Import of Metal Scrap - Risks Associated with Radioactivity

Total Page:16

File Type:pdf, Size:1020Kb

Import of Metal Scrap - Risks Associated with Radioactivity KEMAKTA AR 92-22 Import of metal scrap - risks associated with radioactivity Mark Elert KEMAKTA Konsult AB November 1992 KEMAKTA KONSULT AB Box 12655, S-112 93 Stockholm, Sweden Import of metal scrap - risks associated with radioactivity Mark Elert KEMAKTA Konsult AB November 1992 Report prepared for Swedish Radiation Protection Institute (SSI) under contract number P702.92 Abstract There is a growing concern in Sweden for the possibility that imported metal scrap is radioactive. The recent political and economical changes in eastern Europe and the increased cooperation with the CEC has affected Sweden's import. In the last years, the import of metal scrap from the former USSR has increased considerably. In view of recent incidents, when radioactive materials have been found, the Swedish Radiation Protection Institute has detected a need for identifying the potential risk sources and evaluating the magnitude of the risk associated with the import of metal scrap. The purpose of this report is to provide some background material concerning import statistics, use of metal scrap in Sweden and to identify potential sources of radioactive metal scrap. In addition, the radionuclides of most concern has been identified and the possibility of detecting them in metal scrap shipments is analyzed. Ill List of contents 1 INTRODUCTION 1 2 IMPORT AND USE OF SCRAP METAL IN SWEDEN 2 2.1 Import statistics 2 2.2 Metal scrap trade 3 2.3 Iron and steel production 3 2.4 Production of other metals 4 2.5 Foundries 4 3 REGULATIONS IN EXPORTING COUNTRIES 10 4 RISK FOR IMPORT OF RADIOACTIVE SCRAP METAL 13 4.1 General 13 4.2 Situation in the former USSR 14 4.2.1 Russian authorities in the nuclear area 14 4.2.2 Potential sources of radioactive material IS 4.3 Discussion 18 5 RADIONUCLIDES AND DETECTION POSSIBILITIES 19 5.1 Radionuclides in metal scrap 19 5.2 Detection of radioactive metal scrap 22 6 SUMMARY AND CONCLUSIONS 25 REFERENCES 26 INTRODUCTION Background Presently large changes are occurring in the world trade that affects Sweden'* impon and export. The reasons for these changes are the removal of internal borders within the European Community and the economical and political changes in eastern Europe. Still larger changes can come after the signing of the agreement on the European Economic Area (EEA) between the CEC and the EFTA countries. These changes have lead to an increase in the import of a number of products to Sweden. Particularly large is the increase in the import from the countries in eastern Europe. In the summer of 1992 a shipment of copper plates with radioactivity was detected in the port of Stockholm. The activity concentration in the shipment was low and it did not give rise to any risk to persons involved with the shipment or to the public. However, this incident together with reports of similar incidents from other sources has lead to some concern at the Swedish authorities. If large amounts of low activity scrap metal are imported into Sweden and remelted for the production of new metal, the general level of activity in metals will increase and thus give rise to an increased societal risk in the form of cancer. An increased activity level may also be caused by small amounts of high activity material that is imported and melted. In addition, high activity material may give rise to an immediate risk to persons coming in direct contact with the material, e.g. truck drivers, customs officers, scrap handlers, and steel mill workers. The Swedish Radiation Protection Institute has detected a need for identifying the potential risk sources and evaluating the magnitude of the risk associated with impon of scrap metal. Purpose and scope This repon intends to give background material for the Swedish Radiation Protection Institute concerning the risk connected to the impon of scrap metal that may contain radioactive material. The repon also treats the risk connected to forgotten, misplaced or stolen radiation sources. Statistics from the last years concerning metal scrap impon are analyzed and the main users of metal scrap are identified. Steel mills, melting plants and scrap dealers have been inquired of their current practicies for scrap impon and monitoring of radioactivity. Furthermore, a study has been made of potential sources of radioactive steel scrap with the focus on the countries of the former USSR. Russian authorities in the area of radiation protection have been contacted with help from the Swedish Technical Attache in Moscow. The radionuclides of most concern have been identified and the possibility of detecting these radionuclides in metal scrap shipments is analyzed. IMPORT AND USE OF SCRAP METAL IN SWEDEN 2.1 Import statistics The Swedish custom collects statistical information of imports and exports based on the shipping records. This information is compiled in a database by the Official Swedish Statistics of Sweden, SCB. From this database, excerpts can be obtained concerning amounts, values and origin countries for various intervals. For this project an excerpt was made for metal scrap imports during the years 1990.1991 and the first half 1992. The type of goods is identified by a category number. Statistics for 24 different metals could be obtained from the SCB database. The division into categories is relatively fine, but depends on how common a certain type of goods is. For example iron and steel scrap is divided into ten subcategories. while for less common metais, raw material, scrap, and powder may be combined into one category. It is therefore not possibie to obtain a complete statistics for metal scrap. The selected categories for metal scrap are given in Table 2.1. Tables 2.2-2.4 give the import for 1990, 1991 and first half of 1992 in tonnes. The imported quantity is given for total import, and from different parts of the world. In the data for 1990 and 1991, the sum for the different parts of the world does not always add up to the given total. The reason for this is that the origin country is not specified when the total import of a certain category is less than 300000 SEK. There are large fluctuations in the imported amounts among the three periods, depending on demand from Swedish industry, prices, statistical fluctuations, etc. However, in this period a noticeable increase can be seen in the import of scrap metal from the former USSR, especially concerning imports of copper, nickel, aluminum, molybdenum, magnesium, cobalt, titanium, and manganese, see Figure 2.1. During the first half of 1992 more than 40% of the total import of copper (5700 tonnes of 13100 tonnes) came from the former USSR. The scrap metal import to Sweden may change in the future. For example it is very sensitive to changes in the economy. In 1985,700 000 tonnes of iron and steel scrap were imported while the import in 1991 was 165 000 tonnes. With the signing of the EEA- treaty, the previous ban on expon of iron and steel scrap from Sweden will be removed. It is expected that this will lead to an export of metal scrap from southern Sweden to Germany, and an increased import of scrap metal to the steel mills in Northern Sweden. A large part of this import is likely to come from the east. The statistical material is associated with some uncertainty. Since the statistics are based on information in the shipping documents many error sources may be present. The importer may willfully or unknowingly declare false information concerning type of goods, amount, or place of origin. Since there is no customs fee on scrap metal it is unlikely that it should be declared as an other type of goods willingly. However, the Swedish customs have experienced several occurrences when the value of the cargo has been falsely declared, e.g. by giving a lower weight. It may therefore be possible that scrap of more valuable metals can have been declared as metals of lower value. It is also possible that erroneous information is given concerning the country of origin. 2.2 Metal scrap trade The major Swedish steel mills import iron scrap through a jointly owned company, see below. Steel manufactures may import alloyed scrap metal themselves 01 turn to other metal scrap traders. The import of copper, brass and aluminum goes mainly through metal scrap traders. There are a large number of small and medium size metal scrap traders in Sweden, most of them dealing with domestic scrap. The import of metal scrap is to a large extent handled by a few major scrap traders with established connections in the countries they import from. The metal scrap is transported on boat, rail or trucks in containers or platforms each with a load of roughly 20 tonnes. Usually certificates verifying the quality of the scrap metal are required. The major scrap traders have become aware of the potential risk of receiving radioactive scrap metal and some traders have started to measure radiation on imported metal scrap. The recent changes in eastern Europe have lead to increased commercial connections. These countries have a lack of hard currency and thereby scrap metal may become pan of a payment. Thus, many traders normally dealing with other types of goods get involved in metal scrap trading. These traders may lack the necessary competence in evaluating the quality of the metal scrap, which increases the risk of importing "unwanted" metal scrap to Sweden. The traders sell the metal scrap to larger scrap dealers or to the manufacturers directly. The contacted purchasing managers at major Swedish steel and metal melters we have reached, claim they are contacted several times a week by this type of traders.
Recommended publications
  • MASTE DISTRIBUTION of THIS DOCUMENT IS (MMB Issued by Sandia National Laboratories, Operated for the United States Department of Energy by Sandia Corporation
    ?~^-1{. SANDIA REPORT SAND96-0902 • UC-704 RECEIVED Unlimited Release Printed April 1996 MAY 1 51996 0S-JTI Radioactive Scrap Metal Decontamination Technology Assessment Report Joanna M. Buckentin, Brian K. Damkroger, M. Eric Schlienger Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 for the United States Department of Energy under Contract DE-AC04-94AL85000 Approved for public release; dis&isution is unlimited. * • ^tMiMMiM SF2900Q(8-81) MASTE DISTRIBUTION OF THIS DOCUMENT IS (MMB Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Govern• ment nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, prod• uct, or process disclosed, or represents that its use would not infringe pri• vately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Govern• ment, any agency thereof or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy.
    [Show full text]
  • Draft Issues Related to Regulation of Reuse/Recycle
    DRAFT ISSUES RELATED TO REGULATION OF REUSEIRECYCLE OF SCRAP METAL SLIGHTLY CONTAMINATED BY RADIOACTIVITY Prepared for the United States Nuclear Regulatory Commission Washington, DC 20555 NRC Contract No. NRC-04-92-037 Under Subcontract No. 4500104923 from Science Applications International Corporation Prepared by JUPITER Corporation Suite 900 2730 University Boulevard West Wheaton, MD 20902 February 26, 1997 DISCLAIMER NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. TABLE OF CONTENTS SUM MA RY ........................................................... 1 1. BACKGROUND .................................................... 3 1.1 Introduction .................................................. 3 1.2 Types of Recycling ........................................... 4 1.3 Release of Radioactive Material ................................. 5 1.4 Approach to Rulemaking ......................... ............. 6 2. NEED FOR RULEMAKING ........................................... 9 2.1 Decommissioning and Decontamination of Nuclear Sites ............. 9 2.2 Regulatory Environments ....................................
    [Show full text]
  • Monitoring of Cs in Electric Arc Furnace Steel Making Process
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of Faculty of Metallurgy University of Zagreb J Radioanal Nucl Chem (2010) 284:615–622 DOI 10.1007/s10967-010-0513-9 Monitoring of 137Cs in electric arc furnace steel making process Tahir Sofilic´ • Delko Barisˇic´ • Una Sofilic´ Received: 25 February 2010 / Published online: 25 March 2010 Ó Akade´miai Kiado´, Budapest, Hungary 2010 Abstract This article presents the results of 137Cs and (BOF) 20–30%, nowadays rarely, Open Hearth Furnace other radionuclide monitoring in EAF steel-making process (OHR) 50–60%, and Electric Arc Furnace (EAF) from 95 in the Croatian CMC Sisak Steel Mill. The presence of to 100% of steel scrap. 137Cs and natural isotopes 40K, 232Th, 226Ra and 238U was Nowadays, of the total amount of all types of raw established. Investigations on the occurrence of the isotope materials used in the EAF process of steel production, steel cesium, as well as natural isotopes and their distribution in scrap is definitely the most significant in amount, for its waste from the process of carbon steel production by EAF amount ranges from 1039 to 1232 kgt-1 of crude steel [1]. have been conducted. Detection of artificial isotope cesium In the last 10 years (1999–2008), the level of global crude in EAF dust indicates that it might originate from steel steel production [2] was between 789 and 1323 million scrap or from the residue of the material that was used in tones/y. If we take on the assumption that there is an the technological process, thus deserving special attention.
    [Show full text]
  • Submitted by Metals Industry Recycling Coalition, John L. Wittenborn, on Proposed Rule PR-20, 32 & 150 Re Natio
    Collier Shannon Scott, LLc Washington Harbour, Suite 400 3050 K Street NW Washington, DC 20007-5108 202.342.8400 TEL Collier Shannon Scott 202.342.845 t FAx John L WVttenborn 202.342.8514 (7F0a 3a ) .Mrlttenbmcorshannon.com (7oFR qf3446) DOCKETED October 11, 2005 USNRC October 11, 2005 (3:30pm) Merri Hom OFFICE OF SECRETARY U.S. Nuclear Regulatory Commission RULEMAKINGS AND Attn: Rulemakings and Adjudications Staff ADJUDICATIONS STAFF 11555 Rockville Pike Rockville, MD 20852 Re: Proposed Rule for National Source Tracking of Sealed Sources (70 Fed. Reg. 43646 (July 28, 2005)) Dear Ms. Hom: On behalf of the Metals Industry Recycling Coalition ("MIRC"), we are pleased to provide you with these comments on the U.S. Nuclear Regulatory Commission's Proposed Rule for National Source Tracking of Sealed Sources. 70 Fed. Reg. 43646 (July 28, 2005). MIRC supports the Commission's proposed rule to implement a National Source Tracking System to monitor and provide increased oversight of certain sealed sources. However, consistent with the General Accounting Office's recommendations,2 we are urging the NRC to extend the tracking program to include Category 3 sealed sources. I. Background MIRC members comprise a major sector of the nation's economy. Companies that are members of the associations that comprise MIRC consume scrap metal to make new metal products. These companies are the largest recyclers by volume in the country. Each year steel mills operating electric arc and basic oxygen furnaces recycle more than 75 million tons of scrap into new steel products. Steel products contain, on average, 66 percent recycled content.
    [Show full text]
  • Report of an International Group of Experts Convened by the United Nations Economic Commission for Europe (UNECE)
    UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE Report of an International Group of Experts convened by the United Nations Economic Commission for Europe (UNECE) UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE NOTE Symbols of the United Nations documents are composed of capital letters combined with figures. Mention of such a symbol indicates a reference to a United Nations document. * * * The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or areas, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of firm names and commercial products does not imply the endorsement of the United Nations. * * * Acknowledgements The UNECE Secretariat would like to express its gratitude to the United States Environmental Protection Agency (EPA) for its support in producing these Recommendations. ECE/TRANS/NONE/2006/8 CONTENTS Pages Executive Summary ……………………………………………………………… 1 Introduction ……………………………………………………………………… 3 - 5 I. GENERAL PROVISIONS ……………………………………………….. 7 - 16 A. Definitions ………………………………………………………… 7 - 8 B. Objectives …………………………………………………………. 8 C. Scope ……………………………………………………………… 8 - 9 D. Guidance and international legal instruments …………………….. 9 - 11 E. Origins of radioactive scrap metal ………………………………... 11 - 12 F. Recommendations on responsibilities and coordination …………. 12 - 16 II. FIELDS OF ACTION 17 - 29 A. Recommendations on prevention …………………………………. 17 - 18 B. Recommendations on detection …………………………………… 19 - 24 C. Recommendations on response …………………………………… 24 - 29 III. ADDITIONAL PROVISIONS A. Training …………………………………………………………… 30 B. Information exchange ……………………………………………. 30 References 31 - 32 ANNEXES 33 - 46 I. Example Certificate of Shipment Monitoring ……………..……. 33 II. Example Content of a Unified National Collaborative Scheme ………………………………………………………….
    [Show full text]
  • Statistical Treatment of Hazards Result from Radioactive Material in Metal Scrap
    XI Radiation Physics & Protection Conference, 25-28 November 2012, Nasr City - Cairo, Egypt Statistical treatment of hazards result from radioactive material in metal scrap E.F. Salem, S.M. Rashad Nuclear law and License department Egypt nuclear and radiological regulatory authority [email protected] Nasr City-P.O. Box 7551, Cairo, Egypt ABSTRACT Radioactive sources have a wide range of uses in medicine and industry. Radioactive materials entering the public domain in an uncontrolled manner may creating a serious risk of radiation exposure for workers and the public as well as excessive costs for plant decontamination and waste of product to be borne by the metal industry. This paper describes the major accidents that had happened in the last decades due to radioactive material in metal scrap, provides assessment of associated hazards and lessons learned. This will help Regulatory Authority to introduce measures capable to avoid the recurrence of similar events. The study highlights the situation for metal scrap incidents in Egypt. 1- INTRODUCTION Nowadays, scrap metal is an important source material for the metal production industry contributing a large fraction (about 50% for steel) of the final product. This fact shows the hugeness importance of the metal scrap as raw material resources for human race. There have been several accidents over the past decades involving orphan radioactive sources or other radioactive material that were inadvertently collected as scrap metal that was destined for recycling. In the USA alone, over 5,000 incidents were recorded in 2004 that involved various types of radioactive metal scrap [1]. According to the forecast of the United Nations Economic Commission for Europe (UNECE) it is expected that the number of incidents with radioactive scrap will increase despite of the efforts, on the world scale, to avert such incidents.
    [Show full text]
  • 3-2 Technical Issues Relating to the Recycle of Contaminated Scrap Metal
    JAERI-Conf 95-015 3-2 TECHNICAL ISSUES RELATING TO THE RECYCLE OF CONTAMINATED SCRAP METAL by Stephen Warren, U.S.Department of Energy, Office of Environmental Restoration (EM-43), Quince Orchard, 19901 Germantown Road, Germantown, MD 20784 Donald E. Clark, Westinghouse Hanford Co., 601 Williams Blvd., Suite 2A, Richland, WA 99352 ABSTRACT A review was made of the literature on melting of radioactive metals that was published in the 1980s and 1990s with attention to the resultant partitioning of radioactivities. Various factors influencing the transfer of radionuclides from the melted ingot phase to other phases such as the slag layer need to be considered both in optimizing the partitioning of radioactivities and in assessing the radiation exposures received by workers. Important technical issues relating to the recycle of radioactive scrap metal (RSM) have been identified and will be discussed in this presentation. Of particular interest is the modeling of radiation doses resulting from operations involving RSM and with recycled materials resulting from the melting of RSM, with emphasis on radioactively contaminated ferrous metals. Such doses result from exposure to the radioactively contaminated metals as well as secondary wastes (i.e., slag, dust, and aerosols/filter media) produced as byproducts of the melting operations. Summary and Conclusions The reported results for partitioning of radioactivities that are achievable by melting of contaminated ferrous metals have been reviewed. The resultant redistribution and stabilization of radioactivities is important for possible recycling of these materials. For dose calculations of the various recycling options, it is essential to have credible partitioning data for each treatment scenario.
    [Show full text]
  • Control of Orphan Sources and Other Radioactive Material in the Metal
    IAEA Safety Standards Safety through international standards for protecting people and the environment “Governments, regulatory bodies and operators everywhere must ensure that nuclear material and radiation sources are used Safety IAEA Standards Series No. SSG-17 beneficially, safely and ethically. The IAEA safety standards are Control of Orphan designed to facilitate this, and I encourage all Member States to make use of them.” Sources and Other Yukiya Amano Director General Radioactive Material in the Metal Recycling and Production Industries Specific Safety Guide No. SSG-17 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92 –0–115510–8 ISSN 1020–525X 11-48011_P1509_cover.indd 1 2012-01-31 14:29:12 RELATED PUBLICATIONS IAEA SAFETY STANDARDS AND RELATED PUBLICATIONS FUNDAMENTAL SAFETY PRINCIPLES IAEA Safety Standards Series No. SF-1 IAEA SAFETY STANDARDS STI/PUB/1273 (37 pp.; 2006) Under the terms of Article III of its Statute, the IAEA is authorized to establish or adopt ISBN 92–0–110706–4 Price: €25.00 standards of safety for protection of health and minimization of danger to life and property, and to provide for the application of these standards. GOVERNMENTAL, LEGAL AND REGULATORY FRAMEWORK The publications by means of which the IAEA establishes standards are issued in the FOR SAFETY IAEA Safety Standards Series. This series covers nuclear safety, radiation safety, transport IAEA Safety Standards Series No. GSR Part 1 safety and waste safety. The publication categories in the series are Safety Fundamentals, STI/PUB/1465 (63 pp.; 2010) Safety Requirements and Safety Guides. ISBN 978–92–0–106410–3 Price: €45.00 Information on the IAEA’s safety standards programme is available at the IAEA Internet site THE MANAGEMENT SYSTEM FOR FACILITIES AND ACTIVITIES http://www-ns.iaea.org/standards/ IAEA Safety Standards Series No.
    [Show full text]
  • CNS Global Incidents and Trafficking Database
    July 2019 CNS Global Incidents and Trafficking Database Tracking publicly reported incidents involving nuclear and other radioactive materials 2018 Annual Report Produced Independently for the Nuclear Threat Initiative by the James Martin Center for Nonproliferation Studies - 1 - Global Incidents and Trafficking Database Contents Executive Summary ....................................................................................................................................... 3 I. Introduction ................................................................................................................................................ 7 II. Materials and Data Overview .................................................................................................................... 9 III. Key Findings and Policy Implications ........................................................................................................ 12 1. Variable reporting transparency yields variable, low transparency, results ........................................12 2. Transportation creates greatest vulnerabilities ...................................................................................15 3. Human failure is a security risk ............................................................................................................ 18 4. Viable alternative technologies exist ................................................................................................... 20 IV. Conclusion ...............................................................................................................................................
    [Show full text]
  • Revised 5/08/2000 SCHEDULING NOTES Title
    revised 5/08/2000 SCHEDULING NOTES Title: Meeting with Stakeholders on Control of Solid Material Scheduled: 9:00 am. - Tuesday, May 9, 2000 (PUBLIC) Duration: Approx. 3 hours Participants: Panel - Government Agencies/Consensus Standards Organizations - Brian Costner 5 mins. Senior Policy Advisor Office of the Secretary Department of Energy - Craig Conklin 5 mins. Director, Center for Radiation Emergency Preparedness, Prevention, and Response Environmental Protection Agency - William (Bill) Kennedy 5 mins. Health Physics Society, and Chair, ANSI 13.12 Committee American National Standards Institute (ANSI) Panel - Citizen Groups and Tribal and State Governments - Diane D'Arrigo 5 mins. Director of Radioactive Waste Project Nuclear Information and Resource Service - David Adelman 5 mins. Project Attorney Natural Resources Defense Council - Robert Holden 5 mins. National Congress of American Indians - Steve Collins 5 mins. Assistant Manager, Office of Radiation Safety Illinois Department of Nuclear Safety Conference of Radiation Control Program Directors, Inc. (CRCPD) / Organization of Agreement States (OAS) - Jeff Deckler 5 mins. Remedial Programs Manager Department of Public Health and Environment State of Colorado Association of State and Territorial Solid Waste Management Officials (ASTSWMO) -2- Panel - Industry, Affected Industries, and Workers Lynnette Hendricks 5 mins. Director, Plant Support Nuclear Energy Institute Val Loiselle 5 mins. Managing Director Association of Radioactive Recyclers Mike Mattia 5 mins. Director of Risk Management Institute of Scrap Recycling Industries, Inc. John Wittenborn, Esq. 5 mins. (Collier Shannon Scott PLLC) Representing the Metals Industry Recycling Coalition (MIRC). Members include: American Iron and Steel Institute Copper and Brass Fabricators Council Nickel Development Institute Specialty Steel Industry of North America Steel Manufacturers Association American Iron & Steel Institute Dan Guttman 5 mins.
    [Show full text]
  • ABORATOR Y =Dhcl&Eed
    ABORATORY September 1994 D. M. Funk INEL RadioactiveMETAL Scrap RECYCLE Metal Survey Report Idaho Nationa Engineering Laboratory Work performed under =dhcl&eed DOE Contract Idaho TecbnoIogies Company NO.DE-AC07-94ID13223 I i I DISCLAIMER This report was prepared as an account of work sponsored by an agency of the UnitedStates Government. Neither the United States Government nor any agency thereof. nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy. completeness. or usefulness of any information. apparatus. product or process disclosed. or represents that Its use would not infringe privately owned nghts. References herein to any specific commercial product. process. or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement. reammendabon. or favoringby the United StatesGovemment orany agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. INEL94/0098 UC-510 INEL METAL RECYCLE Radioactive Scrap Metal Survey Report INEL METAL RECYCLE GROUP D. M. Funk September 1994 Lockheed Idaho Technologies Company PREPARED FOR DEPARTMENTOFENERGYTHE IDAHO OPERATIONS UNDER CONTRACT DE-AC07-941D13223OFFICE STER DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. ACKNOWLEDGEMENTS The author wishes to thank Linda D. Grant, Linda R. Harper (both at INEL), Terry Holmes,(NTS, REECo), Rex Lutz (WSRC), Anne Hallman (SNL), Gilbert Montoya @,ANI,), Donna Merry and Jane Kirkendall (both at WHC), and Mike Simmons (EG&G Rocky Flats) for their roles in supporting the survey of radioactive scrap metal.
    [Show full text]
  • End-Of-Waste Criteria for Copper and Copper Alloy Scrap
    End-of-waste Criteria for Copper and Copper Alloy Scrap: Technical Proposals Lenka Muchova, Peter Eder and Alejandro Villanueva EUR 24786 EN - 2011 The mission of the JRC-IPTS is to provide customer-driven support to the EU policy-making process by developing science-based responses to policy challenges that have both a socio- economic as well as a scientific/technological dimension. European Commission Joint Research Centre Institute for Prospective Technological Studies Contact information Address: Edificio Expo. c/ Inca Garcilaso, 3. E-41092 Seville (Spain) E-mail: [email protected] Tel.: +34 954488318 Fax: +34 954488300 http://ipts.jrc.ec.europa.eu http://www.jrc.ec.europa.eu Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 64207 EUR 24786 EN ISBN 978-92-79-19922-6 ISSN 1018-5593 doi:10.2791/57777 Luxembourg: Publications Office of the European Union © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Spain PREFACE This report is the JRC-IPTS contribution to the development of the end-of-waste criteria for copper and copper alloy scrap in accordance with Article 6 of Directive 2008/98/EC of the European Parliament and of the Council on waste (the Waste Framework Directive).
    [Show full text]