ATRINA FRAGILIS LARVAE David A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H. -
The Peculiar Protein Ultrastructure of Fan Shell and Pearl Oyster Byssus
Soft Matter View Article Online PAPER View Journal | View Issue A new twist on sea silk: the peculiar protein ultrastructure of fan shell and pearl oyster byssus† Cite this: Soft Matter, 2018, 14,5654 a a b b Delphine Pasche, * Nils Horbelt, Fre´de´ric Marin, Se´bastien Motreuil, a c d Elena Macı´as-Sa´nchez, Giuseppe Falini, Dong Soo Hwang, Peter Fratzl *a and Matthew James Harrington *ae Numerous mussel species produce byssal threads – tough proteinaceous fibers, which anchor mussels in aquatic habitats. Byssal threads from Mytilus species, which are comprised of modified collagen proteins – have become a veritable archetype for bio-inspired polymers due to their self-healing properties. However, threads from different species are comparatively much less understood. In particular, the byssus of Pinna nobilis comprises thousands of fine fibers utilized by humans for millennia to fashion lightweight golden fabrics known as sea silk. P. nobilis is very different from Mytilus from an ecological, morphological and evolutionary point of view and it stands to reason that the structure– Creative Commons Attribution 3.0 Unported Licence. function relationships of its byssus are distinct. Here, we performed compositional analysis, X-ray diffraction (XRD) and transmission electron microscopy (TEM) to investigate byssal threads of P. nobilis, as well as a closely related bivalve species (Atrina pectinata) and a distantly related one (Pinctada fucata). Received 20th April 2018, This comparative investigation revealed that all three threads share a similar molecular superstructure Accepted 18th June 2018 comprised of globular proteins organized helically into nanofibrils, which is completely distinct from DOI: 10.1039/c8sm00821c the Mytilus thread ultrastructure, and more akin to the supramolecular organization of bacterial pili and F-actin. -
Louisiana's Animal Species of Greatest Conservation Need (SGCN)
Louisiana's Animal Species of Greatest Conservation Need (SGCN) ‐ Rare, Threatened, and Endangered Animals ‐ 2020 MOLLUSKS Common Name Scientific Name G‐Rank S‐Rank Federal Status State Status Mucket Actinonaias ligamentina G5 S1 Rayed Creekshell Anodontoides radiatus G3 S2 Western Fanshell Cyprogenia aberti G2G3Q SH Butterfly Ellipsaria lineolata G4G5 S1 Elephant‐ear Elliptio crassidens G5 S3 Spike Elliptio dilatata G5 S2S3 Texas Pigtoe Fusconaia askewi G2G3 S3 Ebonyshell Fusconaia ebena G4G5 S3 Round Pearlshell Glebula rotundata G4G5 S4 Pink Mucket Lampsilis abrupta G2 S1 Endangered Endangered Plain Pocketbook Lampsilis cardium G5 S1 Southern Pocketbook Lampsilis ornata G5 S3 Sandbank Pocketbook Lampsilis satura G2 S2 Fatmucket Lampsilis siliquoidea G5 S2 White Heelsplitter Lasmigona complanata G5 S1 Black Sandshell Ligumia recta G4G5 S1 Louisiana Pearlshell Margaritifera hembeli G1 S1 Threatened Threatened Southern Hickorynut Obovaria jacksoniana G2 S1S2 Hickorynut Obovaria olivaria G4 S1 Alabama Hickorynut Obovaria unicolor G3 S1 Mississippi Pigtoe Pleurobema beadleianum G3 S2 Louisiana Pigtoe Pleurobema riddellii G1G2 S1S2 Pyramid Pigtoe Pleurobema rubrum G2G3 S2 Texas Heelsplitter Potamilus amphichaenus G1G2 SH Fat Pocketbook Potamilus capax G2 S1 Endangered Endangered Inflated Heelsplitter Potamilus inflatus G1G2Q S1 Threatened Threatened Ouachita Kidneyshell Ptychobranchus occidentalis G3G4 S1 Rabbitsfoot Quadrula cylindrica G3G4 S1 Threatened Threatened Monkeyface Quadrula metanevra G4 S1 Southern Creekmussel Strophitus subvexus -
Computational Modelling of Wet Adhesive Mussel Foot Proteins (Bivalvia): Insights Into the Evolutionary Convolution in Diverse Perspectives P
www.nature.com/scientificreports OPEN Computational modelling of wet adhesive mussel foot proteins (Bivalvia): Insights into the evolutionary convolution in diverse perspectives P. P. Anand & Y. Shibu Vardhanan Underwater adhesion in mussels (Bivalvia) is an extreme adaptation to achieve robust and frm wet adhesion in the freshwater/brackish/ocean, which biochemically shaped through millions of years. The protein-based adhesion has huge prospective in various felds like industry, medical, etc. Currently, no comprehensive records related to the systematic documentation of structural and functional properties of Mussel foot proteins (Mfps). In this study, we identifed the nine species of bivalves in which the complete sequence of at least one adhesive protein is known. The insilico characterization revealed the specifc physio-chemical structural and functional characters of each Mfps. The evolutionary analyses of selected bivalves are mainly based on Mfps, Mitogenome, and TimeTree. The outcome of the works has great applications for designing biomimetic materials in future. Some groups of mussels are capable to produce proteinaceous glue- like sticky material known as byssus thread made by an array of foot proteins (fps). Tis byssus contains mainly four parts i.e. Plaque, thread, stem, and root. Individual threads proximally merged together to form stem and base of the stem (root) deeply anchored at the base of animal foot. Each byssus threads terminating distally with a fattened plaque which mediates adhesion to the substratum1–4. Each part of the byssus thread complex formed by the auto-assembly of secretory products originating from four distinct glands enclosed in the mussel foot4,5. Tese mussel foot protein (Mfps), mastered the ability to binding the diverse substratum by using adhesive plaques. -
Nacre Tablet Thickness Records Formation Temperature in Modern and Fossil Shells
Lawrence Berkeley National Laboratory Recent Work Title Nacre tablet thickness records formation temperature in modern and fossil shells Permalink https://escholarship.org/uc/item/1rf2g647 Authors Gilbert, PUPA Bergmann, KD Myers, CE et al. Publication Date 2017-02-15 DOI 10.1016/j.epsl.2016.11.012 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Bivalve nacre preserves a physical indicator of paleotemperature Pupa U.P.A Gilbert1,2*, Kristin D. Bergmann3,4, Corinne E. Myers5,6, Ross T. DeVol1, Chang-Yu Sun1, A.Z. Blonsky1, Jessica Zhao2, Elizabeth A. Karan2, Erik Tamre2, Nobumichi Tamura7, Matthew A. Marcus7, Anthony J. Giuffre1, Sarah Lemer5, Gonzalo Giribet5, John M. Eiler8, Andrew H. Knoll3,5 1 University of Wisconsin–Madison, Department of Physics, Madison WI 53706 USA. 2 Harvard University, Radcliffe Institute for Advanced Study, Fellowship Program, Cambridge, MA 02138. 3 Harvard University, Department of Earth and Planetary Sciences, Cambridge, MA 02138. 4 Massachusetts Institute of Technology, Department of Earth, Atmospheric and Planetary Sciences, Cambridge, MA 02138. 5 Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138. 6 University of New Mexico, Department of Earth and Planetary Sciences, Albuquerque, NM 87131. 7 Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. 8 California Institute of Technology, Division of Geological and Planetary Sciences, Pasadena, CA 91125 * [email protected], previously publishing as Gelsomina De Stasio Abstract: Biomineralizing organisms record chemical information as they build structure, but to date chemical and structural data have been linked in only the most rudimentary of ways. In paleoclimate studies, physical structure is commonly evaluated for evidence of alteration, constraining geochemical interpretation. -
TREATISE ONLINE Number 48
TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North -
Guide to Theecological Systemsof Puerto Rico
United States Department of Agriculture Guide to the Forest Service Ecological Systems International Institute of Tropical Forestry of Puerto Rico General Technical Report IITF-GTR-35 June 2009 Gary L. Miller and Ariel E. Lugo The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable sex, marital status, familial status, parental status, religion, sexual orientation genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD).To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Authors Gary L. Miller is a professor, University of North Carolina, Environmental Studies, One University Heights, Asheville, NC 28804-3299. -
The Intermingling of Benthic Macroinvertebrate Communities During a Period of Shifting Range: the “East of Nantucket” Atlant
Received: 2 November 2018 | Revised: 1 April 2019 | Accepted: 13 May 2019 DOI: 10.1111/maec.12546 ORIGINAL ARTICLE The intermingling of benthic macroinvertebrate communities during a period of shifting range: The “East of Nantucket” Atlantic Surfclam Survey and the existence of transient multiple stable states Eric N. Powell1 | Roger Mann2 | Kelsey M. Kuykendall1 | M. Chase Long2 | Jeremy R. Timbs1 1Gulf Coast Research Laboratory, University of Southern Mississippi, Ocean Springs, Abstract Mississippi A f survey o the region eastward of Nantucket provided an opportunity to examine 2 Virginia Institute of Marine Science, The the cold temperate–boreal boundary along the high-energy Great South Channel. College of William and Mary, Gloucester Point, Virginia Here described are the benthic macroinvertebrate community types encountered, with a focus on the influence of climate change on the range boundaries of the Correspondence Eric N. Powell, Gulf Coast Research benthic biomass dominants and the potential existence of transient multiple stable Laboratory, University of Southern states. The survey identified three primary community types. The shallowest sites Mississippi, 703 East Beach Drive, Ocean Springs, Mississippi 39564 were occupied by a surfclam-dominated community, comprising an abundance of Email: [email protected] large (≥150 mm) surfclams, and a few common attached epibiota primarily attached Funding information to exposed surfclam shell. Two communities exist at intermediate depths, one domi- National Science Foundation’s Industry/ nated by submarket and small market‐size surfclams (<150 mm) and the other, created University Cooperative Research Center SCeMFiS (Science Center for Marine by mussel mats and their attendant epibiota, crabs, sea urchins, and other mobile epi- Fisheries), Grant/Award Number: NSF fauna. -
Zoologische Mededelingen Uitgegeven Door Het
ZOOLOGISCHE MEDEDELINGEN UITGEGEVEN DOOR HET RIJKSMUSEUM VAN NATUURLIJKE HISTORIE TE LEIDEN (MINISTERIE VAN CULTUUR, RECREATIE EN MAATSCHAPPELIJK WERK) Deel 53 no. 13 25 oktober 1978 THE MARINE MOLLUSCAN ASSEMBLAGES OF PORT SUDAN, RED SEA by M. MASTALLER Ruhr-Universität Bochum, Lehrstuhl für Spez. Zoologie Bochum, West-Germany With one text-figure and one table ABSTRACT This study summarizes field observations and collections of the molluscan fauna of the coastal and offshore reefs in the area of Port Sudan, Central Red Sea. In spite of the fact that some families of this group were described from several areas of the Red Sea, there exists only little information on the entire faunal composition of this region. 282 species of Amphineura, Gastropoda, and Bivalvia, collected and studied in nine localities are listed according to their habitats. Moreover, descriptions of the prominent members of typical molluscan assemblages are given for 13 habitats and microhabitats which differ in their morphological structures and in their hydrographic and physiographic conditions. Emphasis is placed on further studies on the trophic interactions within certain habitats. INTRODUCTION Although there is a considerable number of taxonomie literature on some molluscan families in the Indo-West-Padfic (Abbott, i960; Burgess, 1970; Cernohorsky, 1967; Habe, 1964; Kira, 1962; Powell, 1964; Rosewater, 1965), there is comparatively scarce information for the Red Sea. After the exten• sive surveys and descriptions of Issel, 1869, Hall & Standen, 1907, Jickeli, 1874, Shopland, 1902, and Sturany, 1901, 1903, in more recent times only a few studies were published on the entire faunal composition of molluscs in this region. Most of these publications deal with certain families, sometimes they also give information about their zoogeographical distribution in the Red Sea: Thus the cypraeids seem to yield the best information on their occurrence throughout the region (Foin, 1972; Mienis, 1971b; O'Malley, 1971; Schilder, 1965). -
Marine Biodiversity in India
MARINEMARINE BIODIVERSITYBIODIVERSITY ININ INDIAINDIA MARINE BIODIVERSITY IN INDIA Venkataraman K, Raghunathan C, Raghuraman R, Sreeraj CR Zoological Survey of India CITATION Venkataraman K, Raghunathan C, Raghuraman R, Sreeraj CR; 2012. Marine Biodiversity : 1-164 (Published by the Director, Zool. Surv. India, Kolkata) Published : May, 2012 ISBN 978-81-8171-307-0 © Govt. of India, 2012 Printing of Publication Supported by NBA Published at the Publication Division by the Director, Zoological Survey of India, M-Block, New Alipore, Kolkata-700 053 Printed at Calcutta Repro Graphics, Kolkata-700 006. ht³[eg siJ rJrJ";t Œtr"fUhK NATIONAL BIODIVERSITY AUTHORITY Cth;Govt. ofmhfUth India ztp. ctÖtf]UíK rvmwvtxe yÆgG Dr. Balakrishna Pisupati Chairman FOREWORD The marine ecosystem is home to the richest and most diverse faunal and floral communities. India has a coastline of 8,118 km, with an exclusive economic zone (EEZ) of 2.02 million sq km and a continental shelf area of 468,000 sq km, spread across 10 coastal States and seven Union Territories, including the islands of Andaman and Nicobar and Lakshadweep. Indian coastal waters are extremely diverse attributing to the geomorphologic and climatic variations along the coast. The coastal and marine habitat includes near shore, gulf waters, creeks, tidal flats, mud flats, coastal dunes, mangroves, marshes, wetlands, seaweed and seagrass beds, deltaic plains, estuaries, lagoons and coral reefs. There are four major coral reef areas in India-along the coasts of the Andaman and Nicobar group of islands, the Lakshadweep group of islands, the Gulf of Mannar and the Gulf of Kachchh . The Andaman and Nicobar group is the richest in terms of diversity. -
Genetic Structure of the Endangered Species Pinna Nobilis (Mollusca: Bivalvia) Inferred from Mtdna Sequences
Biologia 63/3: 412—417, 2008 Section Zoology DOI: 10.2478/s11756-008-0061-8 Genetic structure of the endangered species Pinna nobilis (Mollusca: Bivalvia) inferred from mtDNA sequences Vassilios Katsares, Anna Tsiora,SofiaGalinou-Mitsoudi &AnastasiaImsiridou Department of Fisheries and Aquaculture Technology, Alexander Technological Educational Institute of Thessaloniki, N. Mil- tiadi 1,GR-63200, Nea Moudania, Halkidiki, Greece; e-mail: [email protected] Abstract: This study examines the population genetic structure of the endangered bivalve Pinna nobilis (Mollusca: Bi- valvia), based on novel mtDNA sequences (partial COI and 16S rDNA mtDNA genes). The analyzed nucleotide sequences of COI were 729 bp in size, coding for a 243 amino acid peptide, while the analyzed nucleotide sequences of 16S rDNA were 489 bp in size. These sequences of P. nobilis were the first DNA sequences of the species submitted to any Genetic Data Base. Population samples from four geographic regions from Greece, as well as a population sample of Atrina fragilis (as an outgroup) were used. High values of haplotypic diversity were found in the population samples of P. nobilis, based on the COI sequences. A single base in the analyzed 16S rDNA sequences was different in all analyzed individuals from a single population sample (Chios island) differentiating it from the other ones. These mtDNA sequences could be informative for further genetic analyses of the endangered species, contributing in conservation plans for its protection and/or aquaculture investigations. Key words: Pinna nobilis; mtDNA; genetic structure; sequencing; COI; 16S rDNA; Bivalvia Introduction thermore, only few mtDNA sequences from Pinnidae bi- valves have been characterized, despite the occurrence Pinna nobilis L., 1758 (endemic in the Mediterranean of endangered and of economic importance species. -
Population Dynamics of the Comb Pen Shell Atrina Pectinata
Philippine Journal of Science 150 (3): 1051-1060, June 2021 ISSN 0031 - 7683 Date Received: 21 Dec 2020 Population Dynamics of the Comb Pen Shell Atrina pectinata (Linnaeus, 1767) (Mollusca, Bivalvia: Pinnidae) Collected by Diving from Shallow Areas of the Southwest Visayan Sea, Northeastern Panay Island, Philippines Annabelle del Norte-Campos*, Switzel S. Lapara, and Kris Angeli S. Sanchez Marine Biology Lab, Division of Biological Sciences College of Arts and Sciences, University of Philippines Visayas Miagao, Iloilo, Philippines With the objective of determining the population dynamics of the comb pen shell (Atrina pectinata) (Mollusca, Bivalvia: Pinnidae) collected by divers in the southwest Visayan Sea, length-frequency data recorded between June 2018 and May 2019 were analyzed using the FiSAT software. von Bertalanffy growth parameters for the species were SL = 40.69 cm and K = 0.78 yr–1 the range of values for other fast-growing tropical bivalves. The estimated mean growth rate of 0.15 ± 0.05 cm d–1 likewise supports a fast growth rate and a short lifespan (< 1 yr) of the population. The recruitment pattern shows one major and minor pulse that coincides with the northeast monsoon and just prior to the southwest monsoon, respectively. Using ELEFAN II, total mortality (Z) of 2.79 yr–1 was estimated. From an averaged M/K value from the related bivalve literature (1.51) multiplied by the species’ own K, natural mortality (M) of 1.18 yr–1 was estimated, which when subtracted from the Z, gave fishing mortality (F) of 1.61 yr-1 and an exploitation rate E of 0.58, considered overexploited.