei and Seno 1998). Red triangles denote active volcanoes. Circles denote hypocenters determined by JMA (3 June 2002 to 31 December 2017). (Right) Hypocenter distribution in the study area, with hypocenter depth shown by the color scale. The northern and southern parts of the study area are referred to as “region N” (southern Hokkaido) and “region S” (eastern Aomori), respectively. The region combining the southern half of region N and the northern half of region S is referred to as “region C” (Tsugaru Strait) region corresponds to the northeasternmost part of Hi-net, it is possible to estimate the stress feld in this the NE Japan arc (Fig. 1a), which is colliding with the area now. Kurile arc. Te stress feld in Iwate Prefecture, which is In this paper, we frst determine the focal mechanisms located to the south of region S, has been determined of micro and small earthquakes from southern Hokkaido by Yoshida et al. (2015, 2019). Although the detailed to eastern Aomori. We then examine the spatiotemporal stress distribution has not been determined because of variation in the stress feld in the study area. Finally, we the low seismicity in Hokkaido, including region N, the discuss the factors afecting the stress feld in the north- orientation of maximum horizontal compressive stress easternmost part of the NE Japan arc. (σHmax) has been estimated to be roughly parallel to the relative motion of the Pacifc plate (e.g., Ghimire et al. Data and methods 2005; Terakawa and Matsu’ura 2010; Yukutake et al. Hypocenter and focal mechanism data 2015). Previous estimates of the stress feld are also We used waveform data obtained by Hi-net for events consistent with the regional stress feld estimated from with Japan Meteorological Agency (JMA) magnitudes the strikes of ore veins (Watanabe 1986). However, greater than 2.0 for the period from June 2002 to Decem- because the seismicity in the study area is very low and ber 2017, for depths shallower than 25 km (Fig. 1b). no large events have occurred since the deployment of We determined hypocenters and focal mechanisms via Hi-net, the stress feld in this area has not been deter- these data and the following method. First, we picked mined in detail. Since the seismic waveform data have P-wave frst-motion polarities and onsets from the digi- accumulated over time since the deployment of the tal waveform data of each earthquake using the WIN system (Urabe and Tsukada 1992). Next, we determined Maeda et al. Earth, Planets and Space (2020) 72:117 Page 3 of 7 hypocenters using the Hypomh program (Hirata and For the period before the earthquake, the result of the Matsu’ura 1987) with the one-dimensional velocity stress tensor inversion in region N indicates that this model of Hasegawa et al. (1978). We then used the soft- region is characterized by a reverse faulting stress regime ware pick2mec (Katao and Iio 2004) to determine focal with σ1 axis being sub-horizontal, trending between E–W mechanisms using the phase data and the hypocenters. and WNW–ESE. Te stress ratio is < 0.5, which indicates Te pick2mec software uses a procedure proposed by that the magnitude of σ2 is closer to σ1 than to σ3 (region Maeda (1992) to determine the focal mechanisms. Tis N in Fig. 3a). In contrast, the results of the stress tensor software assigns each focal mechanism a score based on inversion in regions C and S indicate that these regions the ratio of consistent polarities to all polarities. Finally, are characterized by a reverse faulting stress regime with we retained only reliable solutions using the same quan- σ1 axis being sub-horizontal and trending between N–S titative criterion as employed by Maeda et al. (2018). and NNE–SSW. Te stress ratios show a wide distribu- Moreover, we evaluated the uncertainty of focal mecha- tion (regions C and S in Fig. 3a). nisms by measuring the extent of these multiple fault For the period after the Tohoku earthquake, region N plane solutions estimated using pick2mec with the Kagan is characterized by a reverse faulting stress regime with angle (Kagan 1991).
Recommended publications
  • PICES Sci. Rep. No. 2, 1995
    TABLE OF CONTENTS Page FOREWORD vii Part 1. GENERAL INTRODUCTION AND RECOMMENDATIONS 1.0 RECOMMENDATIONS FOR INTERNATIONAL COOPERATION IN THE OKHOTSK SEA AND KURIL REGION 3 1.1 Okhotsk Sea water mass modification 3 1.1.1Dense shelf water formation in the northwestern Okhotsk Sea 3 1.1.2Soya Current study 4 1.1.3East Sakhalin Current and anticyclonic Kuril Basin flow 4 1.1.4West Kamchatka Current 5 1.1.5Tides and sea level in the Okhotsk Sea 5 1.2 Influence of Okhotsk Sea waters on the subarctic Pacific and Oyashio 6 1.2.1Kuril Island strait transports (Bussol', Kruzenshtern and shallower straits) 6 1.2.2Kuril region currents: the East Kamchatka Current, the Oyashio and large eddies 7 1.2.3NPIW transport and formation rate in the Mixed Water Region 7 1.3 Sea ice analysis and forecasting 8 2.0 PHYSICAL OCEANOGRAPHIC OBSERVATIONS 9 2.1 Hydrographic observations (bottle and CTD) 9 2.2 Direct current observations in the Okhotsk and Kuril region 11 2.3 Sea level measurements 12 2.4 Sea ice observations 12 2.5 Satellite observations 12 Part 2. REVIEW OF OCEANOGRAPHY OF THE OKHOTSK SEA AND OYASHIO REGION 15 1.0 GEOGRAPHY AND PECULIARITIES OF THE OKHOTSK SEA 16 2.0 SEA ICE IN THE OKHOTSK SEA 17 2.1 Sea ice observations in the Okhotsk Sea 17 2.2 Ease of ice formation in the Okhotsk Sea 17 2.3 Seasonal and interannual variations of sea ice extent 19 2.3.1Gross features of the seasonal variation in the Okhotsk Sea 19 2.3.2Sea ice thickness 19 2.3.3Polynyas and open water 19 2.3.4Interannual variability 20 2.4 Sea ice off the coast of Hokkaido 21
    [Show full text]
  • The Kuroshio Extension: a Leading Mechanism for the Seasonal Sea-Level Variability Along the West
    1 The Kuroshio Extension: A Leading Mechanism for the Seasonal Sea-level Variability along the West 2 Coast of Japan 3 4 Chao Ma1, 2, 3, Jiayan Yang3, Dexing Wu2, Xiaopei Lin2 5 6 1. College of Physical and Environmental Oceanography 7 Ocean University of China 8 Qingdao 266100, China 9 2. Physical Oceanography Laboratory 10 Ocean University of China 11 Qingdao 266100, China 12 3. Department of Physical Oceanography 13 Woods Hole Oceanographic Institution 14 Woods Hole, MA 02543, USA 15 16 Corresponding Author: Chao Ma ([email protected]) 17 Abstract 18 Sea level changes coherently along the two coasts of Japan on the seasonal time scale. AVISO 19 satellite altimetry data and OFES (OGCM for the Earth Simulator) results indicate that the variation 20 propagates clockwise from Japan's east coast through the Tsushima Strait into the Japan/East Sea (JES) 21 and then northward along the west coast. In this study, we hypothesize and test numerically that the sea 22 level variability along the west coast of Japan is remotely forced by the Kuroshio Extension (KE) off the 23 east coast. Topographic Rossby waves and boundary Kelvin waves facilitate the connection. Our 3-d 24 POM model when forced by observed wind stress reproduces well the seasonal changes in the vicinity 25 of JES. Two additional experiments were conducted to examine the relative roles of remote forcing and 26 local forcing. The sea level variability inside the JES was dramatically reduced when the Tsushima Strait 27 is blocked in one experiment. The removal of the local forcing, in another experiment, has little effect on 28 the JES variability.
    [Show full text]
  • Low-Frequency Tremor and Slow Slip Around the Probable Source Region
    Proceeding of the UJNR 5th Earthquake Research Panel Meeting, 2004 1 Low-frequency tremor and slow slip around the probable source region of the Tokai Earthquake { A new indicator for the Tokai Earthquake prediction provided by unified seismic networks in Japan { Noriko Kamaya (Seismological and Volcanological Department, JMA), Akio Katsumata (Meteorological College, JMA) and Yuzo Ishigaki ( Seismological and Volcanological Department, JMA) Abstract Enhancement of seismic networks in the Japan Islands of these years revealed occurrence of deep low-frequency continuous tremors of a belt distribution in the southwest Japan, where the subducting Philippine Sea plate reaches depths of 25{40 km. The source region of the tremor is assumed to correspond to boundary region between oceanic and island crusts close to mantle wedge. The east end of the belt tremor distribution is adjacent to the probable source region of the Tokai Earthquake. A slow-slip event has continued in the west of the source region of the Tokai Earthquake since 2000. Synchronous activation of the tremor and slow-slip speed was observed in 2003. This suggests some relationship between the slow-slip and the tremor activity. We expect that the tremor activity could be a new valuable indicator for the Tokai Earthquake prediction. The long duration of the tremor indicates existence of fluid relating to its generation. The most probable fluid is considered to be water produced by dehydration of chlorite and formation of clinopyroxene in the oceanic crust on the basis of data from high pressure and temperature experiments. The northern border of the belt distribution is possibly rimmed by the edge of the mantle wedge because serpentine formation absorbs fluid water.
    [Show full text]
  • Scouting, Signaling, and Gatekeeping: Chinese Naval
    U.S. NAVAL WAR COLLEGE CHINA MARITIME STUDIES Number 2 Scouting, Signaling, and Gatekeeping Chinese Naval Operations in Japanese Waters and the International Law Implications ISBN: 978-1-884733-60-4 Peter Dutton 9 781884 733604 Scouting, Signaling, and Gatekeeping Chinese Naval Operations in Japanese Waters and the International Law Implications Peter Dutton CHINA MARITIME STUDIES INSTITUTE U.S. NAVAL WAR COLLEGE NEWPORT, RHODE ISLAND www.usnwc.edu/cnws/cmsi/default.aspx Naval War College The China Maritime Studies are extended research projects Newport, Rhode Island that the editor, the Dean of Naval Warfare Studies, and the Center for Naval Warfare Studies President of the Naval War College consider of particular China Maritime Study No. 2 interest to policy makers, scholars, and analysts. February 2009 Correspondence concerning the China Maritime Studies may be addressed to the director of the China Maritime President, Naval War College Studies Institute, www.usnwc.edu/cnws/cmsi/default.aspx. Rear Admiral James P. Wisecup, U.S. Navy To request additional copies or subscription consideration, Provost please direct inquiries to the President, Code 32A, Naval Amb. Mary Ann Peters War College, 686 Cushing Road, Newport, Rhode Island 02841-1207, or contact the Press staff at the telephone, fax, Dean of Naval Warfare Studies or e-mail addresses given. Robert C. Rubel Reproduction and printing is subject to the Copyright Act Director of China Maritime Studies Institute of 1976 and applicable treaties of the United States. This Dr. Lyle J. Goldstein document may be freely reproduced for academic or other noncommercial use; however, it is requested that Naval War College Press reproductions credit the author and China Maritime Director: Dr.
    [Show full text]
  • Effects of Eddy Variability on the Circulation of the Japan/ East Sea
    Journal of Oceanography, Vol. 55, pp. 247 to 256. 1999 Effects of Eddy Variability on the Circulation of the Japan/ East Sea 1 1 2 G. A. JACOBS , P. J. HOGAN AND K. R. WHITMER 1Naval Research Laboratory, Stennis Space Center, Mississippi, U.S.A. 2Sverdrup Technology, Inc., Stennis Space Center, Mississippi, U.S.A. (Received 5 October 1998; in revised form 17 November 1998; accepted 19 November 1998) The effect of mesoscale eddy variability on the Japan/East Sea mean circulation is Keywords: examined from satellite altimeter data and results from the Naval Research Laboratory ⋅ Japan Sea, Layered Ocean Model (NLOM). Sea surface height variations from the Geosat-Exact ⋅ eddies, ⋅ altimeter, Repeat Mission and TOPEX/POSEIDON altimeter satellites imply geostrophic velocities. ⋅ At the satellite crossover points, the total velocity and the Reynolds stress due to numerical model- ing, geostrophic mesoscale turbulence are calculated. After spatial interpolation the momentum ⋅ Reynolds stress. flux and effect on geostrophic balance indicates that the eddy variability aids in the transport of the Polar Front and the separation of the East Korean Warm Current (EKWC). The NLOM results elucidate the impact of eddy variability on the EKWC separation from the Korean coast. Eddy variability is suppressed by either increasing the model viscosity or decreasing the model resolution. The simulations with decreased eddy variability indicate a northward overshoot of the EKWC. Only the model simulation with sufficient eddy variability depicts the EKWC separating from the Korean coast at the observed latitude. The NLOM simulations indicate mesoscale influence through upper ocean–topographic coupling. 1. Introduction Lie et al., 1995).
    [Show full text]
  • Echinococcus Multilocularis Detected in Slaughtered Pigs in Aomori, The
    Jpn. J. Infect. Dis., 63, 2010 Laboratory and Epidemiology Communications Echinococcus multilocularis Detected in Slaughtered Pigs in Aomori, the Northernmost Prefecture of Mainland Japan Masaaki Kimura, Akira Toukairin, Hajime Tatezaki, Seiko Tanaka, Kunihiro Harada, Junichirou Araiyama, Hiroshi Yamasaki1, Hiromu Sugiyama1, Yasuyuki Morishima1, and Masanori Kawanaka1* Aomori Prefectural Towada Meat Inspection Center, Aomori 034-0001; and 1Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan Communicated by Tomoyoshi Nozaki (Accepted December 21, 2009) Echinococcus multilocularis is a causative agent of human Among inspections carried out from FY2005 to FY2008 alveolar echinococcosis. The distribution of the parasite in under this program, the number of pigs with liver samples Japan was thought to be limited to the northernmost insular displaying white nodular lesions suggestive of E. multilocula- prefecture of Hokkaido, where the Tsugaru Strait acts as a ris infection for each year was 27, 44, 25, and 13, represent- natural physical barrier against migration to Honshu, the ing a total of 109 (Table 1). Histopathological examination mainland of Japan; however, in Aomori Prefecture, situated of the lesions did not confirm a single case of E. multilocularis in the northernmost part of Honshu, E. multilocularis infec- infection, and the whitish nodules were diagnosed as lymph tion in pigs was first reported in August and December 1998, follicle formation, granulomatous inflammation, interstitial when Aomori Prefectural Towada Meat Inspection Center hepatitis, hepatic cysts, parasitic hepatitis (probably caused (Towada MIC) detected the parasite during postmortem in- by the passage of ascarid larvae), etc. In FY2008, liver tissue spections of livers from three pigs. The infected pigs had all was analyzed in 13 cases, and E.
    [Show full text]
  • Sea of Japan a Maritime Perspective on Indo-Pacific Security
    The Long Littoral Project: Sea of Japan A Maritime Perspective on Indo-Pacific Security Michael A. McDevitt • Dmitry Gorenburg Cleared for Public Release IRP-2013-U-002322-Final February 2013 Strategic Studies is a division of CNA. This directorate conducts analyses of security policy, regional analyses, studies of political-military issues, and strategy and force assessments. CNA Strategic Studies is part of the global community of strategic studies institutes and in fact collaborates with many of them. On the ground experience is a hallmark of our regional work. Our specialists combine in-country experience, language skills, and the use of local primary-source data to produce empirically based work. All of our analysts have advanced degrees, and virtually all have lived and worked abroad. Similarly, our strategists and military/naval operations experts have either active duty experience or have served as field analysts with operating Navy and Marine Corps commands. They are skilled at anticipating the “problem after next” as well as determining measures of effectiveness to assess ongoing initiatives. A particular strength is bringing empirical methods to the evaluation of peace-time engagement and shaping activities. The Strategic Studies Division’s charter is global. In particular, our analysts have proven expertise in the following areas: The full range of Asian security issues The full range of Middle East related security issues, especially Iran and the Arabian Gulf Maritime strategy Insurgency and stabilization Future national security environment and forces European security issues, especially the Mediterranean littoral West Africa, especially the Gulf of Guinea Latin America The world’s most important navies Deterrence, arms control, missile defense and WMD proliferation The Strategic Studies Division is led by Dr.
    [Show full text]
  • View Oirase’S Fresh Greenery in Spring and the Changing Colors of Tsutanuma in Autumn
    Aomori’s Nature Parks Majestic & Breathtaking Aomori Nature Parks Website http://www.shirakami-visitor.jp/aomoris-nature-parks The eternal colors of the four seasons continuing into future 01 The Milky Way at the Kayano Highlands Towada-Hachimantai National Park Aomori is an unexplored location in the north with flowers blossoming in spring and the blue ocean shining in summer. When the trees turn a burning red in autumn, it will soon be winter, a world of white and silver. The incredible scenery of mother nature will steal your heart. Be in awe of nature As one interacts with nature, slowly walking along a mountain road or shore, one begins to feel in awe of nature’s majesty. Enclosed by the ocean on three sides, Shimokita Hanto Aomori’s the climate differs between the Sea of Japan side and Quasi-National Park the Pacific Ocean side, allowing Aomori to boast of a wide variety of landscapes and plants. Nature Parks Aomori has 11 nature parks with outstanding scenery. Sanriku Fukko Towada-Hachimantai Tsugaru (Reconstruction) Quasi-National Park National Park National Park Asamushi-Natsudomari Ashino Chishogun Prefectural Natural Park Prefectural Natural Park National Park Iwaki Kogen Prefectural Natural Park Towada-Hachimantai National Park Shimokita Hanto Tsugaru Quasi-National Park Quasi-National Park Shirakami-Sanchi Natural World Heritage Site Kuroishi Onsenkyo Prefectural Natural Park Sanriku Fukko Tsugaru Shirakami (Reconstruction) Prefectural Natural Park Quasi-National Park National Park Owani Ikarigaseki Onsenkyo Nakuidake Prefectural
    [Show full text]
  • Constraints on the Moho in Japan and Kamchatka
    Tectonophysics 609 (2013) 184–201 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Review Article Constraints on the Moho in Japan and Kamchatka Takaya Iwasaki a, Vadim Levin b,⁎, Alex Nikulin b, Takashi Iidaka a a Earthquake Research Institute, University of Tokyo, Japan b Rutgers University, NJ, USA article info abstract Article history: This review collects and systematizes in one place a variety of results which offer constraints on the depth Received 1 July 2012 and the nature of the Moho beneath the Kamchatka peninsula and the islands of Japan. We also include stud- Received in revised form 12 November 2012 ies of the Izu–Bonin volcanic arc. All results have already been published separately in a variety of venues, and Accepted 22 November 2012 the primary goal of the present review is to describe them in the same language and in comparable terms. Available online 3 December 2012 For both regions we include studies using artificial and natural seismic sources, such as refraction and reflec- tion profiling, detection and interpretation of converted-mode body waves (receiver functions), surface wave Keywords: Kamchatka dispersion studies (in Kamchatka) and tomographic imaging (in Japan). The amount of work done in Japan is Japan significantly larger than in Kamchatka, and resulting constraints on the properties of the crust and the upper- Crustal structure most mantle are more detailed. Upper-mantle structure Japan and Kamchatka display a number of similarities in their crustal structure, most notably the average Moho crustal thickness in excess of 30 km (typical of continental regions), and the generally gradational nature of the crust–mantle transition where volcanic arcs are presently active.
    [Show full text]
  • ITM International Tectonics Meeting
    NUMO-TR-16-04 TOPAZ Project Long-term Tectonic Hazard to Geological Repositories Toward practical application of the ITM-TOPAZ methodology February 2017 Nuclear Waste Management Organization of Japan (NUMO) 2017 年 2 月 初版発行 本資料の全部または一部を複写・複製・転載する場合は,下記へ お問い合わせください。 〒108-0014 東京都港区芝 4 丁目 1 番地 23 号 三田 NN ビル 2 階 原子力発電環境整備機構 技術部 電話 03-6371-4004(技術部) FAX 03-6371-4102 Inquiries about copyright and reproduction should be addressed to: Science and Technology Department Nuclear Waste Management Organization of Japan Mita NN Bldg. 1-23, Shiba 4-chome, Minato-ku, Tokyo 108-0014 Japan ©原子力発電環境整備機構 (Nuclear Waste Management Organization of Japan) 2017 NUMO-TR-16-04 TOPAZ Project Long-term Tectonic Hazard to Geological Repositories Toward practical application of the ITM-TOPAZ methodology February 2017 Nuclear Waste Management Organization of Japan (NUMO) 各章の和文要約 1 序論 本報告書は,国際プロジェクトメンバーが作成した原稿を NUMO が編集したもの である。NUMO は,地層処分システムに著しい影響を及ぼす火山活動や断層活動な どの自然現象の発生可能性を確率論的に評価するための手法として,ITM 手法1を開 発した。続いて,プレート運動の安定性を必ずしも前提にできない超長期の評価に 向けて,ITM-TOPAZ 手法2の開発を進めた。東北地方および中国地方を対象とした ケーススタディを通じて,ITM-TOPAZ 手法の日本の地質環境への基本的な適用性を 確認してきた。今回,ITM-TOPAZ 手法の適用性のさらなる向上を目指し,再び東北 地方を対象に,火山活動・断層活動に加えて隆起・侵食の変遷に関するシナリオの 拡充,それらの影響の評価方法の高度化などを行った。 2 広域変遷シナリオ(RES: Regional Evolution Senarios)の拡充 これまでに例示した将来 100 万年までのプレート運動の変遷に関する四つのシナ リオ(RES1: 現在の傾向が継続,RES2: プレート収束速度が増加,RES3: プレート運 動の方向が変化,RES4: プレート収束速度が減少)における,東北地方の背弧域 (日本海側),脊梁山地,前弧域(太平洋側)での広域的な火山活動,断層活動, 隆起・侵食の傾向について,追加情報に基づき記述を補強した。さらに,最近の科 学的知見の進展を踏まえたシナリオの拡充の可能性について述べた。 3 サイト変遷シナリオ(SES: Site Evolution Senarios)の設定 背弧域(日本海側),脊梁山地,前弧域(太平洋側)を代表する数十
    [Show full text]
  • Evolution History of Gassan Volcano, Northeast Japan Arc
    Open Journal of Geology, 2018, 8, 647-661 http://www.scirp.org/journal/ojg ISSN Online: 2161-7589 ISSN Print: 2161-7570 Evolution History of Gassan Volcano, Northeast Japan Arc Ryo Oizumi1, Masao Ban2*, Naoyoshi Iwata2 1Graduate School of Science and Technology, Yamagata University, Yamagata, Japan 2Faculty of Science, Yamagata University, Yamagata, Japan How to cite this paper: Oizumi, R., Ban, Abstract M. and Iwata, N. (2018) Evolution History of Gassan Volcano, Northeast Japan Arc. Evolution history of the volcano is essential not only to characterize the vol- Open Journal of Geology, 8, 647-661. cano, but also consider magma genesis beneath the volcano. Most of the stra- https://doi.org/10.4236/ojg.2018.87038 tovolcanoes in northeast Japan follow a general evolutional course: cone building, horse-shoe shaped caldera forming collapse, and post-caldera stages. Received: June 4, 2018 However, the detailed history of each stage is not well investigated. We inves- Accepted: July 10, 2018 Published: July 13, 2018 tigated evolution history of young edifice of Gassan volcano, representative stratovolcano in rear side of northeast Japan arc. Most of the products are la- Copyright © 2018 by authors and vas, which are divided into two groups by geomorphologic and geologic fea- Scientific Research Publishing Inc. tures. The former (Gassan lower lavas) is composed of relatively thin and This work is licensed under the Creative Commons Attribution-NonCommercial fluidal lavas, whose original geomorphology remains a little, while the latter International License (CC BY-NC 4.0). (Gassan upper lavas) is composed of relatively thick and viscous lavas, whose http://creativecommons.org/licenses/by-nc/4.0/ original geomorphology is moderately preserved.
    [Show full text]
  • INDEX of Records of the U. S. Strategic Bombing Survey; Entry 55, Carrier-Based Navy and Marine Corps Aircraft Action Reports, 1944-1945
    INDEX of Records of the U. S. Strategic Bombing Survey; Entry 55, Carrier-Based Navy and Marine Corps Aircraft Action Reports, 1944-1945 (1) Task Group 12.4 Action Report of Task Group 12.4 against Wake Island, 13 June 1945 through 20 June 1945 ※Commander Task Group 12.4 (Commander Carrier Division 11). (2) Task Group 38.1 Report of Operations of Task Group 38.1 against the Japanese Empire 1 July 1945 to 15 August 1945 ※Commander Task Group 38.1 (Commander Carrier Division 3 - Rear Admiral T. L. Sprague, USN, USS Bennington, Flagship). (3) Task Group 38.4 Action Report, Commander Task Group 38.4, 2 July to 15 August 1945, Strikes against Japanese Home Islands ※Commander Task Group 38.4 (Commander Carrier Division 6, Rear Admiral A. W. Radford, US Navy, USS Yorktown, Flagship). (4) Task Group 52.1.1 Report of Capture of Okinawa Gunto, Phases I and II, 24 May 1945 to 24 June 1945 ※Commander Task Unit 52.1.1(24 May to 28 May), Commander Task Unit 32.1.1. Action Report, Capture of Okinawa Gunto, Phases 1 and 2 - 21 March 1945 to 24 May 1945 ※Commander Task Unit 52.1.1 (Support Carrier Unit 1) from 9 March 1945 to 10 May 1945 and CTG Task Unit 52.1.1 from 17 May to 24 May 1945 (Commander Carrier Division 26). (5) Task Group 52.1.2 Action Report - Capture of Okinawa Gunto, Phases 1 and 2, 21 March to 29 April 1945 ※Commander Task Unit 52.1.2 (21 March - 29 April, incl) and Commander Task Unit 51.1.2 (21-25 March, inclusive) (Commander Car-rier Division 24).
    [Show full text]