Frederic Lens, 2,7 Mary E. Endress, 3 Pieter Baas, 4 Steven Jansen, 5,6

Total Page:16

File Type:pdf, Size:1020Kb

Frederic Lens, 2,7 Mary E. Endress, 3 Pieter Baas, 4 Steven Jansen, 5,6 American Journal of Botany 96(12): 2168–2183. 2009. V ESSEL GROUPING PATTERNS IN SUBFAMILIES APOCYNOIDEAE AND PERIPLOCOIDEAE CONFIRM PHYLOGENETIC VALUE OF WOOD STRUCTURE WITHIN APOCYNACEAE 1 Frederic Lens, 2,7 Mary E. Endress, 3 Pieter Baas, 4 Steven Jansen, 5,6 and Erik Smets 2,4 2 Laboratory of Plant Systematics, Institute of Botany and Microbiology, Kasteelpark Arenberg 31 Box 2437, K.U.Leuven, BE-3001 Leuven, Belgium; 3 Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Z ü rich, Switzerland; 4 Nationaal Herbarium Nederland – Leiden University Branch, P.O. Box 9514, NL-2300 RA Leiden, The Netherlands; 5 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; and 6 Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein Allee 11, D-89081, Ulm, Germany This study contributes to our understanding of the phylogenetic signifi cance and major evolutionary trends in the wood of the dogbane family (Apocynaceae), one of the largest and economically most important angiosperm families. Based on LM and SEM observations of 56 Apocynoideae species — representing all currently recognized tribes — and eight Periplocoideae, we found strik- ing differences in vessel grouping patterns (radial multiples vs. large clusters) between the mainly nonclimbing apocynoid tribes (Wrightieae, Malouetieae, Nerieae) and the climbing lineages (remaining Apocynoideae and Periplocoideae). The presence of large vessel clusters in combination with fi bers in the ground tissue characterizing the climbing Apocynoideae and Periplocoideae clearly contrasts with the climbing anatomy of the rauvolfi oids (solitary vessels plus tracheids in ground tissue), supporting the view that (1) the climbing habit has evolved more than once in Apocynaceae, (2) the three nonclimbing apocynoid tribes are basal compared to the climbing apocynoids, and (3) Periplocoideae belong to the crown clade. The wood anatomy within the nonclimb- ing and climbing lineages is rather homogeneous, although a combination of specifi c characters (e.g. presence of septate fi bers, axial parenchyma distribution, abundance of uniseriate compared to multiseriate rays, and presence and location of prismatic crystals) may be used to identify several tribes. Key words: Apocynaceae; Apocynoideae; APSA clade; climbing vs. nonclimbing anatomy; Periplocoideae; systematic wood anatomy; tribal classifi cation. The dogbane family is one of the largest families of angio- major objectives of the present work is to search for phyloge- sperms, with an estimated 375 genera and 5100 species ( En- netically informative wood anatomical characters that can help dress, 2004 ; Endress et al., 2007 ), and is broadly distributed us to identify clades that are mainly defi ned molecularly. mainly in tropical and subtropical regions of the world. Apoc- The pantropical Apocynoideae sensu Livshultz et al. (2007) ynaceae are especially rich in bioactive secondary compounds are a paraphyletic subfamily harboring a broad array of differ- and have long been used in folk medicine to treat a wide range ent fl ower types and comprise about 860 species distributed of ailments, including cancer, malaria, diarrhea, diabetes, and among 81 genera and eight tribes, representing about 1/5 – 1/6 of skin diseases ( Schultes, 1979 ; Van Beck et al., 1984 ; Schultes the species diversity within the family ( Endress et al., 2007 ; and Raffauf, 1990 ; Neuwinger, 1994 ; Middleton, 2007 ). A Endress and Hansen, 2007 ). Subfamily Periplocoideae, on the number of genera are employed in modern medicine for a di- other hand, are much smaller, including about 190 species and verse array of uses such as controlling tumor growth in treating 33 genera restricted to the Old World, and have always been cancer (Balandrin et al., 1985; Moza, 2005 ), as antiplasmodial considered to be a natural group because of their very homoge- agents in parasitic infections ( Zirihi et al., 2005 ), as muscle re- neous fl oral structure ( Nilsson et al., 1993 ; Stevens, 2001 on- laxants during surgery ( Bisset, 1992 ) and as an appetite sup- ward; Endress et al., 2007 ; Venter, 2009 ). pressant in controlling obesity ( van Heerden, 2008 ). Because Both subfamilies can generally be distinguished by their related taxa often possess similar bioactive properties, it is ex- growth form and habitat preference. For instance, the bulk of pedient to have a better understanding of the generic affi nities the Apocynoideae have a climbing habit, from robust lianas in several apocynaceous lineages, including the subfamilies climbing 40 m or higher up into the canopy (e.g., Alafi a , Mot- Apocynoideae and Periplocoideae. Consequently, one of the andra , Oncinotis ) or festooning the branches of trees at forest margins (e.g., Peltastes ) to slender scramblers bending over 1 Manuscript received 27 April 2009; revision accepted 8 September 2009. shrubs and rocks in more open habitats (e.g., some species of Dr. Sherwin Carlquist (Santa Barbara Botanic Garden) is acknowledged Parsonsia ). The nonclimbing Apocynoideae are often small for his valuable comments on the manuscript. The curators of the xylaria of understory trees or shrubs growing in tropical lowland forests. Leiden, Kew, Madison, Tervuren, Utrecht, and Wageningen and Dr. Andr é In both subfamilies, some species can occasionally grow as li- Sim õ es (University of S ã o Paolo) generously offered wood samples. The anas as well as erect life forms (e.g., Cryptostegia , Mandev- authors thank Miss Nathalie Geerts (K.U.Leuven) for technical assistance. illa ). Whereas most Apocynoideae grow in humid tropical This work has been fi nancially supported by research grants of the lowland forests, some of them occupy drier scrub vegetations K.U.Leuven (OT/05/35) and the Fund for Scientifi c Research – Flanders (e.g., certain species of Aganosma , Amphineurion , Holarrhena , (Belgium) (G.0268.04). F.L. is a postdoctoral fellow of the Fund for Scientifi c Research – Flanders (Belgium) (F.W.O. – Vlaanderen). Parsonsia , Peltastes , Spirolobium , and Urceola ). Periplo- 7 Author for correspondence (e-mail: [email protected]) coideae, in contrast, are mainly smaller climbers (or occasion- ally epiphytes) restricted to the (sub)tropics of the Old World doi:10.3732/ajb.0900116 and inhabit mostly tropical evergreen or seasonal forests and 2168 December 2009] Lens et al. — Wood anatomy of Apocynoideae and Periplocoideae 2169 savannas, with a number of erect or straggling shrubs extend- 2007 ; Livshultz et al., 2007 ). Livshultz and coworkers (2007) ing into grasslands, Mediterranean regions and (semi)desert shed new light on the controversial relationships between and areas (e.g., Ectadium , Periploca, and Raphionacme ) ( Endress within Apocynoideae and Periplocoideae using a phylogenetic and Bruyns, 2000 ; Venter and Verhoeven, 2001 ; Ionta and analysis based on more than 1600 informative characters from Judd, 2007 ; Middleton, 2007 ; Venter, 2009 ). About one-third plastid DNA in combination with 16 morphological characters of the periplocoid genera have large semisubterranean tubers, ( Fig. 1 ). The resulting phylogeny rejects all traditional Apocyn- the great majority of which are restricted to arid and semiarid oideae tribes sensu Pichon (1950) and Leeuwenberg (1994) habitats in Africa ( Meve and Liede, 2004 ). These water-storing and the former Periplocoideae classifi cation of Venter and Ver- tubers aid the plants during times of water shortage and can hoeven (1997) . In their current circumscription, the paraphyl- reach sizable proportions and masses up to 100 kg ( Venter et etic Apocynoideae comprise eight tribes ( Fig. 1 ; Endress et al., al., 1990 , 2006 ; Klackenberg, 1999). 2007 ), whereas relationships within Periplocoideae are still Apocynaceae s.l. are one of the fi ve families nested within too insuffi ciently known to identify the major evolutionary Gentianales, where they stand out for the presence of latex (Ste- lines ( Ionta and Judd, 2007 ). With respect to the family classi- vens, 2001 onward; Middleton, 2007 ; Hagel et al., 2008 ). How- fi cation of Apocynaceae, subfamily Rauvolfi oideae forms a ever, the taxonomic position of Apocynaceae within the order basal grade, with Carisseae being sister to the APSA clade remains unclear, and insights about the higher-level intrafamil- (Apocynoideae, Periplocoideae, Secamonoideae, and Asclepia- ial relationships have changed dramatically over the years doideae) ( Livshultz et al., 2007 ). Within the APSA clade, three ( Struwe et al., 1994 ; Endress et al., 1996 ; Sennblad and Bremer, largely nonclimbing Apocynoideae tribes (Wrightieae, Nerieae, 1996 , 2002 ; Backlund et al., 2000 ; Endress and Bruyns, 2000 ; and Malouetieae) diverge fi rst, followed by the well-supported Potgieter and Albert, 2001 ; Bremer et al., 2002 ; Livshultz et al., crown clade, which is composed mainly of species with a de- 2007 ; Sim õ es et al., 2007; Fig. 1 ). For instance, the current sub- pendent (climbing or straggling) growth form. In this crown families Apocynoideae and Periplocoideae were formerly clade, Periplocoideae are sister (although without bootstrap placed into two different but closely related families, i.e., Apo- support) to a large group including subclades that correspond cynaceae s.s. (also including Rauvolfi oideae) and the former remarkably well with geographical regions: predominantly Asclepiadaceae (also including the currently recognized sub- Asian apocynoids (tribe Apocyneae), predominantly neotropi- families Asclepiadoideae
Recommended publications
  • An Isoflavone from Wrightia Pubescens
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2015; 7(2); 353-355 ISSN: 0975-4873 Research Article An Isoflavone from Wrightia pubescens Consolacion Y. Ragasa1,2*, Vincent Antonio S. Ng2, Mariquit M. De Los Reyes3,4, Emelina H. Mandia4, and Chien-Chang Shen5 1Chemistry Department, De La Salle University Science & Technology Complex Leandro V. Locsin Campus, Biñan City, Laguna 4024, Philippines 2Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines 3Biology Department, De La Salle University Science & Technology Complex Leandro V. Locsin Campus, Biñan City, Laguna 4024, Philippines 4Biology Department, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines 5National Research Institute of Chinese Medicine, 155-1, Li-Nong St., Sec. 2, Taipei 112, Taiwan Available Online: 15th March, 2015 ABSTRACT Chemical investigation of the dichloromethane extract of the twigs of Wrightia pubescens (R.Br.) led to the isolation of an isoflavone, wrightiadione (1). The structure of 1 was elucidated by extensive 1D and 2D NMR spectroscopy and confirmed by mass spectrometry. Keywords: Wrightia pubescens (R.Br.), Apocynaceae, isoflavone, wrightiadione INTRODUCTION Woodson afforded isoscopoletin from the twigs and Wrightia pubescens (R.Br.) of the family Apocynaceae is ursolic acid, squalene, α-amyrin acetate and lupeol acetate one of the eight known species of Wrightia in Malesia1. from both leaves and twigs11. Pipturus arborescens (Link) Locally known as “lanete” in the Philippines, Wrightia C.B. Rob. yielded ursolic acid, oleanolic acid, friedelin, β- pubescens, which can grow up to 35 m tall in deciduous sitosterol, and stigmasterol from the twigs, while the leaves lowland thickets and forests, is also found in mainland afforded β-sitosterol, stigmasterol, squalene, chlorophyll a, China, India and Australia2,3.
    [Show full text]
  • Evolução Cromossômica Em Plantas De Inselbergues Com Ênfase Na Família Apocynaceae Juss. Angeline Maria Da Silva Santos
    UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CAMPUS II – AREIA-PB Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. Angeline Maria Da Silva Santos AREIA - PB AGOSTO 2017 UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CAMPUS II – AREIA-PB Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. Angeline Maria Da Silva Santos Orientador: Prof. Dr. Leonardo Pessoa Felix Tese apresentada ao Programa de Pós-Graduação em Agronomia, Universidade Federal da Paraíba, Centro de Ciências Agrárias, Campus II Areia-PB, como parte integrante dos requisitos para obtenção do título de Doutor em Agronomia. AREIA - PB AGOSTO 2017 Catalogação na publicação Seção de Catalogação e Classificação S237e Santos, Angeline Maria da Silva. Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. / Angeline Maria da Silva Santos. - Areia, 2017. 137 f. : il. Orientação: Leonardo Pessoa Felix. Tese (Doutorado) - UFPB/CCA. 1. Afloramentos. 2. Angiospermas. 3. Citogenética. 4. CMA/DAPI. 5. Ploidia. I. Felix, Leonardo Pessoa. II. Título. UFPB/CCA-AREIA A Deus, pela presença em todos os momentos da minha vida, guiando-me a cada passo dado. À minha família Dedico esta conquista aos meus pais Maria Geovânia da Silva Santos e Antonio Belarmino dos Santos (In Memoriam), irmãos Aline Santos e Risomar Nascimento, tios Josimar e Evania Oliveira, primos Mayara Oliveira e Francisco Favaro, namorado José Lourivaldo pelo amor a mim concedido e por me proporcionarem paz na alma e felicidade na vida. Em especial à minha mãe e irmãos por terem me ensinado a descobrir o valor da disciplina, da persistência e da responsabilidade, indispensáveis para a construção e conquista do meu projeto de vida.
    [Show full text]
  • A Revision of Farquharia Stapf and Funtumia Stapf (Apocynaceae)
    582.937 MEDEDELINGEN LANDBOUWHOGESCHOOL WAGENINGEN • NEDERLAND •81-16(1981) A REVISION OF FARQUHARIA STAPF AND FUNTUMIA STAPF (APOCYNACEAE) H. J. C. ZWETSLOOT Laboratory of Plant Taxonomy and Plant Geography, Agricultural University, Wageningen, The Netherlands Received 21-VII-1981 Date of publication I1-XIM981 H. VEENMAN & ZONEN B.V. - WAGENINGEN - 1981 CONTENTS Introduction History Etymology Geographic distribution . Relationship to other genera Genus/species diagnosis of Farquharia 3 F. elliptica 3 Architecture of Farquharia 9 Nomina nuda referring to Farquharia 9 Phytochemical screening of Farquharia elliptica leaves by T. A. VAN BEEK 9 Genus diagnosis of Funtumia 10 Architecture of Funtumia 11 Discussion of the delimitation of the species of Funtumia 14 Key to the species of Funtumia 16 Species descriptions of Funtumia 16 F. africana 16 F. elastica 25 Somatic chromosome numbers in Funtumia by J. C. ARENDS and F. M. VAN DER LAAN . 32 Phytochemistry of Funtumia by N. G. BISSET 33 Hybrids of Funtumia africana and elastica 34 Statistical keys (Funtumia) 34 References 38 Acknowledgements 41 Index of exsiccatae 42 Register 46 INTRODUCTION The present publication is a monograph of the genera Farquharia and Fun- tumia. It is based on the study of herbarium material and living plants as the author had the opportunity to study flowering and fruiting plants in the field of all species involved. HISTORY Farquharia was described by STAPF in 1912 with a single species F. elliptica. Independantly CHEVALIER proposed the nomina nuda Alafiajasminiflora (1920) and Alqfia mirabilis for the same taxon. HUTCHINSON and DALZIEL (1931) er­ roneously referred Alafiajasminiflora to the genus Holalafia as they did not notice the clearly apocarpous ovary in the specimen collected by CHEVALIER.
    [Show full text]
  • Medicinal Plant Use and Conservation Practices by Communities in the Togo Plateau Forest Reserve, Ghana
    Vol. 12(30), pp. 575-589, 10 December, 2018 DOI: 10.5897/JMPR2018.6686 Article Number: B45C67E59574 ISSN: 1996-0875 Copyright ©2018 Author(s) retain the copyright of this article Journal of Medicinal Plants Research http://www.academicjournals.org/JMPR Full Length Research Paper Medicinal plant use and conservation practices by communities in the Togo Plateau Forest Reserve, Ghana Gilchrist K. Faith Dogor1*, Ruby A. Nyarko1, Alexander K. Anning1 and Alfred 2 Oteng-Yeboah 1Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. 2Department of Plant and Environmental Biology, University of Ghana, Accra, Ghana. Received 3 October; Accepted 5 November, 2018 The use of plants for medicine has constituted an important aspect of primary healthcare delivery system of people throughout the world for many centuries. Nonetheless, information on medicinal plants and their conservation are still lacking in some areas, including the Togo Plateau Forest Reserve in Ghana. This paper investigates the ethnobotany of the Togo Plateau Forest Reserve, Ghana, to document the traditional knowledge, uses and conservation of medicinal plants. Information on these plants was sought through a structured questionnaire administered to 384 registered members of the Ghana Federation of Traditional Medicine Practitioners’ Association including certified traditional healers, traditional birth attendants (TBAs), vendors of herbal remedies, managers of herbal medicine centers, and local plant collectors from six communities within the catchment area of the Togo Plateau Forest Reserve. The study recorded 114 medicinal plant species, including 14 herbs, 6 lianas, 21 shrubs and 74 trees that are mostly collected from the wild. The most commonly cited medicinal plant species were Azadirachta indica, Alstonia boonei, Morinda lucidaand Nauclea latifolia, mostly used to treat human conditions such as malaria, jaundice, rheumatism, andcough.
    [Show full text]
  • Antimalarial and Cytotoxic Activities of Pregnene-Type Steroidal Alkaloids from Holarrhena Pubescens Roots
    University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers: part A Faculty of Science, Medicine and Health 1-1-2017 Antimalarial and cytotoxic activities of pregnene-type steroidal alkaloids from Holarrhena pubescens roots Sarot Cheenpracha University of Phayao Pannakorn Boapun University of Phayao Thunwadee Limtharakul Chiang Mai University Surat Laphookhieo Mae Fah Luang University, [email protected] Stephen G. Pyne University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/smhpapers Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons Recommended Citation Cheenpracha, Sarot; Boapun, Pannakorn; Limtharakul, Thunwadee; Laphookhieo, Surat; and Pyne, Stephen G., "Antimalarial and cytotoxic activities of pregnene-type steroidal alkaloids from Holarrhena pubescens roots" (2017). Faculty of Science, Medicine and Health - Papers: part A. 5110. https://ro.uow.edu.au/smhpapers/5110 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Antimalarial and cytotoxic activities of pregnene-type steroidal alkaloids from Holarrhena pubescens roots Abstract The phytochemical investigation of an alkaloidal extract of Holarrhena pubescens roots led to the isolation and identification of a new pregnene-type alkaloid, mokluangin D (1), together with nine known steroidal alkaloids (2-10). The structure of the new metabolite was determined on the basis of spectroscopic analyses including 1D- and 2D-NMR spectroscopy and mass spectrometry. Compounds 3 and 4 showed potent antimalarial activity against Plasmodium falciparum K1 stain with IC50 values of 1.2 and 2.0 μM, respectively, and showed weak cytotoxic activity against the NCI-H187 cell line with IC50 values of 27.7 and 30.6 μM, respectively.
    [Show full text]
  • Diversity, Above-Ground Biomass, and Vegetation Patterns in a Tropical Dry Forest in Kimbi-Fungom National Park, Cameroon
    Heliyon 6 (2020) e03290 Contents lists available at ScienceDirect Heliyon journal homepage: www.cell.com/heliyon Research article Diversity, above-ground biomass, and vegetation patterns in a tropical dry forest in Kimbi-Fungom National Park, Cameroon Moses N. Sainge a,*, Felix Nchu b, A. Townsend Peterson c a Department of Environmental and Occupational Studies, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town 8000, South Africa b Department of Horticultural Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa c Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA ARTICLE INFO ABSTRACT Keywords: Research highlights: This study is one of few detailed analyses of plant diversity and vegetation patterns in African Ecological restoration dry forests. We established permanent plots to characterize plant diversity, above-ground biomass, and vegetation Flora patterns in a tropical dry forest in Kimbi-Fungom National Park, Cameroon. Our results contribute to long-term Environmental assessment monitoring, predictions, and management of dry forest ecosystems, which are often vulnerable to anthropogenic Environmental health pressures. Environmental impact assessment Dry forest Background and objectives: Considerable consensus exists regarding the importance of dry forests in species di- Bamenda highlands versity and carbon storage; however, the relationship between dry forest tree species composition, species rich- Kimbi-Fungom National Park ness, and carbon stock is not well established. Also, simple baseline data on plant diversity are scarce for many dry Carbon forest ecosystems. This study seeks to characterize floristic diversity, vegetation patterns, and tree diversity in Semi-deciduous permanent plots in a tropical dry forest in Northwestern Cameroon (Kimbi-Fungom National Park) for the first Tree composition time.
    [Show full text]
  • Vessel Grouping Patterns in Subfamilies Apocynoideae and Periplocoideae Confirm Phylogenetic Value of Wood Structure Within Apocynaceae
    Lens, F; Endress, M E; Baas, P; Jansen, S; Smets, E (2009). Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae. American Journal of Botany, 96(12):2168-2183. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: American Journal of Botany 2009, 96(12):2168-2183. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2009 Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae Lens, F; Endress, M E; Baas, P; Jansen, S; Smets, E Lens, F; Endress, M E; Baas, P; Jansen, S; Smets, E (2009). Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae. American Journal of Botany, 96(12):2168-2183. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: American Journal of Botany 2009, 96(12):2168-2183. Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae Abstract This study contributes to our understanding of the phylogenetic significance and major evolutionary trends in the wood of the dogbane family (Apocynaceae), one of the largest and economically most important angiosperm families. Based on LM and SEM observations of 56 Apocynoideae species—representing all currently recognized tribes—and eight Periplocoideae, we found striking differences in vessel grouping patterns (radial multiples vs.
    [Show full text]
  • Apocynaceae-Apocynoideae)
    THE NERIEAE (APOCYNACEAE-APOCYNOIDEAE) A. J. M. LEEUWENBERG1 ABSTRACT The genera of tribe Nerieae of Apocynaceae are surveyed here and the relationships of the tribe within the family are evaluated. Recent monographic work in the tribe enabled the author to update taxonomie approaches since Pichon (1950) made the last survey. Original observations on the pollen morphology ofth egener a by S.Nilsson ,Swedis h Natural History Museum, Stockholm, are appended to this paper. RÉSUMÉ L'auteur étudie lesgenre s de la tribu desNeriea e desApocynacée s et évalue lesrelation s del a tribu au sein de la famille. Un travail monographique récent sur la tribu a permit à l'auteur de mettre à jour lesapproche s taxonomiques depuis la dernière étude de Pichon (1950). Lesobservation s inédites par S. Nilsson du Muséum d'Histoire Naturelle Suédois à Stockholm sur la morphologie des pollens des genres sontjointe s à cet article. The Apocynaceae have long been divided into it to generic rank and in his arrangement includ­ two subfamilies, Plumerioideae and Apocynoi- ed Aganosma in the Echitinae. Further, because deae (Echitoideae). Pichon (1947) added a third, of its conspicuous resemblance to Beaumontia, the Cerberioideae, a segregate of Plumerioi­ it may well be that Amalocalyx (Echiteae— deae—a situation which I have provisionally ac­ Amalocalycinae, according to Pichon) ought to cepted. These subfamilies were in turn divided be moved to the Nerieae. into tribes and subtribes. Comparative studies Pichon's system is artificial, because he used have shown that the subdivision of the Plume­ the shape and the indumentum of the area where rioideae is much more natural than that of the the connectives cohere with the head of the pistil Apocynoideae.
    [Show full text]
  • Unearthing Belowground Bud Banks in Fire-Prone Ecosystems
    Unearthing belowground bud banks in fire-prone ecosystems 1 2 3 Author for correspondence: Juli G. Pausas , Byron B. Lamont , Susana Paula , Beatriz Appezzato-da- Juli G. Pausas 4 5 Glo'ria and Alessandra Fidelis Tel: +34 963 424124 1CIDE-CSIC, C. Naquera Km 4.5, Montcada, Valencia 46113, Spain; 2Department of Environment and Agriculture, Curtin Email [email protected] University, PO Box U1987, Perth, WA 6845, Australia; 3ICAEV, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile; 4Depto Ci^encias Biologicas,' Universidade de Sao Paulo, Av P'adua Dias 11., CEP 13418-900, Piracicaba, SP, Brazil; 5Instituto de Bioci^encias, Vegetation Ecology Lab, Universidade Estadual Paulista (UNESP), Av. 24-A 1515, 13506-900 Rio Claro, Brazil Summary To be published in New Phytologist (2018) Despite long-time awareness of the importance of the location of buds in plant biology, research doi: 10.1111/nph.14982 on belowground bud banks has been scant. Terms such as lignotuber, xylopodium and sobole, all referring to belowground bud-bearing structures, are used inconsistently in the literature. Key words: bud bank, fire-prone ecosystems, Because soil efficiently insulates meristems from the heat of fire, concealing buds below ground lignotuber, resprouting, rhizome, xylopodium. provides fitness benefits in fire-prone ecosystems. Thus, in these ecosystems, there is a remarkable diversity of bud-bearing structures. There are at least six locations where belowground buds are stored: roots, root crown, rhizomes, woody burls, fleshy
    [Show full text]
  • Phylogeny and Systematics of the Rauvolfioideae
    PHYLOGENY AND SYSTEMATICS Andre´ O. Simo˜es,2 Tatyana Livshultz,3 Elena OF THE RAUVOLFIOIDEAE Conti,2 and Mary E. Endress2 (APOCYNACEAE) BASED ON MOLECULAR AND MORPHOLOGICAL EVIDENCE1 ABSTRACT To elucidate deeper relationships within Rauvolfioideae (Apocynaceae), a phylogenetic analysis was conducted using sequences from five DNA regions of the chloroplast genome (matK, rbcL, rpl16 intron, rps16 intron, and 39 trnK intron), as well as morphology. Bayesian and parsimony analyses were performed on sequences from 50 taxa of Rauvolfioideae and 16 taxa from Apocynoideae. Neither subfamily is monophyletic, Rauvolfioideae because it is a grade and Apocynoideae because the subfamilies Periplocoideae, Secamonoideae, and Asclepiadoideae nest within it. In addition, three of the nine currently recognized tribes of Rauvolfioideae (Alstonieae, Melodineae, and Vinceae) are polyphyletic. We discuss morphological characters and identify pervasive homoplasy, particularly among fruit and seed characters previously used to delimit tribes in Rauvolfioideae, as the major source of incongruence between traditional classifications and our phylogenetic results. Based on our phylogeny, simple style-heads, syncarpous ovaries, indehiscent fruits, and winged seeds have evolved in parallel numerous times. A revised classification is offered for the subfamily, its tribes, and inclusive genera. Key words: Apocynaceae, classification, homoplasy, molecular phylogenetics, morphology, Rauvolfioideae, system- atics. During the past decade, phylogenetic studies, (Civeyrel et al., 1998; Civeyrel & Rowe, 2001; Liede especially those employing molecular data, have et al., 2002a, b; Rapini et al., 2003; Meve & Liede, significantly improved our understanding of higher- 2002, 2004; Verhoeven et al., 2003; Liede & Meve, level relationships within Apocynaceae s.l., leading to 2004; Liede-Schumann et al., 2005). the recognition of this family as a strongly supported Despite significant insights gained from studies clade composed of the traditional Apocynaceae s.
    [Show full text]
  • Floral Glands in Asclepiads: Structure, Diversity and Evolution
    Acta Botanica Brasilica - 31(3): 477-502. July-September 2017. doi: 10.1590/0102-33062016abb0432 Review Floral glands in asclepiads: structure, diversity and evolution Diego Demarco1 Received: December 7, 2016 Accepted: February 24, 2017 . ABSTRACT Species of Apocynaceae stand out among angiosperms in having very complex fl owers, especially those of asclepiads, which belong to the most derived subfamily (Asclepiadoideae). Th ese fl owers are known to represent the highest degree of fl oral synorganization of the eudicots, and are comparable only to orchids. Th is morphological complexity may also be understood by observing their glands. Asclepiads have several protective and nuptial secretory structures. Th eir highly specifi c and specialized pollination systems are associated with the great diversity of glands found in their fl owers. Th is review gathers data regarding all types of fl oral glands described for asclepiads and adds three new types (glandular trichome, secretory idioblast and obturator), for a total of 13 types of glands. Some of the species reported here may have dozens of glands of up to 11 types on a single fl ower, corresponding to the largest diversity of glands recorded to date for a single structure. Keywords: anatomy, Apocynaceae, Asclepiadoideae, diversity, evolution, fl ower, secretory structures considering its most derived subfamily Asclepiadoideae. Introduction Th e close relationship between the former families Apocynaceae and Asclepiadaceae has always been recognized Apocynaceae is an extremely diverse family in since its establishment as “Apocineae” by Jussieu (1789). morphological terms, represented by trees, shrubs, herbs and climbers, with single leaves usually opposite, rarely Although Brown (1810) divided it into two families and alternate or whorled, with stipules modifi ed in colleters in this separation had been maintained in the subsequent several species (Endress & Bruyns 2000; Capelli et al.
    [Show full text]
  • Ethnobotanical Knowledge of the Kuy and Khmer People in Prey Lang, Cambodia
    Ethnobotanical knowledge of the Kuy and Khmer people in Prey Lang, Cambodia Turreira Garcia, Nerea; Argyriou, Dimitrios; Chhang, Phourin; Srisanga, Prachaya; Theilade, Ida Published in: Cambodian Journal of Natural History Publication date: 2017 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Turreira Garcia, N., Argyriou, D., Chhang, P., Srisanga, P., & Theilade, I. (2017). Ethnobotanical knowledge of the Kuy and Khmer people in Prey Lang, Cambodia. Cambodian Journal of Natural History, 2017(1), 76-101. http://www.fauna-flora.org/wp-content/uploads/CJNH-2017-June.pdf Download date: 26. Sep. 2021 76 N. Turreira-García et al. Ethnobotanical knowledge of the Kuy and Khmer people in Prey Lang, Cambodia Nerea TURREIRA-GARCIA1,*, Dimitrios ARGYRIOU1, CHHANG Phourin2, Prachaya SRISANGA3 & Ida THEILADE1,* 1 Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 25, 1958 Frederiksberg, Denmark. 2 Forest and Wildlife Research Institute, Forestry Administration, Hanoi Street 1019, Phum Rongchak, Sankat Phnom Penh Tmei, Khan Sen Sok, Phnom Penh, Cambodia. 3 Herbarium, Queen Sirikit Botanic Garden, P.O. Box 7, Maerim, Chiang Mai 50180, Thailand. * Corresponding authors. Email [email protected], [email protected] Paper submitted 30 September 2016, revised manuscript accepted 11 April 2017. ɊɮɍɅʂɋɑɳȶɆſ ȹɅƺɁɩɳȼˊɊNJȴɁɩȷ Ʌɩȶ ɑɒȴɊɅɿɴȼɍɈɫȶɴɇơȲɳɍˊɵƙɈɳȺˊƙɁȪɎLJɅɳȴȼɫȶǃNjɅȷɸɳɀɹȼɫȶɈɩɳɑɑ ɳɍˊɄɅDžɅɄɊƗƺɁɩɳǷȹɭɸ ɎȻɁɩ ɸɆɅɽɈɯȲɳȴɌɑɽɳǷʆ ɳDŽɹƺnjɻ ȶǁ ƳɌȳɮȷɆɌǒɩ Ə ɅLJɅɆɅƏɋȲƙɊɩɁɄɅDžɅɄɊƗƺɁɩɴȼɍDžƚ ɆɽNjɅ
    [Show full text]