Identification and Characterization of Moesin-, PIP2-Mediated Solid Particle Phagocytosis

Total Page:16

File Type:pdf, Size:1020Kb

Identification and Characterization of Moesin-, PIP2-Mediated Solid Particle Phagocytosis University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2018-08-09 Identification and Characterization of Moesin-, PIP2-mediated Solid Particle Phagocytosis Tu, Zhongyuan Tu. Z. (2018). Identification and Characterization of Moesin-, PIP2-mediated Solid Particle Phagocytosis (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/32804 http://hdl.handle.net/1880/107622 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Identification and Characterization of Moesin-, PIP2-mediated Solid Particle Phagocytosis by Zhongyuan Tu A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN MICROBIOLOGY AND INFECTIOUS DISEASES CALGARY, ALBERTA AUGUST, 2018 © Zhongyuan Tu 2018 Abstract Phagocytosis is the defining feature of professional phagocytes of the innate immune system. This function is typically carried out by phagocytic receptors on the cell surface. These receptors can mediate binding and engulfment of solid particles. However, these phagocytic receptors have evolved very recently in history comparing to phagocytosis as a conserved cellular function. This suggests a primordial form of phagocytosis might exist. Years ago, our laboratory uncovered an expected phagocytic mechanism that solid particle can bind to membrane lipids on phagocytes to trigger lipid sorting. Consequently, this can lead to phagocytosis akin to FcγR-based phagocytosis regarding its dependence on Immunoreceptor Tyrosine-based Activation Motif (ITAM), Src-family kinases, Syk, and phosphoinositide 3- kinase (PI3K). Based on these findings, we proposed a hypothetical mechanism for solid particle phagocytosis termed “Signaling Equivalent Platform” (SEP). In short, membrane engagement with solid structures, either via ligand/receptor binding or merely being stabilized by an approaching solid surface will lead to a shared downstream pathway with the same dependence on ITAM and Syk. Both modes of phagocytosis are equivalent for its activation by solid structures. However, the identity of the ITAM-containing molecule and the exact involvement of lipid during solid particle phagocytosis under SEP is still unclear. This thesis serves to strengthen the idea of SEP by identifying the ITAM-containing molecule and further characterizing the involvement of the ITAM-containing molecule and lipids during solid particle phagocytosis. We used a generic ITAM sequence as a probe and identified moesin as the ITAM- containing molecule from the mouse genome. We further demonstrated that a solid structure ii binding to the cell surface leads to autonomous accumulation of phosphatidylinositol 4, 5- bisphosphate (PIP2) to the site of contact, which attracts moesin, a conserved structural linker, to the plasma membrane. Moreover, Moesin, via its ITAM, is sufficient to activate phagocytic programming including Syk and downstream signaling that is virtually identical to that initiated by Fcγ receptors. Bioinformatic analysis suggested that this moesin-mediated signaling predates modern Fcγ and immune receptors. This thesis, therefore, reveals an evolutionarily conserved moesin-, PIP2-mediated signaling platform for the evolutionarily conserved phagocytosis that provides essential components for modern ITAM-based signaling cascades. iii Preface This thesis is original, unpublished, independent work by the author, Zhongyuan Tu. The author would like to take this opportunity to lay out how this thesis is written. Chapter 1 provides the background for the entire thesis. It is structured in a funnel shape such that the broadest topic is introduced first. The topics discussed will progressively get narrower and eventually the topic at issue is introduced and discussed at last. As the topics narrows, descriptions become more detailed. This technique was first introduced to me by Dr. Mark McDermott, Professor Emeritus and a top-notch graduate educator at McMaster University, and has been useful ever since. Chapter 2 concerns the material and methods used in this thesis. I structured the methods sections according to their purpose. Specific to this thesis, section 2.4.2 presents the topic of microscopy. This section can be read independent of other parts of the thesis and intends to serve as a practical guide on how to perform good microscopy for junior graduate students in need. This part is written in consultation with Dr. Tie Xia. Chapter 3 to 5 contains all results of this thesis. There are two major flows when writing these chapters. The vertical flow is the results section. In it, results are presented in logical order and conclusions are made. Results are from the interpretation of data. Therefore, prudence and appropriate caution should be exercised. The horizontal flow is the discussion section. It is like a replay of a football game in which each move are highlighted and analyzed. In it, vertically flowed results are horizontally discussed, and critically examined. Also, new topics are introduced if necessary to facilitate discussion. For example, in Section 4.3, membrane domains were introduced to provide context for results discussion. Also, in section 5.3, the idea of “effective engagement” was put forward in an attempt to explain the results further. The iv discussion points were identified from, but not limited to, the previous discussion with committee members, discussions among colleagues and comments from reviewers of the manuscript submitted. Critical thinking and the defense elements of a thesis should be reflected in these sections. The entire writing process on the discussion sections can be described as playing a chess game against the most critical version of oneself because one must contemplate all possibilities and weigh strengths and weakness of alternative scenarios all the time. In other words, one must think hard. It is both a taxing and intellectually stimulating experience. Of special note, it is my personal view that weakness of results should be acknowledged upfront instead of looking the other way in the hope of forcing specific narratives, especially with thesis writing. The truth may be uncomfortable, inconvenient, but it shall set you free. The Chief Justice of the Supreme Court of United States, John G Roberts Jr, stated on multiple occasions that the Court appreciates when an attorney acknowledges the weak points of their argument because the Court understands the topics brought before the Supreme Court are hard, and there are merits for each side of the argument. This is true for law, and this is true for science. Because the questions investigated in a Ph.D. thesis usually involves many unknowns and are limited by current techniques, it is helpful to exercise candor and then discuss possibilities and solutions. Chapter 6 is the final chapter serving as the grand finale of the thesis. Results are summarized, and a model is proposed. This model is further examined in the Future Directions section for possible ways to improve this model. For example, in Section 6.2, how phagocytic signaling occurs is discussed fundamentally, and previously discussed concepts of membrane domain, “effective engagement”, checks and balances between ITAM and ITIM are fitted into this grand discussion to help better understand our work and to improve the model in the future. In a way, this chapter can serve as a prequel to a future thesis. v Acknowledgements The official completion of this thesis will mark the end of the early part of my life as a scientist. Looking back, this is a long and winding road with success and much more failures as the natural progression in science. I am privileged to meet and sometimes travel alongside some of the kindest, wittiest human beings I know on this road. This section of the thesis serves to express my deepest gratitude towards these people. First and foremost, I thank my supervisor Dr. Yan Shi for giving me such a unique opportunity to develop my graduate research and to mature as a human being. It is my firm belief that the critical thinking and interpersonal skills I have developed during my graduate studies will benefit me for the rest of my life. Next, I thank my committee members Drs Robin Yates and Matthias Amrein for carefully guiding me through my graduate studies. It is evident to me that I gained experience points and leveled up every time coming out of a committee meeting or a candidacy exam. I believe any student is fortunate to have you as their supervisors. I would also like to thank Dr. Tie Xia for being a personal friend and my go-to guy for imaging-related problems. Being nice is sometimes a very overrated and murky virtue as it can be misjudged. However, I would still want to make it to the record that Tie Xia is a genuinely nice person. One can always count on him for personal advice, imaging expertise, and recommendation for vegan restaurants. The newly-minted Dr. Libing Mu is critical for developing and finishing this thesis. The fact that we have gone through this together means everything. Therefore, nothing more can be said. vi I would also like to acknowledge Jiahua Chen, Hua Rong, Yifei Zhang, Xiaoting Wang for their companionship while they are in Canada. I enjoyed every meal they shared with me and every conversion we had. I would like to thank the administrative staffs. Those include our lab manager Melanie Stenner and administrative assistant Florence Yang. They made my life as a graduate student much easier by doing their job exceptionally well. I would also like to acknowledge all the other lab members at Tsinghua University. I would like to thank Ning Kang for her quick wit.
Recommended publications
  • The Atypical Guanine-Nucleotide Exchange Factor, Dock7, Negatively Regulates Schwann Cell Differentiation and Myelination
    The Journal of Neuroscience, August 31, 2011 • 31(35):12579–12592 • 12579 Cellular/Molecular The Atypical Guanine-Nucleotide Exchange Factor, Dock7, Negatively Regulates Schwann Cell Differentiation and Myelination Junji Yamauchi,1,3,5 Yuki Miyamoto,1 Hajime Hamasaki,1,3 Atsushi Sanbe,1 Shinji Kusakawa,1 Akane Nakamura,2 Hideki Tsumura,2 Masahiro Maeda,4 Noriko Nemoto,6 Katsumasa Kawahara,5 Tomohiro Torii,1 and Akito Tanoue1 1Department of Pharmacology and 2Laboratory Animal Resource Facility, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan, 3Department of Biological Sciences, Tokyo Institute of Technology, Midori, Yokohama 226-8501, Japan, 4IBL, Ltd., Fujioka, Gumma 375-0005, Japan, and 5Department of Physiology and 6Bioimaging Research Center, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan In development of the peripheral nervous system, Schwann cells proliferate, migrate, and ultimately differentiate to form myelin sheath. In all of the myelination stages, Schwann cells continuously undergo morphological changes; however, little is known about their underlying molecular mechanisms. We previously cloned the dock7 gene encoding the atypical Rho family guanine-nucleotide exchange factor (GEF) and reported the positive role of Dock7, the target Rho GTPases Rac/Cdc42, and the downstream c-Jun N-terminal kinase in Schwann cell migration (Yamauchi et al., 2008). We investigated the role of Dock7 in Schwann cell differentiation and myelination. Knockdown of Dock7 by the specific small interfering (si)RNA in primary Schwann cells promotes dibutyryl cAMP-induced morpholog- ical differentiation, indicating the negative role of Dock7 in Schwann cell differentiation. It also results in a shorter duration of activation of Rac/Cdc42 and JNK, which is the negative regulator of myelination, and the earlier activation of Rho and Rho-kinase, which is the positive regulator of myelination.
    [Show full text]
  • A Rac/Cdc42 Exchange Factor Complex Promotes Formation of Lateral filopodia and Blood Vessel Lumen Morphogenesis
    ARTICLE Received 1 Oct 2014 | Accepted 26 Apr 2015 | Published 1 Jul 2015 DOI: 10.1038/ncomms8286 OPEN A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis Sabu Abraham1,w,*, Margherita Scarcia2,w,*, Richard D. Bagshaw3,w,*, Kathryn McMahon2,w, Gary Grant2, Tracey Harvey2,w, Maggie Yeo1, Filomena O.G. Esteves2, Helene H. Thygesen2,w, Pamela F. Jones4, Valerie Speirs2, Andrew M. Hanby2, Peter J. Selby2, Mihaela Lorger2, T. Neil Dear4,w, Tony Pawson3,z, Christopher J. Marshall1 & Georgia Mavria2 During angiogenesis, Rho-GTPases influence endothelial cell migration and cell–cell adhesion; however it is not known whether they control formation of vessel lumens, which are essential for blood flow. Here, using an organotypic system that recapitulates distinct stages of VEGF-dependent angiogenesis, we show that lumen formation requires early cytoskeletal remodelling and lateral cell–cell contacts, mediated through the RAC1 guanine nucleotide exchange factor (GEF) DOCK4 (dedicator of cytokinesis 4). DOCK4 signalling is necessary for lateral filopodial protrusions and tubule remodelling prior to lumen formation, whereas proximal, tip filopodia persist in the absence of DOCK4. VEGF-dependent Rac activation via DOCK4 is necessary for CDC42 activation to signal filopodia formation and depends on the activation of RHOG through the RHOG GEF, SGEF. VEGF promotes interaction of DOCK4 with the CDC42 GEF DOCK9. These studies identify a novel Rho-family GTPase activation cascade for the formation of endothelial cell filopodial protrusions necessary for tubule remodelling, thereby influencing subsequent stages of lumen morphogenesis. 1 Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Molecular Signatures Differentiate Immune States in Type 1 Diabetes Families
    Page 1 of 65 Diabetes Molecular signatures differentiate immune states in Type 1 diabetes families Yi-Guang Chen1, Susanne M. Cabrera1, Shuang Jia1, Mary L. Kaldunski1, Joanna Kramer1, Sami Cheong2, Rhonda Geoffrey1, Mark F. Roethle1, Jeffrey E. Woodliff3, Carla J. Greenbaum4, Xujing Wang5, and Martin J. Hessner1 1The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin Milwaukee, WI 53226, USA. 2The Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA. 3Flow Cytometry & Cell Separation Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA. 4Diabetes Research Program, Benaroya Research Institute, Seattle, WA, 98101, USA. 5Systems Biology Center, the National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, MD 20824, USA. Corresponding author: Martin J. Hessner, Ph.D., The Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI 53226, USA Tel: 011-1-414-955-4496; Fax: 011-1-414-955-6663; E-mail: [email protected]. Running title: Innate Inflammation in T1D Families Word count: 3999 Number of Tables: 1 Number of Figures: 7 1 For Peer Review Only Diabetes Publish Ahead of Print, published online April 23, 2014 Diabetes Page 2 of 65 ABSTRACT Mechanisms associated with Type 1 diabetes (T1D) development remain incompletely defined. Employing a sensitive array-based bioassay where patient plasma is used to induce transcriptional responses in healthy leukocytes, we previously reported disease-specific, partially IL-1 dependent, signatures associated with pre and recent onset (RO) T1D relative to unrelated healthy controls (uHC).
    [Show full text]
  • Human Ortholog of Drosophila Melted Impedes SMAD2 Release from TGF
    Human ortholog of Drosophila Melted impedes SMAD2 PNAS PLUS release from TGF-β receptor I to inhibit TGF-β signaling Premalatha Shathasivama,b,c, Alexandra Kollaraa,c, Maurice J. Ringuetted, Carl Virtanene, Jeffrey L. Wranaa,f, and Theodore J. Browna,b,c,1 aLunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON, Canada M5T 3H7; Departments of bPhysiology, cObstetrics and Gynaecology, dCell and Systems Biology, and fMolecular Genetics, University of Toronto, Toronto, ON, Canada M5S 3G5; and ePrincess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada M5G 1L7 Edited by Igor B. Dawid, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and approved May 5, 2015 (received for review March 11, 2015) Drosophila melted encodes a pleckstrin homology (PH) domain- The gene locus encompassing human VEPH1, 3q24-25, lies containing protein that enables normal tissue growth, metabo- within a region frequently amplified in ovarian cancer (6, 7). Tan lism, and photoreceptor differentiation by modulating Forkhead et al. (8) found that this locus was also amplified in 7 of 12 ep- box O (FOXO), target of rapamycin, and Hippo signaling pathways. ithelial ovarian cancer cell lines. A gene copy number analysis of Ventricular zone expressed PH domain-containing 1 (VEPH1) is the 68 primary tumors by Ramakrishna et al. (9) identified frequent mammalian ortholog of melted, and although it exhibits tissue- (>40%) VEPH1 gene amplification that correlated with tran- restricted expression during mouse development and is poten- script levels. We determined the impact of VEPH1 on gene ex- tially amplified in several human cancers, little is known of its pression in an ovarian cancer cell line using a whole-genome function.
    [Show full text]
  • DOCK11 Antibody
    Product Datasheet DOCK11 Antibody Catalog No: #47074 Orders: [email protected] Description Support: [email protected] Product Name DOCK11 Antibody Host Species Rabbit Clonality Polyclonal Purification Antigen affinity purification Applications IHC Species Reactivity Hu Specificity The antibody detects endogenous levels of total DOCK11 protein. Immunogen Type peptide Immunogen Description Synthetic peptide of human DOCK11 Target Name DOCK11 Other Names ACG; ZIZ2; bB128O4.1 Accession No. Swiss-Prot#:Q5JSL3 NCBI Gene ID:139818Gene Accssion:NP_653259 Concentration 1.3mg/ml Formulation Rabbit IgG in pH7.4 PBS, 0.05% NaN3, 40% Glycerol. Storage Store at -20C Application Details Immunofluorescence:1: 20-100 Images The image is immunohistochemistry of paraffin-embedded Human liver cancer tissue using 47074(DOCK11 Antibody) at dilution 1/35. (Original magnification: ?00) Address: 8400 Baltimore Ave., Suite 302, College Park, MD 20740, USA http://www.sabbiotech.com 1 The image is immunohistochemistry of paraffin-embedded Human gastric cancer tissue using 47074(DOCK11 Antibody) at dilution 1/35. (Original magnification: ?00) Background Small GTPases of the Rho family, Rho, Rac, and Cdc42, are critical regulators of the actin cytoskeleton and many other cellular processes. Rho GTPases are activated by Dbl-homology (DH)-domain-containing guanine nucleotide exchange factors (GEFs). DOCK 11 (dedicator of cytokinesis 11), also known as ACG or ZIZ2 (zizimin2), is a 2073 amino acid protein belonging to the DOCK family of cytokinesis-regulating proteins that is mainly expressed in peripheral blood leukocytes. DOCK 11 functions as a GEF that binds and activates Cdc42 by exchanging bound GDP for free GTP. Cdc42 mediates cell polarity, gene expression, cell cycle progression and cellCcell contacts.
    [Show full text]
  • DOCK9 Induces Membrane Ruffles and Rac1 Activity in Cancer Hela
    Biochemistry and Biophysics Reports 14 (2018) 178–181 Contents lists available at ScienceDirect Biochemistry and Biophysics Reports journal homepage: www.elsevier.com/locate/bbrep DOCK9 induces membrane ruffles and Rac1 activity in cancer HeLa T epithelial cells ⁎ Natalia Ruiz-Lafuente, Alfredo Minguela, Antonio Parrado Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), El Palmar, 30120 Murcia, Spain ARTICLE INFO ABSTRACT Keywords: Dedicator-of-cytokinesis (DOCK) proteins are a family of guanine-nucleotide exchange factors (GEF) for Rho DOCK9 GTPases. The DOCK-D homology subfamily comprises DOCK9, DOCK10, and DOCK11. DOCK9 and DOCK11 are DOCK10 GEFs for Cdc42 and induce filopodia, while DOCK10 is a dual GEF for Cdc42 and Rac1 and induces filopodia and DOCK11 ruffles. We provide data showing that DOCK9, the only one of the DOCK-D members that is not considered Rac1 hematopoietic, is nevertheless expressed at high levels in T lymphocytes, as do DOCK10 and DOCK11, although Actin cytoskeleton unlike these, it is not expressed in B lymphocytes. To investigate DOCK9 function, we have created a stable HeLa Ruffles clone with inducible expression of HA-DOCK9. Induction of expression of HA-DOCK9 produced loss of elon- gation and polygonal shape of HeLa cells. Regarding membrane protrusions, HA-DOCK9 prominently induced filopodia, but also an increase of membrane ruffles. The latter was consistent with an increase in the levels of activation of Rac1, suggesting that DOCK9 carries a secondary ability to induce ruffles through activation of Rac1. 1. Introduction In this paper, we have investigated expression of DOCK9 and DOCK11 in human hematopoietic cell subsets.
    [Show full text]
  • Expression of DOCK9 and DOCK11 Analyzed with Commercial Antibodies: Focus on Regulation of Mutually Exclusive First Exon Isoforms
    antibodies Article Expression of DOCK9 and DOCK11 Analyzed with Commercial Antibodies: Focus on Regulation of Mutually Exclusive First Exon Isoforms Antonio Parrado Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain; [email protected] Received: 15 May 2020; Accepted: 22 June 2020; Published: 27 June 2020 Abstract: Dedicators of cytokinesis 9 and 11 (DOCK9 and DOCK11) are members of the dedicator of cytokinesis protein family encoding the guanosine nucleotide exchange factors for Rho GTPases. Together with DOCK10, they constitute the DOCK-D or Zizimin subfamily. Two alternative full-length amino terminal isoforms of DOCK9 are known, which we will call DOCK9.1 and DOCK9.2. In order to investigate the relevance of the presence of the alternative first exon isoforms within this family, and to lay the groundwork for future studies that seek to investigate their potential role as biomarkers of disease, the expression levels of DOCK9 and DOCK11 were measured by qRT-PCR in 26 human tissues and 23 human cell lines, and by Western blot analysis, using commercial antibodies in cell lines. DOCK9.1 and DOCK9.2 were widely distributed. High levels of expression of both isoforms were found in the lungs, placenta, uterus, and thyroid gland. However, only DOCK9.1 was significantly expressed in the neural and hematopoietic tissues. The unique first exon form of DOCK11 was highly expressed in hematopoietic tissues, such as the peripheral blood leukocytes, spleen, thymus, or bone marrow, and in others such as the lungs, placenta, uterus, or thyroid gland. In contrast to tissues, the expression of DOCK9.1 and DOCK9.2 differed from one another and also from total DOCK9 in cell lines, suggesting that the amino terminal isoforms of DOCK9 may be differentially regulated.
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]
  • The Essential Role of DOCK8 in Humoral Immunity
    Disease Markers 29 (2010) 141–150 141 DOI 10.3233/DMA-2010-0739 IOS Press The essential role of DOCK8 in humoral immunity Katrina L. Randalla,b, Teresa Lambec, Chris C. Goodnowa and Richard J. Cornallc,∗ aJohn Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia bDepartment of Immunology, The Canberra Hospital, Garran, ACT, Australia cNuffield Department of Clinical Medicine, Oxford University, UK Abstract. The processes that normally generate and maintain adaptive immunity and immunological memory are poorly under- stood, and yet of fundamental importance when infectious diseases place such a major economic and social burden on the world’s health and agriculture systems. Defects in these mechanisms also underlie the many forms of human primary immunodeficiency. Identifying these mechanisms in a systematic way is therefore important if we are to develop better strategies for treating and preventing infection, inherited disease, transplant rejection and autoimmunity. In this review we describe a genome-wide screen in mice for the genes important for generating these adaptive responses, and describe two independent DOCK8 mutant mice strains identified by this screen. DOCK 8 was found to play an essential role in humoral immune responses and to be important in the proper formation of the B cell immunological synapse. Keywords: DOCK8, germinal center, immunodeficiency, DOCK family, guanine exchange factor 1. Introduction cy, while also discovering the role of many genes im- portant in innate and adaptive immune responses [12]. The adaptive immune system of higher vertebrates is Identifying mouse models of individual immune defi- characterized by the ability to remember previous en- ciencies can also be important to inform us about hu- counterswith antigenand to respondmorequicklywith man disease, and provide insights into normal immune higher affinity antibodies, the second time an antigen is function.
    [Show full text]
  • A Novel Family of DOCK180-Related Proteins 4903
    Research Article 4901 Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity Jean-François Côté and Kristiina Vuori* The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA *Author for correspondence (e-mail: [email protected]) Accepted 11 October 2002 Journal of Cell Science 115, 4901-4913 © 2002 The Company of Biologists Ltd doi:10.1242/jcs.00219 Summary Mammalian DOCK180 protein and its orthologues DOCK180-mediated Rac activation in vivo. Importantly, Myoblast City (MBC) and CED-5 in Drosophila and we have identified several novel homologues of DOCK180 Caenorhabditis elegans, respectively, function as critical that possess this domain and found that many of them regulators of the small GTPase Rac during several directly bind to and exchange GDP for GTP both in vitro fundamentally important biological processes, such as and in vivo on either Rac or another Rho-family member, cell motility and phagocytosis. The mechanism by which Cdc42. Our studies therefore identify a novel protein DOCK180 and its orthologues regulate Rac has remained domain that interacts with and activates GTPases and elusive. We report here the identification of a domain suggest the presence of an evolutionarily conserved within DOCK180 named DHR-2 (Dock Homology Region- DOCK180-related superfamily of exchange factors. 2) that specifically binds to nucleotide-free Rac and activates Rac in vitro. Our studies further demonstrate that the DHR-2 domain is both necessary and sufficient for Key words: Cytoskeleton, GTPase, Rac, Signaling Introduction (Albert et al., 2000; Cheresh et al., 1999; Dolfi et al., 1998; Mammalian DOCK180 was originally identified as a 180 kDa Gumienny et al., 2001; Kiyokawa et al., 1998a).
    [Show full text]