Enabling Evolutionary Studies at Multiple Scales in Apocynaceae Through Hyb-Seq

Total Page:16

File Type:pdf, Size:1020Kb

Enabling Evolutionary Studies at Multiple Scales in Apocynaceae Through Hyb-Seq APPLICATION ARTICLE Enabling evolutionary studies at multiple scales in Apocynaceae through Hyb-Seq Shannon C. K. Straub1,4 , Julien Boutte1, Mark Fishbein2 , and Tatyana Livshultz3 Manuscript received 1 July 2020; revision accepted 12 September PREMISE: Apocynaceae is the 10th largest flowering plant family and a focus for study of 2020. plant–insect interactions, especially as mediated by secondary metabolites. However, it has 1 Department of Biology, Hobart and William Smith Colleges, 300 few genomic resources relative to its size. Target capture sequencing is a powerful approach Pulteney Street, Geneva, New York 14456, USA for genome reduction that facilitates studies requiring data from the nuclear genome in non- 2 Department of Plant Biology, Ecology, and Evolution, Oklahoma model taxa, such as Apocynaceae. State University, 301 Physical Sciences, Stillwater, Oklahoma 74078, USA METHODS: Transcriptomes were used to design probes for targeted sequencing of putatively 3 Department of Biodiversity, Earth, and Environmental Sciences single-copy nuclear genes across Apocynaceae. The sequences obtained were used to assess and the Academy of Natural Sciences, Drexel University, 1900 the success of the probe design, the intrageneric and intraspecific variation in the targeted Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103, USA genes, and the utility of the genes for inferring phylogeny. 4Author for correspondence: [email protected] RESULTS: From 853 candidate nuclear genes, 835 were consistently recovered in single Citation: Straub, S. C. K., J. Boutte, M. Fishbein, and T. Livshultz. copy and were variable enough for phylogenomics. The inferred gene trees were useful for 2020. Enabling evolutionary studies at multiple scales in coalescent-based species tree analysis, which showed all subfamilies of Apocynaceae as Apocynaceae through Hyb-Seq. Applications in Plant Sciences 8(11): e11400. monophyletic, while also resolving relationships among species within the genus Apocynum. Intraspecific comparison of Elytropus chilensis individuals revealed numerous single- doi:10.1002/aps3.11400 nucleotide polymorphisms with potential for use in population-level studies. DISCUSSION: Community use of this Hyb-Seq probe set will facilitate and promote progress in the study of Apocynaceae across scales from population genomics to phylogenomics. KEY WORDS Apocynaceae; dogbane; genome reduction; Hyb-Seq; low-copy nuclear genes; milkweed; phylogenomics; targeted sequencing. Target capture sequencing of nuclear genes is one approach that fa- et al., 2017; Peng et al., 2017; Villaverde et al., 2018; de la Harpe cilitates large-scale phylogenomic studies of non-model organisms et al., 2019; Jones et al., 2019). (Lemmon and Lemmon, 2013; Dodsworth et al., 2019). In plants, As sequencing of DNA and RNA has become easier and cheaper, this approach has clarified evolutionary relationships in multiple several large-scale projects have sequenced, assembled, and made lineages (e.g., Mandel et al., 2015; Fisher et al., 2016; Heyduk et al., available to the research community numerous plant transcrip- 2016; Léveillé-Bourret et al., 2018; Boutte et al., 2019; Couvreur tomes (e.g., Phytometasyn, https://bioin forma tics.tugraz.at/phyto et al., 2019; Herrando-Moraira et al., 2019; Bagley et al., 2020). metas yn/; Medicinal Plant Genomics Resource, http://medic inalp Obtaining data from many nuclear genes facilitates the use of lantg enomi cs.msu.edu; 1000 Plants, www.onekp.com). Now that species tree methods based on the multispecies coalescent model transcriptomes from multiple species within the same plant fam- (Mirarab and Warnow, 2015; Edwards et al., 2016) and provides ily are publicly available, tools (e.g., MarkerMiner; Chamala et al., data sets of the size required to address problems that have been 2015) that can take advantage of this wealth of information about unsolvable using traditional molecular systematics approaches nuclear genes in the design of targeted sequencing probes can be (e.g., Léveillé-Bourret et al., 2018; Herrando-Moraira et al., 2019), easily utilized. The MarkerMiner pipeline conducts a reciprocal or even whole plastome data (e.g., Straub et al., 2014). This method BLAST search between each transcriptome and a reference pro- allows sufficient flexibility to design probes in conserved regions teome to identify putative orthologs, which are then filtered based that flank more variable intron and intergenic regions, providing on known single-copy and low-copy genes in angiosperms (DeSmet sequence data that are useful for comparative analysis of distantly et al., 2013). Putative orthologs from multiple input transcriptomes related species, among closely related species within a genus, or are then clustered by reference protein identifiers and aligned. The even within a single species (Weitemier et al., 2014, 2019; Crowl alignments are useful for targeted enrichment probe design and Applications in Plant Sciences 2020 8(11): e11400; http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2020 Straub et al. Applications in Plant Sciences published by Wiley Periodicals LLC on behalf of Botanical Society of America. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. 1 of 9 Applications in Plant Sciences 2020 8(11): e11400 Straub et al.—Apocynaceae nuclear gene probes • 2 of 9 other downstream applications (Chamala et al., 2015). This ap- MarkerMiner version 1.2 (Chamala et al., 2015) was employed proach has been successful in aiding development of targeted se- to identify putatively single-copy genes using the Vitis vinifera L. quencing probes in multiple plant lineages (Villaverde et al., 2018; proteome reference and a minimum similarity of 85%. The de- Morais et al., 2019; Jantzen et al., 2020). fault minimum transcript length of 900 bp was used because it The milkweed and dogbane family, Apocynaceae, has publicly approximates the setting used by Weitemier et al. (2014) for target available transcriptomes from several species. With ca. 5300 spe- capture sequencing probe design in Asclepias using the Hyb-Seq cies, Apocynaceae is the 10th largest family of flowering plants pipeline. Intron/exon boundaries were determined by comparison and has a worldwide distribution (Endress et al., 2018). Its mem- with the V. vinifera genome. This work was completed utilizing the bers are widely known for their production of secondary metab- High Performance Computing Center facilities of Oklahoma State olites that function in defense against herbivores, some of which University at Stillwater. have evolved mechanisms to detoxify and sequester these com- MarkerMiner output alignments were submitted to MYcroarray pounds (Malcolm and Brower, 1989). Some metabolites, such (now Daicel Arbor Biosciences, Ann Arbor, Michigan, USA) for as vinblastine and vincristine, are used as human medicines the design and synthesis of myBaits biotinylated RNA probes of (Cragg and Newman, 2005). Pollination biology and floral evo- 120 nucleotides with 2× tiling. Probes with multiple BLAST hits to lution have been another focal area of study due to the presence the A. syriaca nuclear genome assembly (Weitemier et al., 2019) or of complex derived floral structures, such as pollinia, gynostegia, those containing repetitive sequence were excluded from the final and coronas (Endress, 1994; Endress and Bruyns, 2000; Fishbein, probe set of 48,974 probes. An additional 2707 probes for targeting 2001; Fishbein et al., 2018). Complete resolution of the backbone two nuclear genes, paralogs dhs and hss, were present in the probe of the phylogeny of Apocynaceae has proven to be difficult using set used for enrichment that generated data for a separate project traditional molecular systematics methods, a supermatrix ap- investigating pyrrolizidine alkaloid biosynthesis (Livshultz et al., proach, and even plastome data sets (Livshultz, 2010; Fishbein 2018). These two genes are not considered further in the reported et al., 2018). However, understanding the evolution of second- results of this paper. ary metabolite biosynthetic pathways and other traits, such as The genes targeted across Apocynaceae were compared with floral structure and pollen aggregation, in these plants requires the set of genes targeted in Asclepias by Weitemier et al. (2014) a well-resolved phylogeny, which could be inferred based on in- and the universal angiosperm probe set (Johnson et al., 2019) formation from hundreds of nuclear genes using a target capture using reciprocal BLASTN (E-value threshold of 10−6, mini- sequencing approach. mum percentage of identity of 80%; Altschul et al., 1990) and Previously, Weitemier et al. (2014) used the Hyb-Seq pipe- Python custom scripts (Python version 2.7.12; Python Software line to identify loci for probe design for targeted sequencing in Foundation, 2016). one genus of Apocynaceae, Asclepias L. They identified 768 sin- gle-copy genes and demonstrated their utility in two subtribes Taxon sampling, library preparation, and targeted sequencing of Asclepiadeae (Asclepiadoideae), and this set has subsequently been utilized to successfully resolve relationships among Asclepias Probes were tested for target enrichment success in 15 species species (Boutte et al., 2019). However, Weitemier et al. (2014) also of Apocynaceae spanning the diversity of the family and
Recommended publications
  • Evolução Cromossômica Em Plantas De Inselbergues Com Ênfase Na Família Apocynaceae Juss. Angeline Maria Da Silva Santos
    UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CAMPUS II – AREIA-PB Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. Angeline Maria Da Silva Santos AREIA - PB AGOSTO 2017 UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CAMPUS II – AREIA-PB Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. Angeline Maria Da Silva Santos Orientador: Prof. Dr. Leonardo Pessoa Felix Tese apresentada ao Programa de Pós-Graduação em Agronomia, Universidade Federal da Paraíba, Centro de Ciências Agrárias, Campus II Areia-PB, como parte integrante dos requisitos para obtenção do título de Doutor em Agronomia. AREIA - PB AGOSTO 2017 Catalogação na publicação Seção de Catalogação e Classificação S237e Santos, Angeline Maria da Silva. Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. / Angeline Maria da Silva Santos. - Areia, 2017. 137 f. : il. Orientação: Leonardo Pessoa Felix. Tese (Doutorado) - UFPB/CCA. 1. Afloramentos. 2. Angiospermas. 3. Citogenética. 4. CMA/DAPI. 5. Ploidia. I. Felix, Leonardo Pessoa. II. Título. UFPB/CCA-AREIA A Deus, pela presença em todos os momentos da minha vida, guiando-me a cada passo dado. À minha família Dedico esta conquista aos meus pais Maria Geovânia da Silva Santos e Antonio Belarmino dos Santos (In Memoriam), irmãos Aline Santos e Risomar Nascimento, tios Josimar e Evania Oliveira, primos Mayara Oliveira e Francisco Favaro, namorado José Lourivaldo pelo amor a mim concedido e por me proporcionarem paz na alma e felicidade na vida. Em especial à minha mãe e irmãos por terem me ensinado a descobrir o valor da disciplina, da persistência e da responsabilidade, indispensáveis para a construção e conquista do meu projeto de vida.
    [Show full text]
  • FDA OTC Reviews Summary of Back Issues
    Number 23 The Journal of the AMERICAN BOTANI CAL COUNCIL and the HERB RESEARCH FOUNDATION Chinese Medicinals -A Comprehensive Review of Chinese Materia Medica Legal and Regulatory- FDA OTC Reviews Summary of Back Issues Ongoing Market Report, Research Reviews (glimpses of studies published in over a dozen scientific and technical journals), Access, Book Reviews, Calendar, Legal and Regulatory, Herb Blurbs and Potpourri columns. #1 -Summer 83 (4 pp.) Eucalyptus Repels Reas, Stones Koalas; FDA OTC tiveness; Fungal Studies; More Polysaccharides; Recent Research on Ginseng; Heart Panel Reviews Menstrual & Aphrodisiac Herbs; Tabasco Toxicity?; Garlic Odor Peppers; Yew Continues to Amaze; Licorice O.D. Prevention; Ginseng in Perspec­ Repels Deer; and more. tive; Poisonous Plants Update; Medicinal Plant Conservation Project; 1989 Oberly #2- Fall/Winter 83-84 (8 pp.) Appeals Court Overrules FDA on Food Safety; Award Nominations; Trends in Self-Care Conference; License Plates to Fund Native FDA Magazine Pans Herbs; Beware of Bay Leaves; Tiny Tree: Cancer Cure?; Plant Manual; and more. Comfrey Tea Recall; plus. #17-Summer 88. (24 pp.) Sarsaparilla, A Literature Review by Christopher #3-Spring 84 (8 pp.) Celestial Sells to Kraft; Rowers and Dinosaurs Demise?; Hobbs; Hops May Help Metabolize Toxins; Herbal Roach Killer; Epazote Getting Citrus Peels for Kitty Litter; Saffron; Antibacterial Sassafras; WHO Studies Anti· More Popular, Aloe Market Levels Off; Herbal Tick Repellent?; Chinese Herb fertility Plants; Chinese Herbal Drugs; Feverfew Migraines;
    [Show full text]
  • Vessel Grouping Patterns in Subfamilies Apocynoideae and Periplocoideae Confirm Phylogenetic Value of Wood Structure Within Apocynaceae
    Lens, F; Endress, M E; Baas, P; Jansen, S; Smets, E (2009). Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae. American Journal of Botany, 96(12):2168-2183. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: American Journal of Botany 2009, 96(12):2168-2183. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2009 Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae Lens, F; Endress, M E; Baas, P; Jansen, S; Smets, E Lens, F; Endress, M E; Baas, P; Jansen, S; Smets, E (2009). Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae. American Journal of Botany, 96(12):2168-2183. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: American Journal of Botany 2009, 96(12):2168-2183. Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae Abstract This study contributes to our understanding of the phylogenetic significance and major evolutionary trends in the wood of the dogbane family (Apocynaceae), one of the largest and economically most important angiosperm families. Based on LM and SEM observations of 56 Apocynoideae species—representing all currently recognized tribes—and eight Periplocoideae, we found striking differences in vessel grouping patterns (radial multiples vs.
    [Show full text]
  • Unearthing Belowground Bud Banks in Fire-Prone Ecosystems
    Unearthing belowground bud banks in fire-prone ecosystems 1 2 3 Author for correspondence: Juli G. Pausas , Byron B. Lamont , Susana Paula , Beatriz Appezzato-da- Juli G. Pausas 4 5 Glo'ria and Alessandra Fidelis Tel: +34 963 424124 1CIDE-CSIC, C. Naquera Km 4.5, Montcada, Valencia 46113, Spain; 2Department of Environment and Agriculture, Curtin Email [email protected] University, PO Box U1987, Perth, WA 6845, Australia; 3ICAEV, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile; 4Depto Ci^encias Biologicas,' Universidade de Sao Paulo, Av P'adua Dias 11., CEP 13418-900, Piracicaba, SP, Brazil; 5Instituto de Bioci^encias, Vegetation Ecology Lab, Universidade Estadual Paulista (UNESP), Av. 24-A 1515, 13506-900 Rio Claro, Brazil Summary To be published in New Phytologist (2018) Despite long-time awareness of the importance of the location of buds in plant biology, research doi: 10.1111/nph.14982 on belowground bud banks has been scant. Terms such as lignotuber, xylopodium and sobole, all referring to belowground bud-bearing structures, are used inconsistently in the literature. Key words: bud bank, fire-prone ecosystems, Because soil efficiently insulates meristems from the heat of fire, concealing buds below ground lignotuber, resprouting, rhizome, xylopodium. provides fitness benefits in fire-prone ecosystems. Thus, in these ecosystems, there is a remarkable diversity of bud-bearing structures. There are at least six locations where belowground buds are stored: roots, root crown, rhizomes, woody burls, fleshy
    [Show full text]
  • Genome Survey and SSR Analysis of Apocynum Venetum
    Bioscience Reports (2019) 39 BSR20190146 https://doi.org/10.1042/BSR20190146 Research Article Genome survey and SSR analysis of Apocynum venetum Guo-qi Li1,2,Li-xiaoSong1,2, Chang-qing Jin1,2,MiaoLi1,3, Shi-pei Gong1,2 and Ya-fang Wang1,2 1Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Yinchuan 750021, Ningxia, P.R. China; 2Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia 750021, P.R. China; 3Ningxia Academy of Agro-Forestry Science, Ningxia 750002, P.R. China Downloaded from http://portlandpress.com/bioscirep/article-pdf/39/6/BSR20190146/845714/bsr-2019-0146.pdf by guest on 02 October 2021 Correspondence: Guo-qi Li ([email protected]) or Li-xiao Song ([email protected]) Apocynum venetum is an eco-economic plant that exhibits high stress resistance. In the present paper, we carried out a whole-genome survey of A. venetum in order to provide a foundation for its whole-genome sequencing. High-throughput sequencing technology (Illumina NovaSep) was first used to measure the genome size of A. venetum, and bioin- formatics methods were employed for the evaluation of the genome size, heterozygosity ratio, repeated sequences, and GC content in order to provide a foundation for subsequent whole-genome sequencing. The sequencing analysis results indicated that the preliminary estimated genome size of A. venetum was 254.40 Mbp, and its heterozygosity ratio and per- centage of repeated sequences were 0.63 and 40.87%, respectively, indicating that it has a complex genome. We used k-mer = 41 to carry out a preliminary assembly and obtained contig N50, which was 3841 bp with a total length of 223949699 bp.
    [Show full text]
  • Apocynaceae, Secamonoideae) from Borneo
    BLUMEA 49: 129–133 Published on 3 May 2004 doi: 10.3767/000651904X486232 A NEW SPECIES OF SECAMONE (APOCYNACEAE, SECAMONOIDEAE) FROM BORNEO JENS KLACKENBERG Naturhistoriska riksmuseet, Sektionen för fanerogambotanik, Box 50007, SE-10405 Stockholm, Sweden; e-mail: [email protected] SUMMARY A new species of Secamone (Apocynaceae, Secamonoideae), S. badia Klack. from Sarawak, Malaysia, is described and illustrated. The distinctness of the genera Toxocarpus and Genianthus in relation to Secamone is also discussed. Key words: Apocynaceae, Secamone, Toxocarpus, Borneo, new species. INTRODUCTION During a worldwide revision of subfamily Secamonoideae (Apocynaceae) I came across a specimen from Borneo that does not fit into any known taxon and must be described as a new species of Secamone R.Br. Secamone consists of suffrutescent twiners or small scrambling herbs to rarely erect shrublets with usually white to yellow small flowers. The genus is distributed in southern and tropical Africa as well as in Madagascar and on several smaller islands in the Indian Ocean. In Asia it is found in Sri Lanka and southern India to the Himalayas, and from southern China in the northwest through South East Asia to eastern Australia and New Caledonia (Goyder, 1992; Klackenberg, 1992a, b, 2001). Asian Secamonoideae have not been the object of more comprehensive taxonomic work on subfamily (tribe) level since Tsiang (1939) revised this group. Secamonoideae are characterized by translators bearing four pollinia, not two as in Asclepiadoideae, nor furnished with a spoon-like pollen carrier as in Periplocoideae (see Endress & Bruyns (2000) for a classification of Apocynaceae with Asclepiadaceae included). In Asia four genera have been recognized in Secamonoideae, viz.
    [Show full text]
  • Sand-Dune Vegetation of Igneada Coast in the Thracian Part of Turkey
    HACQUETIA 6/2 • 2007, 171–182 DOI: 10.2478/v10028–007–00010–z Sand-dUnE vEgetation of IgneadA CoAsT In the THracian pArT of TUrkey Ali KAVgACI* Abstract Igneada is located in the northwest part of Turkey on the Black Sea coast and it is also near the national bor- der between Turkey and Bulgaria. The Igneada region was accepted as one of the most important plant areas of Turkey. In this work, a study was made on the phytosociological structure of Igneada sand dune vegetation, which is the one of the important components of the richness in the region. At the end of the assessment of the data, 3 communities were defined. These communities are otantho-leymetum sabulosi, medicago rigidula- Cionura erecta basal community and meadow behind the sand dune. The part of the sand dune closest to the sea has width of 30 m, ascends with a specific inclination and has no vegetation coverage. Behind this part, otantho-leymetum sabulosi occurs at places where the sand dune has an unstable structure. The medicago rigi- dula-Cionura erecta basal community appears behind �������������������������otantho-leymetum sabulosi and the sand dune has a stable structure at these areas. Behind these communities, another vegetation belt occurs, formed by the species that are cosmopolite or characteristic for meadow vegetation. Key words: Igneada, nature conservation, phytosociology, sand dune. Izvleček Igneada se nahaja v severozahodnem delu Turčije na obali Črnega morja ob državni meji med Turčijo in Bolgarijo. glede rastlinske raznovrstnosti je območje Igneada eno najpomembnejših v Turčiji. V članku je ob- ravnavana fitocenološka struktura vegetacije peščenih sipin, ki je ena najpomembnejših sestavin rastlinskega bogatstva območja.
    [Show full text]
  • Phylogeny and Systematics of the Rauvolfioideae
    PHYLOGENY AND SYSTEMATICS Andre´ O. Simo˜es,2 Tatyana Livshultz,3 Elena OF THE RAUVOLFIOIDEAE Conti,2 and Mary E. Endress2 (APOCYNACEAE) BASED ON MOLECULAR AND MORPHOLOGICAL EVIDENCE1 ABSTRACT To elucidate deeper relationships within Rauvolfioideae (Apocynaceae), a phylogenetic analysis was conducted using sequences from five DNA regions of the chloroplast genome (matK, rbcL, rpl16 intron, rps16 intron, and 39 trnK intron), as well as morphology. Bayesian and parsimony analyses were performed on sequences from 50 taxa of Rauvolfioideae and 16 taxa from Apocynoideae. Neither subfamily is monophyletic, Rauvolfioideae because it is a grade and Apocynoideae because the subfamilies Periplocoideae, Secamonoideae, and Asclepiadoideae nest within it. In addition, three of the nine currently recognized tribes of Rauvolfioideae (Alstonieae, Melodineae, and Vinceae) are polyphyletic. We discuss morphological characters and identify pervasive homoplasy, particularly among fruit and seed characters previously used to delimit tribes in Rauvolfioideae, as the major source of incongruence between traditional classifications and our phylogenetic results. Based on our phylogeny, simple style-heads, syncarpous ovaries, indehiscent fruits, and winged seeds have evolved in parallel numerous times. A revised classification is offered for the subfamily, its tribes, and inclusive genera. Key words: Apocynaceae, classification, homoplasy, molecular phylogenetics, morphology, Rauvolfioideae, system- atics. During the past decade, phylogenetic studies, (Civeyrel et al., 1998; Civeyrel & Rowe, 2001; Liede especially those employing molecular data, have et al., 2002a, b; Rapini et al., 2003; Meve & Liede, significantly improved our understanding of higher- 2002, 2004; Verhoeven et al., 2003; Liede & Meve, level relationships within Apocynaceae s.l., leading to 2004; Liede-Schumann et al., 2005). the recognition of this family as a strongly supported Despite significant insights gained from studies clade composed of the traditional Apocynaceae s.
    [Show full text]
  • Medicinal Ethnobotany of the Kamiesberg, Namaqualand, Northern Cape Province, South Africa
    Medicinal ethnobotany of the Kamiesberg, Namaqualand, Northern Cape Province, South Africa by JANNEKE MARGARETHA NORTJE DISSERTATION submitted in fulfilment of the requirements for the degree MAGISTER SCIENTIAE in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: PROF B.-E. VAN WYK NOVEMBER 2011 UNIVERSITY OF JOHANNESBURG FACULTY OF SCIENCE DECLARATION ON SUBMISSION OF COPIES FOR EXAMINATION DECLARATION BY STUDENT STUDENT NUMBER: 201048933 ID NUMBER: 8710140052081 I, Mrs Janneke Margaretha Nortje hereby declare that this thesis submitted for the MSc degree in the department Botany and Plant biotechnology, for the ethnobotanical field of study at the University of Johannesburg, apart from the help recognised, is my own work and has not been formerly submitted to another university for a degree. APPROVED TITLE: Medicinal ethnobotany of the Kamiesberg, Namaqualand, South Africa POSTAL ADDRESS: TELEPHONE NUMBER: Breyerlaan 1399 HOME: 0129931921 Waverley CELL: 0827612925 Pretoria E-MAIL: [email protected] POSTAL CODE: 0186 SIGNATURE DATE 2 DECLARATION BY SUPERVISOR Approval for submission of examination copies is hereby granted to the abovementioned student. The title is as officially approved. An article ready for publishing has been submitted / has not been submitted. Satisfactory arrangements have been made. SIGNATURE OF SUPERVISOR DATE FOR OFFICE USE Registration and title are in order: FACULTY OFFICER DATE 3 ABSTRACT Scientific relevance: Qualitative and quantitative data is presented that give a new perspective on the traditional medicinal plants of the Khoisan (Khoe-San), one of the most ancient of human cultures. The data is not only of considerable historical and cultural value, but allows for fascinating comparative studies relating to new species records, novel use records and the spatial distribution of traditional medicinal plant use knowledge within the Cape Floristic Region.
    [Show full text]
  • Approved Conservation Advice for Ochrosia Moorei (Southern Ochrosia)
    This Conservation Advice was approved by the Minister / Delegate of the Minister on: 1/10/2008 Approved Conservation Advice (s266B of the Environment Protection and Biodiversity Conservation Act 1999) Approved Conservation Advice for Ochrosia moorei (Southern Ochrosia) This Conservation Advice has been developed based on the best available information at the time this Conservation Advice was approved; this includes existing plans, records or management prescriptions for this species. Description Ochrosia moorei, Family Apocynaceae, also known as Southern Ochrosia, is a small tree, sometimes crooked, with several stems, growing to 11 m. Bark is dark brown, finely wrinkled and rough. Leaves are 8–20 cm long, arranged in twos or threes, varying in shape but tapering to a long point at the tip and gradually narrowing at the base. They are green and shiny, paler beneath and thin in texture. When picked, leaf-stalks exude milky sap. Flowering occurs from December to February; small white flowers are held in small clusters at the ends of branchlets. The shiny scarlet fruit is oval and 4–8 cm long (DECC, 2005). Conservation Status Southern Ochrosia is listed as endangered. This species is eligible for listing as endangered under the Environment Protection and Biodiversity Conservation Act 1999 (Cwlth) (EPBC Act) as, prior to the commencement of the EPBC Act, it was listed as endangered under Schedule 1 of the Endangered Species Protection Act 1992 (Cwlth). Southern Ochrosia is also listed as endangered under the Threatened Species Conservation Act 1995 (NSW) and the Nature Conservation Act 1992 (Queensland). Distribution and Habitat Southern Ochrosia is known from north-east NSW and south-east Queensland.
    [Show full text]
  • Auwahi: Ethnobotany of a Hawaiian Dryland Forest
    AUWAHI: ETHNOBOTANY OF A HAWAIIAN DRYLAND FOREST. A. C. Medeiros1, C.F. Davenport2, and C.G. Chimera1 1. U.S. Geological Survey, Biological Resources Division, Haleakala Field Station, P.O. Box 369, Makawao, HI 96768 2. Social Sciences Department, Maui Community College, 310 Ka’ahumanu Ave., Kahului, HI 96732 ABSTRACT Auwahi district on East Maui extends from sea level to about 6800 feet (1790 meters) elevation at the southwest rift of leeward Haleakal¯a volcano. In botanical references, Auwahi currently refers to a centrally located, fairly large (5400 acres) stand of diverse dry forest at 3000-5000 feet (915- 1525 meters) elevation surrounded by less diverse forest and more open-statured shrubland on lava. Auwahi contains high native tree diversity with 50 dryland species, many with extremely hard, durable, and heavy wood. To early Hawaiians, forests like Auwahi must have seemed an invaluable source of unique natural materials, especially the wide variety of woods for tool making for agriculture and fishing, canoe building, kapa making, and weapons. Of the 50 species of native trees at Auwahi, 19 species (38%) are known to have been used for medicine, 13 species (26%) for tool-making, 13 species (26%) for canoe building 13 species (26%) for house building, 8 species (16%) for tools for making kapa, 8 species (16%) for weapons 8 species (16%) for fishing, 8 species (16%) for dyes, and 7 species (14 %) for religious purposes. Other miscellaneous uses include edible fruits or seeds, bird lime, cordage, a fish narcotizing agent, firewood, a source of "fireworks", recreation, scenting agents, poi boards, and h¯olua sled construction.
    [Show full text]
  • Floral Glands in Asclepiads: Structure, Diversity and Evolution
    Acta Botanica Brasilica - 31(3): 477-502. July-September 2017. doi: 10.1590/0102-33062016abb0432 Review Floral glands in asclepiads: structure, diversity and evolution Diego Demarco1 Received: December 7, 2016 Accepted: February 24, 2017 . ABSTRACT Species of Apocynaceae stand out among angiosperms in having very complex fl owers, especially those of asclepiads, which belong to the most derived subfamily (Asclepiadoideae). Th ese fl owers are known to represent the highest degree of fl oral synorganization of the eudicots, and are comparable only to orchids. Th is morphological complexity may also be understood by observing their glands. Asclepiads have several protective and nuptial secretory structures. Th eir highly specifi c and specialized pollination systems are associated with the great diversity of glands found in their fl owers. Th is review gathers data regarding all types of fl oral glands described for asclepiads and adds three new types (glandular trichome, secretory idioblast and obturator), for a total of 13 types of glands. Some of the species reported here may have dozens of glands of up to 11 types on a single fl ower, corresponding to the largest diversity of glands recorded to date for a single structure. Keywords: anatomy, Apocynaceae, Asclepiadoideae, diversity, evolution, fl ower, secretory structures considering its most derived subfamily Asclepiadoideae. Introduction Th e close relationship between the former families Apocynaceae and Asclepiadaceae has always been recognized Apocynaceae is an extremely diverse family in since its establishment as “Apocineae” by Jussieu (1789). morphological terms, represented by trees, shrubs, herbs and climbers, with single leaves usually opposite, rarely Although Brown (1810) divided it into two families and alternate or whorled, with stipules modifi ed in colleters in this separation had been maintained in the subsequent several species (Endress & Bruyns 2000; Capelli et al.
    [Show full text]