Cretaceous and Tertiary Formations of the Book Cliffs Carbon, Emery, and Grand Counties, Utah, and Garfield and Mesa Counties, Colorado by D

Total Page:16

File Type:pdf, Size:1020Kb

Cretaceous and Tertiary Formations of the Book Cliffs Carbon, Emery, and Grand Counties, Utah, and Garfield and Mesa Counties, Colorado by D Cretaceous and Tertiary Formations of the Book Cliffs Carbon, Emery, and Grand Counties, Utah, and Garfield and Mesa Counties, Colorado By D. JEROME FISHER, CHARLES E. ERDMANN, and JOHN B. REESIDE, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 332 A description of J,OOO feet of strata ranging in age from Early Cretaceous to Eocene UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1960 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows: Fisher, Daniel Jerome, 1896- Cretaceous and Tertiary formations of the Book Cliffs, Carbon, Emery, and Grand Counties, Utah, and Garfield and Mesa Counties, Colorado, by D. Jerome Fisher, Charles E. Erdmann, and John B. Reeside, Jr. Washington, U.S. Govt. Print. Off., 1959. iv, 80 p. illus., maps, diagrs., tables. 30 cm. (U.S. Geological Sur­ vey. Professional paper 332) Part of illustrative matter in pocket. Bibliography: p. 76-78. 1. Geology, Stratigraphic Cretaceous. 2. Geology, Stratigraphic Tertiary. 3. Geology Utah. 4. Geology Colorado. I. Erdmann, Charles Edgar, 1897- joint author. II. Reeside, John Bernard, 1889-1958, joint author. III. Title: Book Cliffs. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. Pago Page Abstract _________--__________-----_-_-_--_______ 1 Tertiary system Continued Introduction _______________________________________ 1 "Wasatch" formation.__________________________ 22 Location and character of the area.________________ 2 Green River formation._________________________ 22 Fieldwork and acknowledgments.__-_.___--______.. 2 Age and correlation of the formations. -_-_-----_-_____- 22 Previous work in the region._____._____-___-_-_-______ 4 Standard sequence of Cretaceous of the western The formations._____________-___--___-__---____-___ 5 interior region.__-_-__-__----_--__--__________ 22 Pre-Cretaceous formations.____-_--___-_--.______ - 5 Lower Cretaceous units__-_-__--_--____________ 24 Cretaceous and Tertiary formations.______________ 6 Dakota sandstone_____________________________ 24 Sources of the nomenclature of the Cretaceous formations _ 6 Mancos shale__________---____-_--____-______ 26 Cretaceous system __________________________________ 7 Mesaverde group_______________________________ 31 Lower Cretaceous units_______---___-__-_______ 7 Blackhawk formation _______________________ 31 Dakota sandstone_____________________________ 7 Castlegate sandstone._______________________ 31 Man cos shale. --__-___-_--__--_--_---___-____-_- 8 Price River formation (restricted)___________ 31 Mesaverde group_-_____-_____----------_-_----_ 9 Buck tongue of Mancos shale ________________ 32 Blackhawk formation.__________________________ 11 Sego sandstone_____________________________ 33 Formations above Blackhawk formation. __________ 13 Neslen formation ___________________________ 33 Utah west of the Green River (western Book Cliffs) _ 13 Farrer formation__________________________ 33 Castlegate sandstone.___________________ 13 Tuscher formation____.-___---_-____________ 34 Price River formation (restricted)_______ 14 Mount Garfield formation and Rollins sandstone Utah east of the Green River and in Colorado member, Bowie shale member, and Paonia (central and eastern Book Cliffs) ______ 14 shale member of the Mesaverde formation.___ 34 Castlegate sandstone.___________________ 15 Hunter Canyon formation and undifferentiated Buck tongue of Mancos shale__________ 15 member of Mesaverde formation.___________ 36 Sego sandstone and included Anchor Mine North Horn and Flagstaff formations undifferen­ tongue of the Mancos shale____________ 15 tiated _______________________________________ 36 Units between the Sego sandstone and the Unnamed sandstone___________________________ 36 Tertiary formations.__________________ 16 Colton and "Wasatch" formations.__-_____________ 36 Neslen formation _______________________ 17 Green River formation._________________________ 36 Farrer formation______-_____---___--. 17 Nonmarine faunas in the sequence.____________________ 36 Tuscher formation,_____________________ 18 Origin of the formations__-_-___-__._--_-____________ 38 Mount Garfield formation. _ ______________ 19 Lower Cretaceous units________________________ 38 Hunter Canyon formation._______________ 20 Dakota sandstone_____----__-----__-_________ 38 Cretaceous and Tertiary systems._____________________ 20 Mancos shale and Mesaverde group _______________ 38 North Horn and Flagstaff formations undifferen- Post-Mesaverde formations ______________________ 40 tiated ______________________________________ 21 Regional relations_________________________________ 40 Tertiary system____________________________________ 21 Local sections ______________________________________ 41 Colton formation___________-_----___-_---_-__-_ 21 References_________________________________________ 76 Unnamed sandstone__-_-__-----____-----______ 22 Index.____________________________________________ 79 ILLUSTRATIONS Page Page PLATE 1. Generalized geologic map of Book Cliffs._ In pocket PLATE 5. A, East side of canyon of West water Wash at 2. A, Boulder-strewn shale slope at base of Book the Roberson Ranch, Utah: B, weathered sur­ Cliffs east of Desert, Utah; B, Mancos flat face of upper, white, part of Sego sandstone, south of Beckwith Plateau, Utah; C, Blue- [12 north of Cisco, Utah; C, rippled surface of castle Canyon in Beckwith Plateau, Utah. Follows Castlegate sandstone, northwest of Cisco, 3. A, Southwest edge of Beckwith Plateau, Utah____________________ Follows 28 Utah; B, Gunnison Butte, Utah; C, Book 6. A, Crescent Wash and Crescent Butte, Utah; Cliffs east of Tuscher Wash, Utah __ Follows 12 B, Sego sandstone northwest of Thompson, 4. A, Basal conglomerate in "Wasatch" forma­ Utah; C, "Wasatch" strata on east side of tion, east side of Nash Wash, northwest of Nash Wash, Utah____________ Follows 28 Cisco, Utah; B, Castlegate sandstone and 7. A, Book Cliffs, 7 miles north of Woodside, upper part of Blackhawk formation, west Utah, looking northeast; B, Castlegate and face of Beckwith Plateau, Utah; C, Castle­ Blackhawk formations, Nash Wash re-en­ gate sandstone in side canyon of Crescent trant, northwest of Cisco, Utah; C, wide al- [28 Wash, Utah..._____________. Follows 28 luvial flat, canyon of Saleratus Wash, Utah. Follows m IV CONTENTS Page Page PLATE 8. Views in Horse Canyon area, Utah. A, PLATE 10. Columnar sections of Book Cliffs and adjacent Castlegate sandstone; B, fault cutting Blue- areas in Utah and Colorado_._________ In pocket castle sandstone member of Price River formation; C, Patmos Head; D, contact of 11. Cretaceous strata encircling the Canyon North Horn and Flagstaff formations un- Lands-______-_-_-_-________________ In pocket differentiated on Bluecastle member of Price River formation.____________ Follows 36 12. Perspective diagram of correlations from 9. Views in Horse Canyon area. A, view southwestern Utah across east-central Utah looking into Sheep Canyon; B, view of for­ to southwestern Colorado-__________ In pocket mations in sec. 4, T. 16 S., R. 14 E.; C, con­ tact of Colton formation on North Horn and FIGURE 1. Index map showing relation of Book Cliffs, Flagstaff formations undifferentiated-. Follows 36 Utah and Colorado, to adjacent areas.____ 3 TABLES Page Page TABLE 1. Correlation of formations in Book Cliffs and TABLE 11. Fossils found at various localities in the other areas.___________________________ 24 Castlegate sandstone__________________ 32 2. Invertebrate fossils from the Dakota sand­ 12. Fossils found at various localities in the Price stone _________________________________ 25 River formation (restricted)_____________ 32 3. Fossils found at various localities in the upper 13. Fossils found at various localities in the Buck Greenhorn equivalent._________________ 26 tongue of Mancos shale___________._____ 32 4. Fossils found at various localities in the lower 14. Fossils found at various localities in the Sego Carlile equivalent._____________________ 27 sandstone.____________________________ 33 5. Fossils found at various localities in the middle 15. Fossils found at various localities in the Neslen Carlile equivalent_______________----_-_ 28 formation. ____________________________ 34 6. Fossils found at various localities in the Ni- 16. Fossils found at various localities in the Farrer obrara equivalent, to base of Telegraph formation _____________________________ 34 Creek equivalent.______________________ 29 17. Fossils found at various localities in the lower 7. Fossils found at various localities in the Tele­ part of the Mount Garfield formation _____ 35 graph Creek equivalent______-____-_____ 29 18. Fossils found at various localities in the upper 8. Fossils found at various localities in the Eagle part of the Mount Garfield formation and equivalents.___________________________ 35 equivalent- ____________________________ 29 19. Fossils found at various localities in the un­ 9. Fossils found' at various localities in the differentiated member of the Mesaverde equivalents of the lower part of the Pierre formation _____________________________ 36 shale.. __________________________ 30 20. Fossils found at various localities in the North 10. Fossils found at various localities in the upper Horn and Flagstaff formations undifferenti­ part of the Blackhawk formation _________ 32 ated- _______------_____-_--_-------___ 36 CRETACEOUS AND TERTIARY FORMATIONS OF THE BOOK CLIFFS, CARBON,
Recommended publications
  • Historical Information H.4 Pre-Event Reports Book 1 Project Rulison: Pre
    Historical Information H.4 Pre-Event Reports Book 1 Project Rulison: Pre-Shot Predictions of Structural Effects HPR .2 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. PROJECT RULISON: Pre - Shot Predictions of Structural Effects John A. -~lume& Associates Research Division San ~rancisco,California March 1969 Prepared under Contract AT(26-1)-99 for the Nevada Operations Office, USAEC This page intentionally left blank PROJECT RULISON: PRE-SHOT PREDICTIONS OF STRUCTURAL EFFECTS CONTENTS -Page ABSTRACT ......................../'. .... i i I SUMMARY ............................ v INTRODUCTION.......................... 1 SEISMICITY ........................... 2 STRUCTURAL HAZARD EVALUATION .................. 3 EARTH STRUCTURAL HAZARDS .................... 11 HYDRAULIC STRUCTURE AND WATER SUPPLY HAZARDS .......... 17 SAFETY PRECAUTIONS AND EVACUATION RECOMt4ENDATIONS ....... 22 DAMAGE COST PREDICTIONS .................... 24 CONDITION SURVEYS ....................... 26 MAP (In pocket inside back cover) This page intentionally left blank . ~ ABSTRACT This report includes results of pre-RULISON structural response investigations and a preliminary evaluation of hazards associated with ground motion effects on buildings, reservoirs, and earth structures. Total damage repair costs from an engineering judg- ment prediction are provided. Spectral Matrix Method calcula- tions are now in progress. Also included are general safety recommendations. A summary of predictions follows: Structural Response Damaging motions are probable in the region inside 25 kilometers. Structural hazards exist in Grand Valley, at the Anvil Points Research Station, and at various small ranches out to a distance of 14 ki lometers from Ground Zero (GZ) . The area is much more densely populated than would appear from initial project informa- tion. Earth Structure Hazards Rockfall and hazards to slope stability create major problems.
    [Show full text]
  • Richard Dallin Westwood: Sheriff and Ferryman of Early Grand County
    Richard Dallin Westwood: Sheriff and Ferryman of Early Grand County BY JEAN M. WESTWOOD ON FEBRUARY I7, I889, RICHARD DALLIN WESTWOOD, twenty-six years old, left Mount Pleasant, Utah, bound for Moab, a settlement in the far eastern edge of what was then Emery County. He was looking for a piece of farm land on which he could build a home for himself, his young wife, Martha, and their baby daughter, Mary Ellen. It was just ten years since the first permanent settlers had moved into "Spanish Valley" by the Grand (Colorado) River in the southeast part of the territory. The valley had long been part of western history. Mrs. Westwood lives in Scottsdale, Arizona. Above: Richard Dallin Westwood, ca. 1888. All photographs accompanying this article are courtesy of the author. Richard Dallin Westwood 67 Indian "writings" are still found on the rocks. Manos, metates, arrow­ heads, stone weapons, and ancient bean, maize, and squash seeds have all been frequent finds throughout the area, attesting to early Indian cultures. The Spanish Trail through here was used first by the early Span­ iards as a route from New Mexico to California.^ Later it was used in part by Mexican traders, trappers, prospectors, and various Indian tribes. The first party traveling the entire trail apparently was led by WiUiam WolfskiU and George C. Young in the winter of 1830-31.2 In 1854 Brigham Young sent a small expedition under William D. Huntington to trade with the Navajos and explore the southern part of Utah territory. They used this route. The next year Young called forty- one men under Alfred N.
    [Show full text]
  • Geology of the Flathead Formation (Middle Cambrian) on the Perimeter
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects 1978 Geology of the Flathead Formation (Middle Cambrian) on the perimeter of the Bighorn Basin, Beartooth Mountains, and Little Belt Mountains in Wyoming and Montana Joel A. Degenstein University of North Dakota Follow this and additional works at: https://commons.und.edu/theses Part of the Geology Commons Recommended Citation Degenstein, Joel A., "Geology of the Flathead Formation (Middle Cambrian) on the perimeter of the Bighorn Basin, Beartooth Mountains, and Little Belt Mountains in Wyoming and Montana" (1978). Theses and Dissertations. 71. https://commons.und.edu/theses/71 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. GEOLOGY OF THE FLATHEAD FORMATION (MIDDLE CAMBRIAN) ON THE PERIMETER OF THE BIGHORN BASIN, BEARTOOTH MOUNTAINS, AND LITTLE BELT MOUNTAINS IN WYOMING AND MONTANA by Joel A. Degenstein Bachelor of Science in Geology, University of North Dakota, 1976 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota GEOLCGY LIBl(ARY August lJnivenitJ of Ncrtb Dakoll 1978 / . , '"\'';'.ft. ',I l This Thesis submicted by Joel A, Degenstein in partial fulfill­ ment of the requirements for the Degree of :·Iast:er of Science from ci:te University of ?forth Dakota is hereby app:.-c,·ed by the Faculty Advisory Col!llllittee under whom the work has been done.
    [Show full text]
  • High-Resolution Correlation of the Upper Cretaceous Stratigraphy Between the Book Cliffs and the Western Henry Mountains Syncline, Utah, U.S.A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences 5-2012 HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH, U.S.A. Drew L. Seymour University of Nebraska, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/geoscidiss Part of the Geology Commons, Sedimentology Commons, and the Stratigraphy Commons Seymour, Drew L., "HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH, U.S.A." (2012). Dissertations & Theses in Earth and Atmospheric Sciences. 88. http://digitalcommons.unl.edu/geoscidiss/88 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH, U.S.A. By Drew L. Seymour A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Christopher R. Fielding Lincoln, NE May, 2012 HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH. U.S.A. Drew L. Seymour, M.S.
    [Show full text]
  • Hydrogeology and Stratigraphy of the Dakota Formation in Northwest Iowa
    WATER SUPPLY HYDROGEOLOGY AND J.A. MUNTER BULLETIN G.A. LUDVIGSON NUMBER 13 STRATIGRAPHY OF THE B.J. BUNKER 1983 DAKOTA FORMATION IN NORTHWEST IOWA Iowa Geological Survey Donald L. Koch State Geologist and Director 123 North Capitol Street Iowa City, Iowa 52242 IOWA GEOLOGICAL SURVEY WATER-SUPPLY BULLETIN NO. 13 1983 HYDROGEOLOGY AND STRATIGRAPHY OF THE DAKOTA FORMATION IN NORTHWEST IOWA J. A. Munter G. A. Ludvigson B. J. Bunker Iowa Geological Survey Iowa Geological Survey Donald L. Koch Director and State Geologist 123 North Capitol Street Iowa City, Iowa 52242 Foreword An assessment of the quantity and quality of water available from the Dakota (Sandstone) Formation 1n northwest Iowa is presented in this report. The as sessment was undertaken to provide quantitative information on the hydrology of the Dakota aquifer system to the Iowa Natural Resources Council for alloca tion of water for irrigation, largely as a consequence of the 1976-77 drought. Most area wells for domestic, livestock, and irrigation purposes only partial ly penetrated the Dakota Formation. Consequently, the long-term effects of significant increases in water withdrawals could not be assessed on the basis of existing wells. Acquisition of new data was based upon a drilling program designed to penetrate the entire sequence of Dakota sediments at key loca tions, after a thorough inventory and analysis of existing data. Definition of the distribution, thickness, and lateral and vertical changes in composition of the Dakota Formation has permitted the recognition of two mem bers. Additionally, Identification of the rock units that underlie the Dakota Formation has contributed greatly to our knowledge of the regional geology of northwest Iowa and the upper midwest.
    [Show full text]
  • Book Cliffs the Book Cliffs Rise As If Startled out of the Mancos Shale Desert
    !People of the Book Cliffs The Book Cliffs rise as if startled out of the Mancos Shale desert. This bright edge stretches east-west, two hundred miles between Grand Junction, Colorado and Price, Utah, stair-stepping four thousand feet up from the desert to a summit that’s cloaked in aspen, fir, and spruce. Erosion has dissected the cliffs into isolated canyons, carved by intermittent streams that all flow south toward the Colorado River. Even so, the cliffs and canyons are considered part of the !Uinta Basin because their rock layers, like the Green River Formation, are tilted north. Pockets of true wilderness still exist within the Book Cliffs. Black bear, bighorn, mule deer, and cougars are at home in these canyons. People have lived in and moved through this country for thousands of years−the Utes most recently, the Fremont before them, and the enigmatic Barrier !Canyon people with their alien pictographs staring at us as if from outer space. Wolf Bennett and his daughters came here from Colorado to see the pictographs and to clamber around the rocks of Sego Canyon. Wolf’s spent his life as a guide and values what these canyons !offer his family−opportunities to discover, a diversion from cityscapes, a sense of wonder. A mile down canyon, Bob Holloway and his two adopted children were watering fruit trees at the ranch he’d recently bought. The roof needed work. Bob and his wife wanted to get out of the rat race in Green River. That town’s population of 900 might swell if a proposed oil refinery and nuclear power plant are built.
    [Show full text]
  • A New Microvertebrate Assemblage from the Mussentuchit
    A new microvertebrate assemblage from the Mussentuchit Member, Cedar Mountain Formation: insights into the paleobiodiversity and paleobiogeography of early Late Cretaceous ecosystems in western North America Haviv M. Avrahami1,2,3, Terry A. Gates1, Andrew B. Heckert3, Peter J. Makovicky4 and Lindsay E. Zanno1,2 1 Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA 2 North Carolina Museum of Natural Sciences, Raleigh, NC, USA 3 Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA 4 Field Museum of Natural History, Chicago, IL, USA ABSTRACT The vertebrate fauna of the Late Cretaceous Mussentuchit Member of the Cedar Mountain Formation has been studied for nearly three decades, yet the fossil-rich unit continues to produce new information about life in western North America approximately 97 million years ago. Here we report on the composition of the Cliffs of Insanity (COI) microvertebrate locality, a newly sampled site containing perhaps one of the densest concentrations of microvertebrate fossils yet discovered in the Mussentuchit Member. The COI locality preserves osteichthyan, lissamphibian, testudinatan, mesoeucrocodylian, dinosaurian, metatherian, and trace fossil remains and is among the most taxonomically rich microvertebrate localities in the Mussentuchit Submitted 30 May 2018 fi fi Accepted 8 October 2018 Member. To better re ne taxonomic identi cations of isolated theropod dinosaur Published 16 November 2018 teeth, we used quantitative analyses of taxonomically comprehensive databases of Corresponding authors theropod tooth measurements, adding new data on theropod tooth morphodiversity in Haviv M. Avrahami, this poorly understood interval. We further provide the first descriptions of [email protected] tyrannosauroid premaxillary teeth and document the earliest North American record of Lindsay E.
    [Show full text]
  • Download File
    Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2015 Kaori Tsukui All rights reserved ABSTRACT Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui The age of the Bridgerian/Uintan boundary has been regarded as one of the most important outstanding problems in North American Land Mammal “Age” (NALMA) biochronology. The Bridger Basin in southwestern Wyoming preserves one of the best stratigraphic records of the faunal boundary as well as the preceding Bridgerian NALMA. In this dissertation, I first developed a chronological framework for the Eocene Bridger Formation including the age of the boundary, based on a combination of magnetostratigraphy and U-Pb ID-TIMS geochronology. Within the temporal framework, I attempted at making a regional correlation of the boundary-bearing strata within the western U.S., and also assessed the body size evolution of three representative taxa from the Bridger Basin within the context of Early Eocene Climatic Optimum. Integrating radioisotopic, magnetostratigraphic and astronomical data from the early to middle Eocene, I reviewed various calibration models for the Geological Time Scale and intercalibration of 40Ar/39Ar data among laboratories and against U-Pb data, toward the community goal of achieving a high precision and well integrated Geological Time Scale. In Chapter 2, I present a magnetostratigraphy and U-Pb zircon geochronology of the Bridger Formation from the Bridger Basin in southwestern Wyoming.
    [Show full text]
  • Geological Survey
    DEPABTMENT OF THE INTEKIOR BULLETIN OF THE UNITED STATES GEOLOGICAL SURVEY N~o. 151 WASHINGTON GOVERNMENT PRINTING OFFICE 1898 UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIEECTOR THE LOWER CRETACEOUS GRYPMAS OF THK TEX.AS REGION ROBERT THOMAS HILL THOMAS WAYLA'ND VAUGHAN WASHINGTON GOVERNMENT FEINTING OFFICE 18.98 THE LOWER CRETACEOUS GRYPHJ1AS OF THE TEXAS REGION. BY I EOBEET THOMAS HILL and THOMAS WAYLAND VAUGHAN. CONTENTS. Page. Letter of transmittal....._..........._....._ ............................ 11 Introduction ...---._._....__................._....._.__............._...._ 13 The fossil oysters of the Texas region.._._.._.___._-..-._._......-..--.... 23 Classification of the Ostreidae. .. ...-...---..-.......-.....-.-............ 24 Historical statement of the discovery in the Texas region of the forms referred to Gryphsea pitcher! Morton ................................ 33 Gryphaea corrugata Say._______._._..__..__...__.,_._.________...____.._ 33 Gryphsea pitcheri Morton............................................... 34 Roemer's Gryphsea pitcheri............................................ 35 Marcou's Gryphsea pitcheri............................................ 35 Blake's Gryphaea pitcheri............................................. 36 Schiel's Gryphsea pitcheri...........................,.:................ 36 Hall's Gryphsea pitcheri (= G. dilatata var. tucumcarii Marcou) ...... 36 Heilprin's Gryphaea pitcheri.....'..................................... 37 Gryphaea pitcheri var. hilli Cragin...................................
    [Show full text]
  • Geologic Map and Upper Paleozoic Stratigraphy of the Marble Canyon Area, Cottonwood Canyon Quadrangle, Death Valley National Park, Inyo County, California
    Geologic Map and Upper Paleozoic Stratigraphy of the Marble Canyon Area, Cottonwood Canyon Quadrangle, Death Valley National Park, Inyo County, California By Paul Stone, Calvin H. Stevens, Paul Belasky, Isabel P. Montañez, Lauren G. Martin, Bruce R. Wardlaw, Charles A. Sandberg, Elmira Wan, Holly A. Olson, and Susan S. Priest Pamphlet to accompany Scientific Investigations Map 3298 2014 U.S. Department of the Interior U.S. Geological Survey Cover View of Marble Canyon area, California, showing dark rocks of Mississippian Indian Springs Formation and Pennsylvanian Bird Spring Formation overlying light rocks of Mississippian Santa Rosa Hills Limestone in middle distance. View is southeast toward Emigrant Wash and Tucki Mountain in distance. U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Stone, P., Stevens, C.H., Belasky, P., Montanez, I.P., Martin, L.G., Wardlaw, B.R., Sandberg, C.A., Wan, E., Olson, H.A., and Priest, S.S., 2014, Geologic map and upper Paleozoic stratigraphy of the Marble Canyon area, Cottonwood Canyon quadrangle, Death Valley National Park, Inyo County, California: U.S. Geological Survey Scientific Investigations Map 3298, scale 1:24,000, 59 p., http://dx.doi.org/10.3133/sim3298.
    [Show full text]
  • The Peculiar Protein Ultrastructure of Fan Shell and Pearl Oyster Byssus
    Soft Matter View Article Online PAPER View Journal | View Issue A new twist on sea silk: the peculiar protein ultrastructure of fan shell and pearl oyster byssus† Cite this: Soft Matter, 2018, 14,5654 a a b b Delphine Pasche, * Nils Horbelt, Fre´de´ric Marin, Se´bastien Motreuil, a c d Elena Macı´as-Sa´nchez, Giuseppe Falini, Dong Soo Hwang, Peter Fratzl *a and Matthew James Harrington *ae Numerous mussel species produce byssal threads – tough proteinaceous fibers, which anchor mussels in aquatic habitats. Byssal threads from Mytilus species, which are comprised of modified collagen proteins – have become a veritable archetype for bio-inspired polymers due to their self-healing properties. However, threads from different species are comparatively much less understood. In particular, the byssus of Pinna nobilis comprises thousands of fine fibers utilized by humans for millennia to fashion lightweight golden fabrics known as sea silk. P. nobilis is very different from Mytilus from an ecological, morphological and evolutionary point of view and it stands to reason that the structure– Creative Commons Attribution 3.0 Unported Licence. function relationships of its byssus are distinct. Here, we performed compositional analysis, X-ray diffraction (XRD) and transmission electron microscopy (TEM) to investigate byssal threads of P. nobilis, as well as a closely related bivalve species (Atrina pectinata) and a distantly related one (Pinctada fucata). Received 20th April 2018, This comparative investigation revealed that all three threads share a similar molecular superstructure Accepted 18th June 2018 comprised of globular proteins organized helically into nanofibrils, which is completely distinct from DOI: 10.1039/c8sm00821c the Mytilus thread ultrastructure, and more akin to the supramolecular organization of bacterial pili and F-actin.
    [Show full text]
  • Electrical Phenomena at the Washington Monument
    pebbles cemented n-ith mhite limestone, ancl gracl- that the mhole of the old becl is to some extent 1,er- nally changing upmarcl into a firm, barren, homoge- meatecl by the vatels of the unclergro~mclriver.- neous limestone. The extent and direction of this unclergro~~ncl This formation mas in continuation of, or some- channel, and the determination of other streams times below, the horizon of the Exogyra arietina than the Blanco which may be tapped by it, are marl. Here, then, mas the solution of the problem promising subjects of future investigation, which I of the San XIarcos. The rocks before me were of hope at an early clate to unclertake, not only in the the later cretaceous, deposited upon the gravel and hope of gaining, by a stuclp of the amount of erosion shingle -which had formecl the bed of a river during of the older rocks, some idea of the duration of the the period of emergence. They had choked up and interval betmeen the tmo periods of rock formation, rendered impervious the superficial layers of the but of obtaining some inforination concerniug the river-bed, but doubtless left the loner gravel and fresh-mater life of that period. EDTVIKJ. POND. sand beds in as gooil condition for carrying water as Austin. Tex., Nay 18. ever. To make the ericlence comolete. I found, on examination of the rock ma, whiih lies only a few Electrical phenomena at the Washington feet above the river, that it is the Soft limestone of the later cretaceous, containing numerous specimens monument.
    [Show full text]