Alan Turing's Other Universal Machine

Total Page:16

File Type:pdf, Size:1020Kb

Alan Turing's Other Universal Machine viewpoints VDOI:10.1145/2209249.2209277 Martin Campbell-Kelly Historical Reflections Alan Turing’s Other Universal Machine Reflections on the Turing ACE computer and its influence. LL COMPUTER SCIENTISTS know about the Univer- sal Turing Machine, the theoretical construct the British genius Alan Turing Adescribed in his famous 1936 paper on the Entscheidungsproblem (the halting problem). The Turing Machine is one of the foundation stones of theoreti- cal computer science. Much less well known is the practical stored program computer he proposed after the war in February 1946. The computer was called the ACE—Automatic Comput- ing Engine—a name intended to evoke the spirit of Charles Babbage, the pio- neer of computing machines in the previous century. Almost all post-war electronic com- puters were, and still are, based on the famous EDVAC Report written by John von Neumann in June 1945 on behalf The Pilot ACE, May 1950. Jim Wilkinson (center right) and Donald Davies (right). of the computer group at the Moore School of Electrical Engineering at the roles. Computers were in the air and of one, and over the next few months University of Pennsylvania. Von Neu- universities at Manchester, Cam- he evolved the design of the ACE. His mann was very familiar with Turing’s bridge, and elsewhere established report was formally presented to the 1936 Entscheidungsproblem paper. In electronic computer projects. Out- NPL’s executive committee in Febru- 1937, Turing was a research assistant side the academic sphere, in Lon- ary 1946. at the Institute for Advanced Study at don, the National Physical Laboratory Although the ACE drew heavily on Princeton University, where von Neu- (NPL—Britain’s equivalent of the Na- the EDVAC Report, it had many novel mann was a professor of mathematics. tional Bureau of Standards) started features and was a design of great Beyond these known facts, however, it a mathematics division to provide a originality. When he heard about the is not possible to say how much influ- computing service for industry. With EDSAC that was being planned at ence the Turing Machine had on the a staff of 40 and equipped with desk Cambridge University by Maurice Wil- design of the EDVAC. But there is no calculating machines, punched card kes, which was based very directly on doubt the ACE was heavily influenced equipment, and a differential analyz- the EDVAC, Turing was unimpressed. by the EDVAC Report. er, it was an impressive organization. He wrote in a private note: “The ‘code’ The war in Europe ended in May In October 1945, Turing was brought which [Wilkes] suggests is however 1945 and the institutions of Britain in to establish an electronic com- very contrary to the line of develop- began to get back to their peacetime puter project. He was a department ment here, and much more in the JULY 2012 | VOL. 55 | NO. 7 | COMMUNICATIONS OF THE ACM 31 viewpoints ACE Design The ACE was designed to fully exploit Turing’s brilliant the potential of a mercury delay-line innovation in the memory. The delay line was a spin-off from echo-cancellation devices in ra- ACE was to eliminate dar, and in 1946 it was the only proven delay-line waiting memory technology. When used in the main memory of a computer, the delay time by what was line consisted of a five-foot mercury- later called optimum filled steel tube. Digital data was con- verted to acoustic energy at one end of programming. the tube and converted back to electri- cal signals at the other end. By feeding the output back into the input, digi- tal data could be stored indefinitely. A five-foot tube had an acoustic de- lay of about one millisecond and the typical pulse duration of a computer American tradition of solving one’s was one microsecond; hence the de- problems by means of much equip- lay line could store about 1,000 bits ment rather than by thought. I should of information (usually 1,024 bits, of imagine that to put his code (which is course). This was enough to store sev- advertised as ‘reduced to the simplest eral instructions or numbers. Apart possible form’) into effect would re- from its high cost and unreliability, quire a very much more complex con- the mercury delay line memory also trol circuit than is proposed in our full- had the problem of latency. That is, ACM’s size machine.” when an instruction or number was interactions Wilkes took the view that build- needed, the machine had to wait un- ing the EDSAC to a conventional de- til it emerged from the delay line—an magazine explores sign would be enough of a challenge. average time of half a millisecond. critical relationships Moreover, the EDSAC would be several For this reason most delay-line based between experiences, people, thousand times faster than existing computers spent more time waiting techniques and users would be best for instructions and numbers than and technology, showcasing served by having a conventional ma- processing them. emerging innovations and industry chine sooner rather than a novel de- Turing’s brilliant innovation in leaders from around the world sign later. There was merit in both of the ACE was to eliminate this waiting their positions. time by what was later called optimum across important applications of design thinking and the broadening field of the interaction design. Our readers represent a growing community of practice that is of increasing and vital global importance. NIVERSITY U HESTER HESTER C UTING, MAN UTING, MP CO F ISTORY O ISTORY H OR THE F HIVE http://www.acm.org/subscribe C R A ATIONAL ATIONAL Control desk of the English Electric DEUCE, 1955. N 32 COMMUNICATIONS OF THE ACM | JULY 2012 | VOL. 55 | NO. 7 viewpoints programming. On a conventional eral months. Then in 1947 an Ameri- machine instructions were stored in can, Harry Husky, who had been a consecutive locations, so that latency member of the Moore School com- effects dramatically slowed up the puter group, began a sabbatical year machine. In the ACE design, however, at the NPL. He proposed building a each instruction specified the location small prototype of the ACE, which he of its successor. In this way instruc- called the Test Assembly. Still, little tions (and numbers) could be placed progress was made and Turing left optimally in the memory so that they the NPL in September 1947 for a sab- emerged from a delay line just as they batical year at King’s College, Cam- were needed. The optimum coding bridge University. He never returned idea showed a rather direct connec- to the NPL. At last in early 1949, work tion to the “instruction tables” of the really got going on another small ver- Turing Machine, in which each or- sion known as the Pilot ACE and the der specified the next to be obeyed. development logjam was broken by This simple idea alone would make Donald Davies, a new recruit to the the ACE about three times faster than NPL. Davies was an outstanding sci- other delay-line based computers. entist and administrator. He later Optimum coding, it should be noted, became head of computer science at A brochure for the Bendix G-15 computer, was much more difficult than conven- the NPL and was one of the inventors introduced in 1956. tional programming, but for a decade of packet switching technology. it was the way to get maximum perfor- The Pilot ACE sprang into life in tives. The most important was the mance from delay-line or drum-based May 1950. It had just 10 delay lines, but Bendix G-15 introduced in 1956. The machines. when augmented with a drum store it machine was designed for the West But there was more. In the ACE de- was a highly capable computing ma- Coast’s Bendix Aviation Corporation sign Turing avoided having a single chine. Benchmarks showed that it was by Harry Husky, who had returned to central register (known as the accu- five to 10 times faster than contem- the U.S. and joined the faculty of the mulator in EDVAC-type machines) in porary machines. Moreover, the Pilot University of California, Berkeley. Op- which all computation took place. In- ACE had just 800 tubes compared with timum coding gave the machine an stead, he had separate registers for ad- 3,000 in the Cambridge EDSAC and edge over rival machines, and the G-15 dition and subtraction, multiplication, 3,500 in the Manchester Mark I. became a workhorse for the American logical operations, shifting, and so engineering industry. About 400 were on. To a degree Turing was anticipat- ACE Derivatives eventually sold. ing what would later be called the von The English Electric Company, a Neumann bottleneck. manufacturer of airplanes and elec- Conclusion trical equipment and a contractor to As to the ACE itself, the full-scale, ACE Construction the NPL, decided make a copy of the 200-delay-line machine was finally Turing proposed that the ACE would Pilot ACE; unsurprisingly, the ma- completed in 1958. Sadly, by the time contain 200 delay lines in the main chine was named the DEUCE. This it was built the heyday of delay-line memory and estimated the con- set the ball rolling—English Electric’s storage was over, and new comput- structional cost at £11,200 (about competitors decided they would like a ers were using random access core $45,000). Turing was a better math- machine too and the company found memory. Even the NPL admitted the ematician than an engineer and his itself in the computer business.
Recommended publications
  • 1 Oral History Interview with Brian Randell January 7, 2021 Via Zoom
    Oral History Interview with Brian Randell January 7, 2021 Via Zoom Conducted by William Aspray Charles Babbage Institute 1 Abstract Brian Randell tells about his upbringing and his work at English Electric, IBM, and Newcastle University. The primary topic of the interview is his work in the history of computing. He discusses his discovery of the Irish computer pioneer Percy Ludgate, the preparation of his edited volume The Origins of Digital Computers, various lectures he has given on the history of computing, his PhD supervision of Martin Campbell-Kelly, the Computer History Museum, his contribution to the second edition of A Computer Perspective, and his involvement in making public the World War 2 Bletchley Park Colossus code- breaking machines, among other topics. This interview is part of a series of interviews on the early history of the history of computing. Keywords: English Electric, IBM, Newcastle University, Bletchley Park, Martin Campbell-Kelly, Computer History Museum, Jim Horning, Gwen Bell, Gordon Bell, Enigma machine, Curta (calculating device), Charles and Ray Eames, I. Bernard Cohen, Charles Babbage, Percy Ludgate. 2 Aspray: This is an interview on the 7th of January 2021 with Brian Randell. The interviewer is William Aspray. We’re doing this interview via Zoom. Brian, could you briefly talk about when and where you were born, a little bit about your growing up and your interests during that time, all the way through your formal education? Randell: Ok. I was born in 1936 in Cardiff, Wales. Went to school, high school, there. In retrospect, one of the things I missed out then was learning or being taught Welsh.
    [Show full text]
  • May 21St at the Time, the EDSAC Used IBM 726 Three Small Cathode Ray Tube Börje Langefors Screens to Display the State of Its Announced Memory
    it played tic-tac-toe (known as Noughts and Crosses in the UK). May 21st At the time, the EDSAC used IBM 726 three small cathode ray tube Börje Langefors screens to display the state of its Announced memory. Each one could draw a May 21, 1952 Born: May 21, 1915; grid of 35 x 16 dots. Douglas re- purposed one of them for his Ystad, Sweden The IBM 726 was the company’s game, and obtained input (i.e. Died: Dec. 13, 2009 first magnetic tape unit, where to place a nought or intended for use with the Langefors developed the cross) via EDSAC’s rotary recently announced IBM 701 ‘infological equation’ in 1980, controller. [April 7], the company’s first which describes the difference electronic computer. between information and data in terms of additional semantic The 726 utilized half-inch tapes background and a with seven tracks. Six were for communication time interval. the data and the seventh was employed as a parity track. Langefors joined SAAB, the Some tapes were 1,200 feet long, Swedish aerospace and defense could store 2.3 MB of data, and company, in 1949 where he IBM claimed that just one could utilized analog devices for replace 12,500 punch cards. calculating wing stresses. The need for more powerful tools The drive could write 100 became evident, and the only characters per inch on a tape Swedish computer of the time, EDSAC CRT Tubes. Computer and read 75 inches per second. the BESK [April 1], was Lab, Univ. of Cambridge. CC BY To withstand the system’s fast insufficient for the task.
    [Show full text]
  • Technical Details of the Elliott 152 and 153
    Appendix 1 Technical Details of the Elliott 152 and 153 Introduction The Elliott 152 computer was part of the Admiralty’s MRS5 (medium range system 5) naval gunnery project, described in Chap. 2. The Elliott 153 computer, also known as the D/F (direction-finding) computer, was built for GCHQ and the Admiralty as described in Chap. 3. The information in this appendix is intended to supplement the overall descriptions of the machines as given in Chaps. 2 and 3. A1.1 The Elliott 152 Work on the MRS5 contract at Borehamwood began in October 1946 and was essen- tially finished in 1950. Novel target-tracking radar was at the heart of the project, the radar being synchronized to the computer’s clock. In his enthusiasm for perfecting the radar technology, John Coales seems to have spent little time on what we would now call an overall systems design. When Harry Carpenter joined the staff of the Computing Division at Borehamwood on 1 January 1949, he recalls that nobody had yet defined the way in which the control program, running on the 152 computer, would interface with guns and radar. Furthermore, nobody yet appeared to be working on the computational algorithms necessary for three-dimensional trajectory predic- tion. As for the guns that the MRS5 system was intended to control, not even the basic ballistics parameters seemed to be known with any accuracy at Borehamwood [1, 2]. A1.1.1 Communication and Data-Rate The physical separation, between radar in the Borehamwood car park and digital computer in the laboratory, necessitated an interconnecting cable of about 150 m in length.
    [Show full text]
  • An Early Program Proof by Alan Turing F
    An Early Program Proof by Alan Turing F. L. MORRIS AND C. B. JONES The paper reproduces, with typographical corrections and comments, a 7 949 paper by Alan Turing that foreshadows much subsequent work in program proving. Categories and Subject Descriptors: 0.2.4 [Software Engineeringj- correctness proofs; F.3.1 [Logics and Meanings of Programs]-assertions; K.2 [History of Computing]-software General Terms: Verification Additional Key Words and Phrases: A. M. Turing Introduction The standard references for work on program proofs b) have been omitted in the commentary, and ten attribute the early statement of direction to John other identifiers are written incorrectly. It would ap- McCarthy (e.g., McCarthy 1963); the first workable pear to be worth correcting these errors and com- methods to Peter Naur (1966) and Robert Floyd menting on the proof from the viewpoint of subse- (1967); and the provision of more formal systems to quent work on program proofs. C. A. R. Hoare (1969) and Edsger Dijkstra (1976). The Turing delivered this paper in June 1949, at the early papers of some of the computing pioneers, how- inaugural conference of the EDSAC, the computer at ever, show an awareness of the need for proofs of Cambridge University built under the direction of program correctness and even present workable meth- Maurice V. Wilkes. Turing had been writing programs ods (e.g., Goldstine and von Neumann 1947; Turing for an electronic computer since the end of 1945-at 1949). first for the proposed ACE, the computer project at the The 1949 paper by Alan M.
    [Show full text]
  • History of Computer Science from Wikipedia, the Free Encyclopedia
    History of computer science From Wikipedia, the free encyclopedia The history of computer science began long before the modern discipline of computer science that emerged in the 20th century, and hinted at in the centuries prior. The progression, from mechanical inventions and mathematical theories towards the modern concepts and machines, formed a major academic field and the basis of a massive worldwide industry.[1] Contents 1 Early history 1.1 Binary logic 1.2 Birth of computer 2 Emergence of a discipline 2.1 Charles Babbage and Ada Lovelace 2.2 Alan Turing and the Turing Machine 2.3 Shannon and information theory 2.4 Wiener and cybernetics 2.5 John von Neumann and the von Neumann architecture 3 See also 4 Notes 5 Sources 6 Further reading 7 External links Early history The earliest known as tool for use in computation was the abacus, developed in period 2700–2300 BCE in Sumer . The Sumerians' abacus consisted of a table of successive columns which delimited the successive orders of magnitude of their sexagesimal number system.[2] Its original style of usage was by lines drawn in sand with pebbles . Abaci of a more modern design are still used as calculation tools today.[3] The Antikythera mechanism is believed to be the earliest known mechanical analog computer.[4] It was designed to calculate astronomical positions. It was discovered in 1901 in the Antikythera wreck off the Greek island of Antikythera, between Kythera and Crete, and has been dated to c. 100 BCE. Technological artifacts of similar complexity did not reappear until the 14th century, when mechanical astronomical clocks appeared in Europe.[5] Mechanical analog computing devices appeared a thousand years later in the medieval Islamic world.
    [Show full text]
  • Timeline of Computer History
    Timeline of Computer History By Year By Category Search AI & Robotics (55) Computers (145)(145) Graphics & Games (48) Memory & Storage (61) Networking & The Popular Culture (50) Software & Languages (60) Bell Laboratories scientist 1937 George Stibitz uses relays for a Hewlett-Packard is founded demonstration adder 1939 Hewlett and Packard in their garage workshop “Model K” Adder David Packard and Bill Hewlett found their company in a Alto, California garage. Their first product, the HP 200A A Called the “Model K” Adder because he built it on his Oscillator, rapidly became a popular piece of test equipm “Kitchen” table, this simple demonstration circuit provides for engineers. Walt Disney Pictures ordered eight of the 2 proof of concept for applying Boolean logic to the design of model to test recording equipment and speaker systems computers, resulting in construction of the relay-based Model the 12 specially equipped theatres that showed the movie I Complex Calculator in 1939. That same year in Germany, “Fantasia” in 1940. engineer Konrad Zuse built his Z2 computer, also using telephone company relays. The Complex Number Calculat 1940 Konrad Zuse finishes the Z3 (CNC) is completed Computer 1941 The Zuse Z3 Computer The Z3, an early computer built by German engineer Konrad Zuse working in complete isolation from developments elsewhere, uses 2,300 relays, performs floating point binary arithmetic, and has a 22-bit word length. The Z3 was used for aerodynamic calculations but was destroyed in a bombing raid on Berlin in late 1943. Zuse later supervised a reconstruction of the Z3 in the 1960s, which is currently on Operator at Complex Number Calculator (CNC) display at the Deutsches Museum in Munich.
    [Show full text]
  • TCM Report, Summer
    Board of Directors Corporate Donors Contributing Members John William Poduska. Sr. Benefactor-$lO.ooo or more Pathway Design. Inc. Patron-$SOO or more Chairman and CEO AFIPS. Inc." PC Magazine Anonymous. Ray Duncan. Tom Eggers. Belmont Computer. Inc. American Exr.ress Foundation Peat. Marwick. Mitchell & Co. Alan E. Frisbie. Tom and Rosemarie American Te ephone & Telegraph Co." Pell. Rudman. Inc. Hall. Andrew Lavien. Nicholas and Gwen Bell. President Apollo Computer. Inc." Pencept. Inc. Nancy Petti nella. Paul R. Pierce. The Computer Museum Bank of America" Polese-Clancy. Inc. Jonathan Rotenberg. Oliver and Kitty Erich Bloch The Boston Globe" Price Waterhouse Selfridge. J. Michael Storie. Bob National Science Foundation ComputerLand" Project Software & Development. Inc. Whelan. Leo R. Yochim Control Data Corporation" Shawmut Corporation David Donaldson Data General Corporation" Standard Oil Corporation Sponsor-$250 Ropes and Gray Digital Equipment Corporation" Teradyne Hewlett-Packard Warner & Stackpole Isaac Auerbach. G. C . Beldon. Jr .. Sydney Fernbach Philip D. Brooke. Richard J. Clayton. Computer Consultant International Data Group" XRE Corporation International Business Machines. Inc." " Contributed to the Capital Campaign Richard Corben. Howard E. Cox. Jr .. C. Lester Hogan The MITRE Corporation" Lucien and Catherine Dimino. Philip H. Fairchild Camera and Instrument NEC Corporation" Darn. Dan L. Eisner. Bob O. Evans. Corporation Raytheon Company Branko Gerovac. Dr. Roberto Guatelli. Sanders Associates M. Ernest Huber. Lawrence J. Kilgallen. Arthur Humphreys The Travelers Companies Core Members Martin Kirkpatrick. Marian Kowalski. ICL Wang Laboratories. Inc." Raymond Kurzweil. Michael Levitt. Carl Theodore G. Johnson Harlan E. and Lois Anderson Machover. Julius Marcus. Joe W .. Charles and Constance Bachman Matthews. Tron McConnell.
    [Show full text]
  • Alan Turingturing –– Computercomputer Designerdesigner
    AlanAlan TuringTuring –– ComputerComputer DesignerDesigner Brian E. Carpenter with input from Robert W. Doran The University of Auckland May 2012 Turing, the theoretician ● Turing is widely regarded as a pure mathematician. After all, he was a B-star Wrangler (in the same year as Maurice Wilkes) ● “It is possible to invent a single machine which can be used to compute any computable sequence. If this machine U is supplied with the tape on the beginning of which is written the string of quintuples separated by semicolons of some computing machine M, then U will compute the same sequence as M.” (1937) ● So how was he able to write Proposals for development in the Mathematics Division of an Automatic Computing Engine (ACE) by the end of 1945? 2 Let’s read that carefully ● “It is possible to inventinvent a single machinemachine which can be used to compute any computable sequence. If this machinemachine U is supplied with the tapetape on the beginning of which is writtenwritten the string of quintuples separated by semicolons of some computing machinemachine M, then U will compute the same sequence as M.” ● The founding statement of computability theory was written in entirely physical terms. 3 What would it take? ● A tape on which you can write, read and erase symbols. ● Poulsen demonstrated magnetic wire recording in 1898. ● A way of storing symbols and performing simple logic. ● Eccles & Jordan patented the multivibrator trigger circuit (flip- flop) in 1919. ● Rossi invented the coincidence circuit (AND gate) in 1930. ● Building U in 1937 would have been only slightly more bizarre than building a differential analyser with Meccano.
    [Show full text]
  • Alan Turing's Automatic Computing Engine
    5 Turing and the computer B. Jack Copeland and Diane Proudfoot The Turing machine In his first major publication, ‘On computable numbers, with an application to the Entscheidungsproblem’ (1936), Turing introduced his abstract Turing machines.1 (Turing referred to these simply as ‘computing machines’— the American logician Alonzo Church dubbed them ‘Turing machines’.2) ‘On Computable Numbers’ pioneered the idea essential to the modern computer—the concept of controlling a computing machine’s operations by means of a program of coded instructions stored in the machine’s memory. This work had a profound influence on the development in the 1940s of the electronic stored-program digital computer—an influence often neglected or denied by historians of the computer. A Turing machine is an abstract conceptual model. It consists of a scanner and a limitless memory-tape. The tape is divided into squares, each of which may be blank or may bear a single symbol (‘0’or‘1’, for example, or some other symbol taken from a finite alphabet). The scanner moves back and forth through the memory, examining one square at a time (the ‘scanned square’). It reads the symbols on the tape and writes further symbols. The tape is both the memory and the vehicle for input and output. The tape may also contain a program of instructions. (Although the tape itself is limitless—Turing’s aim was to show that there are tasks that Turing machines cannot perform, even given unlimited working memory and unlimited time—any input inscribed on the tape must consist of a finite number of symbols.) A Turing machine has a small repertoire of basic operations: move left one square, move right one square, print, and change state.
    [Show full text]
  • P the Pioneers and Their Computers
    The Videotape Sources: The Pioneers and their Computers • Lectures at The Compp,uter Museum, Marlboro, MA, September 1979-1983 • Goal: Capture data at the source • The first 4: Atanasoff (ABC), Zuse, Hopper (IBM/Harvard), Grosch (IBM), Stibitz (BTL) • Flowers (Colossus) • ENIAC: Eckert, Mauchley, Burks • Wilkes (EDSAC … LEO), Edwards (Manchester), Wilkinson (NPL ACE), Huskey (SWAC), Rajchman (IAS), Forrester (MIT) What did it feel like then? • What were th e comput ers? • Why did their inventors build them? • What materials (technology) did they build from? • What were their speed and memory size specs? • How did they work? • How were they used or programmed? • What were they used for? • What did each contribute to future computing? • What were the by-products? and alumni/ae? The “classic” five boxes of a stored ppgrogram dig ital comp uter Memory M Central Input Output Control I O CC Central Arithmetic CA How was programming done before programming languages and O/Ss? • ENIAC was programmed by routing control pulse cables f ormi ng th e “ program count er” • Clippinger and von Neumann made “function codes” for the tables of ENIAC • Kilburn at Manchester ran the first 17 word program • Wilkes, Wheeler, and Gill wrote the first book on programmiidbBbbIiSiing, reprinted by Babbage Institute Series • Parallel versus Serial • Pre-programming languages and operating systems • Big idea: compatibility for program investment – EDSAC was transferred to Leo – The IAS Computers built at Universities Time Line of First Computers Year 1935 1940 1945 1950 1955 ••••• BTL ---------o o o o Zuse ----------------o Atanasoff ------------------o IBM ASCC,SSEC ------------o-----------o >CPC ENIAC ?--------------o EDVAC s------------------o UNIVAC I IAS --?s------------o Colossus -------?---?----o Manchester ?--------o ?>Ferranti EDSAC ?-----------o ?>Leo ACE ?--------------o ?>DEUCE Whirl wi nd SEAC & SWAC ENIAC Project Time Line & Descendants IBM 701, Philco S2000, ERA..
    [Show full text]
  • History of ENIAC
    A Short History of the Second American Revolution by Dilys Winegrad and Atsushi Akera (1) Today, the northeast corner of the old Moore School building at the University of Pennsylvania houses a bank of advanced computing workstations maintained by the professional staff of the Computing and Educational Technology Service of Penn's School of Engineering and Applied Science. There, fifty years ago, in a larger room with drab- colored walls and open rafters, stood the first general purpose electronic computer, the Electronic Numerical Integrator And Computer, or ENIAC. It spanned 150 feet in width with twenty banks of flashing lights indicating the results of its computations. ENIAC could add 5,000 numbers or do fourteen 10-digit multiplications in a second-- dead slow by present-day standards, but fast compared with the same task performed on a hand calculator. The fastest mechanical relay computers being operated experimentally at Harvard, Bell Laboratories, and elsewhere could do no more than 15 to 50 additions per second, a full two orders of magnitude slower. By showing that electronic computing circuitry could actually work, ENIAC paved the way for the modern computing industry that stands as its great legacy. ENIAC was by no means the first computer. In 1839, an Englishman Charles Babbage designed and developed the first true mechanical digital computer, which he described as a "difference engine," for solving mathematical problems including simple differential equations. He was assisted in his work by a woman mathematician, Ada Countess Lovelace, a member of the aristocracy and the daughter of Lord Byron. They worked out the mathematics of mechanical computation, which, in turn, led Babbage to design the more ambitious analytical engine.
    [Show full text]
  • Media Technology and Society
    MEDIA TECHNOLOGY AND SOCIETY Media Technology and Society offers a comprehensive account of the history of communications technologies, from the telegraph to the Internet. Winston argues that the development of new media, from the telephone to computers, satellite, camcorders and CD-ROM, is the product of a constant play-off between social necessity and suppression: the unwritten ‘law’ by which new technologies are introduced into society. Winston’s fascinating account challenges the concept of a ‘revolution’ in communications technology by highlighting the long histories of such developments. The fax was introduced in 1847. The idea of television was patented in 1884. Digitalisation was demonstrated in 1938. Even the concept of the ‘web’ dates back to 1945. Winston examines why some prototypes are abandoned, and why many ‘inventions’ are created simultaneously by innovators unaware of each other’s existence, and shows how new industries develop around these inventions, providing media products for a mass audience. Challenging the popular myth of a present-day ‘Information Revolution’, Media Technology and Society is essential reading for anyone interested in the social impact of technological change. Brian Winston is Head of the School of Communication, Design and Media at the University of Westminster. He has been Dean of the College of Communications at the Pennsylvania State University, Chair of Cinema Studies at New York University and Founding Research Director of the Glasgow University Media Group. His books include Claiming the Real (1995). As a television professional, he has worked on World in Action and has an Emmy for documentary script-writing. MEDIA TECHNOLOGY AND SOCIETY A HISTORY: FROM THE TELEGRAPH TO THE INTERNET BrianWinston London and New York First published 1998 by Routledge 11 New Fetter Lane, London EC4P 4EE Simultaneously published in the USA and Canada by Routledge 29 West 35th Street, New York, NY 10001 Routledge is an imprint of the Taylor & Francis Group This edition published in the Taylor & Francis e-Library, 2003.
    [Show full text]