Project Physics Text 6, the Nucleus. INSTITUTION Harvard Univ., Cambridge, Mass

Total Page:16

File Type:pdf, Size:1020Kb

Project Physics Text 6, the Nucleus. INSTITUTION Harvard Univ., Cambridge, Mass DOCUMENT RESUME ED 071 910 SE 015 547 TITLE Project Physics Text 6, The Nucleus. INSTITUTION Harvard Univ., Cambridge, Mass. Harvard Protect Physics. SPONS AGENCY Office of Education (DHEW), Washington, D.C. Bureau of Research. BUREAU NO BR-5-1038 .PUB DATE 68 CONTRACT OEC-5-1C-058 NOTE 128p.; Authorized Interim Version EDRS PRICE brio-$0.65 HC -$6.58 DESCRIPTORS Instructional Materials; *Nuclear Physics; Physics; *Radiation; Radiation Effects; Radioisotopes; *Scientific Concepts; Secondary Grades; *Secondary School Science; *Textbooks IDENTIFIERS Harvard Project Physics ABSTRACT Nuclear physics fundamentals are presented in this sixth unit of the Project Physics text for use by senior high students. Included are discussions of radioactivity, taking into account Bacquerells discovery, radioactive elements, properties of radiations, radioactive transformations, decay series, and half-lives. Isotopes are analyzed in connection with positiverays, mass spectrographs, notations for nuclides and nuclear reactions, relative abundances, and atomic masses. Nuclear structures and reactions are studied by using proton-electron and proton-neutron hypotheses with a background of discoveries of neutrons, neutrinosas well as artificial transmutation and artificially induced radioactivity. Information about binding energy,mass-energy balance, nuclear fission and fusion, stellar nuclear reactions, nuclear force and model, and biological and medical application of radioisotopes is, given to conclude the whole text. Historical developmentsare stressed in the overall explanation. Problems with theiranswers are provided in two categories: study guide and end of section questions. Besides illustrations for explanation use, charts of elementary particles and physical constants with conversion factorsare also included in this text unit as appendices. The work of Harvard Project Physics has been financially supported by: the Carnegie Corporation of New York, the Ford Foundation, the National Science Foundation, the Alfred P..Sloan Foundation, the United.States Office of Education, and Harvard UnivE!rsity. (CC) U S DEPARTMENTOF HEALTH EDUCATION & WELFARE 4FFICE OF EDUCATION THIS DOCUMENT HASBEEN REPRO DUCEO EXACTLY ASRECEIVED FROM ORIG THE PERSON OR ORGANIZATION INATING II POINTS OFVIFV% OR OPIN IONS STATED DO NOTNECESSARILY REPRESENT OFFICIAL OFFICEOf EDU CATION POSITION ORPOLICY An Introduction to Physics The Nucleus a Project Physics Text An Introduction to Physics6The Nucleus Authorized Interim Version 1968-69 Distributed by Holt. Rinehart and Winston, Inc.New York Toronto The Project Physics course was developed througi. the Directors of Harvard Project Physics contributions of many people; the following is a pa. tial list Gerald Holton, Dept of Physti s, Harvard University of those contributors. (The affi:ia dons indicatedarc those F Jam( Rutherford, Capuchino High Si hoot, San Bruno, Calif just prior to or during association with the Project.) Flet. her G Watson, Harvard Graduate School of Education Advisory Committee E G Begle, Stanford University, Calif. Paul F. Brandivem, Harcourt, Brace & World, Inc, San irancisco, Calif Robert Brode, University of California, Berkeley Erwin Hiebert, University of Wisconsin, Madison Harry Kelly, North Carolina State College, Raleigh William C. Kelly, National Research Council, Washington, D C Philippe LeCorbeiller, New School for Social Research, New York, N Y Thomas Miner, Garden City High School, New YorK, N.Y Philip Morrison, Massachusetts Institute of Technology, Cambridge Ernest Nagel, Columbia University, New York, N Y Leonard K Nash, Harvard University 11 Rabi, Columbia University, New York, N Y. Staff and Consultants Andrew Ahlgren, Maine Township High School, Park Ridge, Ill. L K Akers, Oak Ridge Associated Universities, Tenn. Roger A Albrecht, Osage Community Schools, Iowa David Anderson, Oberlin College, Ohio Gary Anderson, Harvard University 90123 69 9876543 Donald Armstrong, American Science Film Association, Washington, D C. Sam Ascher, Henry Ford High School, Detroit, Mich Ralph Atherton, Talawanda High School, Oxford, Ohio 03-073460-6 Albert V. Baez, UNESCO, Paris William G Banick, Fulton High School, Atlanta, Ga. Arthur Berke, Nova High School, Fort Lauderdale, Fla. Copyright ©1968, Project Physics Incorporated. Rolland B Bartholomew, Henry M. Gunn High School, Palo Alto, Calif 0 Theodor Benfey, Eariham College, Richmond, Ind Copyright is claimed until June 1, 1969. After lune1, 1969 Richard Berendzen, Harvard College Observatory all portions of this work not identified hereina . the subject Alfred M. Bork, Reed College, Portland, Ore of previous copyright shall be in the publicuomain. The Alfred Brenner, Harvard University authorized interim version of the Harvard ProjectPhysics Robert Bridgham, Harvard University course is being distributed at cost by Holt, Rinehart and Richard Brinckerhoff, Phillips Exeter Academy, Exeter, N.H Winston, Inc. by arrangement with Project Physics Incorpo- Donald 3rittain, Nalonal Film Board of Canada, Montreal rated, a non-profit educational organization. Joan Bromberg, Harvard University Vinson Bronson,' Jewton South High School, Newton Centre, Mass. All persons making use ofany part of these materials are Stephen G Brush, Lawrence Radiation Laboratory, University of requested to acknowledge the source and the financialsup- California, Livermore port given to Project Physics by the agencies named below, Michael Butler, CASA Films Mundiales, S A, Mexico and to include a statement that the publication of suchmate- Leon Callihan, St Mark's School of Texas, Dallas rial is not necessarily endorsed by Harvard Project Physics Douglas Campbell, Harvard University or any of the authors of this work. Dean R Casperson, Harvard University The work of Harvard Project Physics has been financially Bobby Chambers, Oak Ridge Associated Universities, Tenn Robert Chesley, Thacher School, Ojai, Calif. supported by the Carnegie Corporation of New York, the John Christensen, Oak Ridge Associated Universities, Tenn. Ford Foundation, the National Science Foundation, the Al- Dora Clark, W. G. Enloe High School, Raleigh, N.0 f red P. Sloan Foundation, the United States Office ofEdu- David Clarke, Browne and Nichols School, Cambridge, Mass. cation, and Harvard University. Robert S. Cohen, Boston University, Mass. Brother ColumLan Francis, F S C , Mater Christi Diocesan High Glen Mervyn, West Vancouver Secondary School, B C, Canada School, Long Island City, N Y Franklin Miller, Jr , Kenyon College, Gambier. Ohio Arthur Compton, Phillips Exeter Academy, Exeter, N H. Jack C Miller, Pomona College, Claremont, Calif David L Cone, Los Altos High School, Calif Kent D. Miller, Claremont High School, Calif William Cooley, University of Pittsburgh, Pa James A Minstrel!, Mercer Island High Schocl, Washington Ann Couch, Harvard University James F Moore, Canton Hi-h School, Mass Paul Cowan, Hardin-Simmons University, Abilene, Tex Robert H Mosteller, Pn Iceton High School, Cincinnati, Ohio Charles Davis, Fairfax County School Board, Fairfax, Va William Matson, Jamaica High School, N Y Michael Dentamaro, Senn High School, Chicago, Ill. Henry Nelson, Berkeley High School, Calif Raymond Dittman, Newton High School, Mass. Joseph D. Novak, Purdue University, L arayette, Ind Elsa Dorfman, Educational Services Inc, Watertown, Mass Thonr Olafsson, Menntaskohnn Ad, Laugarvatni, Iceland Vadim Drozin, Bucknell University, Lewisburg, Pa Jay Orear, Cornell Un wersilty, ltha.a, N.Y Neil F Dunn, Burlington High School, Mass Paul O'Toole, Dorchester High School, Mass. R T I:Hickson, University of Oregon, Eugene Costas Papaliolios, Harvard University Thomas Embry, Nova High School, Fort Lauderdale, Fla Jacques Parent, National Film Board of Canada, Montreal Walter Eppenstein, Rensselaer Polytechnic Institute, Troy, N.Y. Eugene A. Platten, San Diego High School, Calif. Herman Epstein, Brandeis University, Waltham, Mass L. Eugene Poorman, University High School, Bloomington, Ind. Thomas F. B Ferguson, National Film Board of Canada, Montreal Gloria Poulos, Harvard University Thomas von Foerster, Harvard University Herbert Priestley, Knox College, Galesburg, HI. Kenneth Ford, University of California, Irvine Edward M Purcell, Harvard University Robert Gardner, Harvard University Gerald M. Rees, Ann Arbor High School, Mich. Fred Geis, Jr., Harvard University James M. Reid, J %V. Sexton High School, Lansing, Mich. Nicholas J Georges, Staples High School, Westport, Conn Robert Resnick, Rensselaer Polytechnic Institute, Troy, N Y. H Richard Gerfin, Simon's Rock, Great Barrington, Mass Paul I. Richards, Technical Operations, Inc., Burlington, Mass Owen Gmgench, Smithsonian Astrophysical Observatory, John Rigden, Eastern Nazarene College, Quincy, Mass. Cambridge, Mass Thomas J. Ritzinger, Rice Lake High School, Wisc. Stanley Goldberg, Antioch College, Yellow Springs, Ohio Nickerson Rogers, The Loomis School, Windsor, Conn Leon Gouteveruer, Paul D. Schreiber High School, Sidney Rosen, University of Illinois, Urbana Port Washington, N.Y John J. Rosenbaum, Livermore High School, Calif. Aibert Gregory, Harvard University William Rosenfeld, Smith College, Northampton, Mass. Julie A. Goetze, Weeks Jr High School, Newton, Mass Arthur Rothman, State University of New York, Buffalo Robert D Haas, Clairemont High School, San Diego, Calif Daniel Rufolo, Clairemont High School, San Diego, Calif. Walter G. Hagenbuch, Plymouth-Whitemarsh Senior High School, Bernhard A. Sachs, Brooklyn Technical High School, N.Y. Plymouth Meeting,
Recommended publications
  • WINTER 2013 - Volume 60, Number 4 the Air Force Historical Foundation Founded on May 27, 1953 by Gen Carl A
    WINTER 2013 - Volume 60, Number 4 WWW.AFHISTORICALFOUNDATION.ORG The Air Force Historical Foundation Founded on May 27, 1953 by Gen Carl A. “Tooey” Spaatz MEMBERSHIP BENEFITS and other air power pioneers, the Air Force Historical All members receive our exciting and informative Foundation (AFHF) is a nonprofi t tax exempt organization. Air Power History Journal, either electronically or It is dedicated to the preservation, perpetuation and on paper, covering: all aspects of aerospace history appropriate publication of the history and traditions of American aviation, with emphasis on the U.S. Air Force, its • Chronicles the great campaigns and predecessor organizations, and the men and women whose the great leaders lives and dreams were devoted to fl ight. The Foundation • Eyewitness accounts and historical articles serves all components of the United States Air Force— Active, Reserve and Air National Guard. • In depth resources to museums and activities, to keep members connected to the latest and AFHF strives to make available to the public and greatest events. today’s government planners and decision makers information that is relevant and informative about Preserve the legacy, stay connected: all aspects of air and space power. By doing so, the • Membership helps preserve the legacy of current Foundation hopes to assure the nation profi ts from past and future US air force personnel. experiences as it helps keep the U.S. Air Force the most modern and effective military force in the world. • Provides reliable and accurate accounts of historical events. The Foundation’s four primary activities include a quarterly journal Air Power History, a book program, a • Establish connections between generations.
    [Show full text]
  • Lead Isotopes As Indicators of Environ Contamination from U Mining
    ._ .- - Preprint LA-UR-78-2147 , Title: LEAD ISOTOPES AS INDICATORS OF ENVIRONt1 ENTAL CONTAMINATION FRCM THE URANIUM MINING AND MILLING INDUSTRY IN THE GRANTS MINERAL BELT, NEW MEXICO Author (s): David B. Curtis and A. J. Gancarz 'k |- . 9 M/ - ' # - L .. %|.RkN: %| * & ,AQ' ,,7 ,e- d*157 ff' k g*/h T .s .. ; f*M & f g W , w -e ~ - " f:} + - pYW pm K .A ,W.% :M & Lw< *b* ? --~ k Y Q Q A -ell' 2_W h _ -- $| - f.s c t Q & Ye # C4HEhreSE33rzgmF %gh gM n [,315 ? M e % @N Y $ $ j3 h e fe l 2 D S $s - - #5 ~N [ ' & 9; - - - f _ '- ~ w e- * g r e w w 2 P As Nc- ' ** * -- - - - - $%y~ - . 9 . j'*( -, ' & . i .- f 1 * - -- ** -- e=* -h .Mr g g* ~ A _. y . gh(An ,, - ?fw h. y C: *, 1% * ~ ?, ?hSlh$i $ ': ffg w s - gp$lQ?$4$5;.>qgg - , .. INS is a Wegint of a paper intended for publication in 4 * '" M jour'ai or procet%1 ergs. Because changes rnay be made before f h , ' , publicction, this preprint is seiade available with the under. f ,- ' , starviing that it will not be died or reproduced without the * +' % '""'***'*C**' " permiss;or of the author, ') O 9 7 - _. _ _ . _ _ _ . _ - _ 0808.0 [ L * ' * . Q - 42 - 72 2)<f y . 1 LEAD ISOTOPES AS INDICATORS OF ENVIRONMENTAL CONTAMINATION FROM THE URANIUM MINING AND MILI.ING INDUSTitY .IN THE GRANIS MINERAL BELT, NEW NEXICO David B. Curtis and A. J. Gancar2 Los Alamos Scientine Laboratory Los Alamos, New Mexico, USA The unique isotopie composition oflead from uranium ores can be useful in studying ihe impact of ore processing efHuents on the env:ronment.
    [Show full text]
  • Chemistry: the Molecular Nature of Matter and Change
    REVISED CONFIRMING PAGES The Components of Matter 2.1 Elements, Compounds, and 2.5 The Atomic Theory Today 2.8 Formula, Name, and Mass of Mixtures: An Atomic Overview Structure of the Atom a Compound 2.2 The Observations That Led to Atomic Number, Mass Number, and Binary Ionic Compounds an Atomic View of Matter Atomic Symbol Compounds That Contain Polyatomic Mass Conservation Isotopes Ions Definite Composition Atomic Masses of the Elements Acid Names from Anion Names Multiple Proportions 2.6 Elements: A First Look at the Binary Covalent Compounds The Simplest Organic Compounds: Dalton’s Atomic Theory Periodic Table 2.3 Straight-Chain Alkanes Postulates of the Atomic Theory Organization of the Periodic Table Masses from a Chemical Formula How the Atomic Theory Explains Classifying the Elements Representing Molecules with a the Mass Laws Compounds: An Introduction 2.7 Formula and a Model to Bonding 2.4 The Observations That Led to Mixtures: Classification and the Nuclear Atom Model The Formation of Ionic Compounds 2.9 Separation Discovery of the Electron and The Formation of Covalent An Overview of the Components of Its Properties Compounds Matter Discovery of the Atomic Nucleus (a) (b) (right) ©Rudy Umans/Shutterstock IN THIS CHAPTER . We examine the properties and composition of matter on the macroscopic and atomic scales. By the end of this chapter, you should be able to • Relate the three types of matter—elements or elementary substances, compounds, and mixtures—to the simple chemical entities that they comprise—atoms, ions, and molecules;
    [Show full text]
  • Pp-03-25-New Dots.Qxd 10/23/02 2:41 PM Page 778
    pp-03-25-new dots.qxd 10/23/02 2:41 PM Page 778 778 PRAESODYMIUM PRAESODYMIUM [7440–10–0] Symbol Pr; atomic number 59; atomic weight 140.908; a lanthanide–series rare earth element; belongs to the cerium group of rare earths; electron con- figuration [Xe] 4f36s2; partially filled f subshell; valence states +3, +4; most 3+ stable oxidation state +3; electrode potential E°/V (aq) for Pr + 3e¯ ↔ Pr is –2.35 V; atomic radius 1.828 Å; first ionization potential 5.46 eV; one natu- rally–occurring isotope, Pr–141; twenty–nine artificial radioactive isotopes known in the mass range 124, 126–140 and 142–154; the longest–lived isotope Pr–143, t1/2 13.57 day, and the shortest–lived isotope Pr–124, t1/2 1.2 second. History, Occurrence, and Uses Mosander extracted from the mineral lanthana a rare earth fraction, named didymia in 1841. In 1879, Boisbaudran separated a rare earth oxide called samaria (samarium oxide) from the didymia fraction obtained from the mineral samarskite. Soon after that in 1885, Baron Auer von Welsbach iso- lated two other rare earths from didymia. He named them as praseodymia (green twin) and neodymia (new twin) after their source didymia (twin). The name praseodymium finally was assigned to this new element, derived from the two Greek words, prasios meaning green and didymos meaning twin. Praseodymium occurs in nature associated with other rare earths in a rel- atively high abundance. It is more abundant than some common metals such as silver, gold, or antimony. The average concentration of this metal in the earth’s crust is estimated to be 8.2 mg/kg.
    [Show full text]
  • Po and Pb in the Terrestrial Environment
    Current Advances in Environmental Science (CAES) 210Po and 210Pb in the Terrestrial Environment Bertil R.R. Persson Medical Radiation Physics, Lund University S-22185 LUND, Sweden [email protected] Abstract- The natural sources of 210Po and 210Pb in the meat at high northern latitudes. This was, however, of terrestrial environment are from atmospheric deposition, soil natural origin and no evidence of significant contributions and ground water. The uptake of radionuclides from soil to of 210Po from the atomic bomb test was found. The most plant given as the soil transfer factor, varies widely between significant radionuclides in the fallout from the atmospheric various types of crops with an average about ± atomic bomb-test of importance for human exposure were The atmospheric deposition of 210Pb and 210Po also affect the 137Cs and 90Sr [4]. activity concentrations in leafy plants with a deposition th 210 210 transfer factor for Pb is in the order of 0.1-1 (m2.Bq-1) plants During the 1960 century the presence of Pb and and for root fruits it is < 0.003, Corresponding values for 210Po 210Po was extensively studied in human tissues and are about a factor 3 higher. particularly in Arctic food chains [4-20]. The activity concentration ratios between milk and various types of forage for 210Pb were estimated to ± and for In December of 2006, former Russian intelligence 210Po to ±By a daily food intake of 16 kg dry matter operative Alexander Litvinenko died from ingestion of a 210 210 per day the transfer coefficient Fm. for Pb was estimated to few g of Po.
    [Show full text]
  • Cyclotron Produced Lead-203 P
    Postgrad Med J: first published as 10.1136/pgmj.51.601.751 on 1 November 1975. Downloaded from Postgraduate Medical Journal (November 1975) 51, 751-754. Cyclotron produced lead-203 P. L. HORLOCK M. L. THAKUR L.R.I.C. M.Sc., Ph.D. I. A. WATSON M.Sc. MRC Cyclotron Unit, Hammersmith Hospital, Du Cane Road, London W12 OHS Introduction TABLE 1. Isotopes of lead Radioactive isotopes of lead occur in the natural Isotope Half-life Principal y energy radioactive series and have been used as decay 194Pb m * tracers since the early days of radiochemistry. These 195Pb 17m * are 210Pb (ti--204 y, radium D), 212Pb (t--10. 6 h, 96Pb 37 m * thorium B) and 214Pb (t--26.8 m, radium B) all of 197Pb 42 m * which are from occurring decay 197pbm 42 m * separated naturally 198pb 24 h * products ofradium or thorium. There are in addition 19spbm 25 m * Protected by copyright. to these a number of other radioactive isotopes of 199Pb 90 m * lead which can be produced artificially with the aid 19spbm 122 m * of a nuclear reactor or a accelerator 20OPb 21-5 h ** 0-109 to 0-605 (complex) charge particle (daughter radiations) (Table 1). 2Pb 9-4 h * There are at least three criteria in choosing the 0oipbm 61 s * radioactive isotope for in vitro tracer studies. First, 20pb 3 x 105y *** TI X-rays, (daughter it should emit radiation which is easily detected. radiations) have a half-life to 202pbm 3-62 h * Secondly, it should long enough aPb 52-1 h ** 0-279 (81%) 0-401 (5%) 0-680 permit studies without excessive radioactive decay 203pbm 6-1 s * (0-9%) (no daughter occurring but not so long that waste disposal radiations) creates a problem.
    [Show full text]
  • Copyright by Paul Harold Rubinson 2008
    Copyright by Paul Harold Rubinson 2008 The Dissertation Committee for Paul Harold Rubinson certifies that this is the approved version of the following dissertation: Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War Committee: —————————————————— Mark A. Lawrence, Supervisor —————————————————— Francis J. Gavin —————————————————— Bruce J. Hunt —————————————————— David M. Oshinsky —————————————————— Michael B. Stoff Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War by Paul Harold Rubinson, B.A.; M.A. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2008 Acknowledgements Thanks first and foremost to Mark Lawrence for his guidance, support, and enthusiasm throughout this project. It would be impossible to overstate how essential his insight and mentoring have been to this dissertation and my career in general. Just as important has been his camaraderie, which made the researching and writing of this dissertation infinitely more rewarding. Thanks as well to Bruce Hunt for his support. Especially helpful was his incisive feedback, which both encouraged me to think through my ideas more thoroughly, and reined me in when my writing overshot my argument. I offer my sincerest gratitude to the Smith Richardson Foundation and Yale University International Security Studies for the Predoctoral Fellowship that allowed me to do the bulk of the writing of this dissertation. Thanks also to the Brady-Johnson Program in Grand Strategy at Yale University, and John Gaddis and the incomparable Ann Carter-Drier at ISS.
    [Show full text]
  • Proton-Induced Cross-Sections of Nuclear Reactions on Lead up to 37 Mev
    Proton-induced cross-sections of nuclear reactions on lead up to 37 MeV F. Ditroi´ a,∗, F. Tark´ anyi´ a, S. Takacs´ a, A. Hermanneb aInstitute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary bCyclotron Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium Abstract Excitation function of proton induced nuclear reactions on lead for production of 206;205;204;203;202;201gBi, 203cum;202m;201cumPb and 202cum;201cum;200cum;199cumTl radionuclides were measured up to 36 MeV by using activation method, stacked foil irradiation technique and ?-ray spectrometry. The new experimental data were compared with the few earlier experimental results and with the predictions of the EMPIRE 3.1, ALICE-IPPE (MENDL2p) and TALYS (TENDL-2012) theoretical reaction codes. Keywords: lead target, cross-section by proton activation, theoretical model codes, thin layer activation (TLA) 1. Introduction this, only a few experimental data sets exist, collected mostly by the experimental groups. In the low energy Production cross-sections of proton induced nuclear region practically only one experimental cross-section reactions on lead are important for many applications is available from the Hannover-Cologne group. In our and for the development of nuclear reaction theory. research and application work in connection with the Lead is an important technological material as pure el- activation cross-sections on lead we were involved in ement as well as alloying agent and it is also widely different projects and applications: used in different nuclear technologies, as well as tar- get material for production of 201Tl medical diagnostic • preparation of nuclear database for production of gamma-emitter for SPECT technology (Lagunas-Solar medical radioisotopes in the frame of an IAEA Co- et al., 1981).
    [Show full text]
  • Effects of Intravenous Injections of Radium Bromide. by R
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central EFFECTS OF INTRAVENOUS INJECTIONS OF RADIUM BROMIDE. BY R. BURTON-OPITZ AND GUSTAVE M. MEYER. (From the Laboratories of Physiology and Physiological Chemistry of Colum- bia University, at the College of Physicians and Surgeons, New York.) PLATE XVI. The present study was undertaken with a view of determining in a general way the effects of intravenous administration of ra- dium upon the circulation and respiration. The problem was sug- gested to us by Dr. William J. Gies, under whose guidance a number of researches, dealing with the more extensive question of the action of radium upon animal and vegetable cells, have re- cently been carried on in the laboratories of Columbia University.1 For the radium used in these experiments we are greatly in- debted to Mr. Hugo Lieber. It was supplied to us in the form of the bromide, in preparations of 240 , iooo, and io,ooo activities. The strength of the solution used was the same in all cases. It contained 45 rag. of the dry substance in 25 c. c. of the solvent; each cubic centimeter of the solution, therefore, contained 1.8 rag. of the radium preparation. The amount of the radium present varies directly with the ra- dio-activity. Preparations of ~,5oo,ooo activity are said to repre- sent pure radium bromide3 Taking this figure as the standard of purity, ~ .8 rag. of the radium preparation of io,ooo activity contained approximately only o.o~ 26 mg., the same quantity of the preparation of ~ooo activity contained o.ooi26 rag.
    [Show full text]
  • Integrated M.Sc. Chemistry (CBCS) SYLLABUS Department of Chemistry Central University of Tamil Nadu Thiruvarur 610
    Integrated M.Sc. Chemistry (CBCS) SYLLABUS Department of Chemistry Central University of Tamil Nadu Thiruvarur 610 101 Name of the course : Integrated M. Sc. (Chemistry) Duration : 10 semesters Intake : 30 Eligibility : Plus two examination or equivalent of any recognized board in India with 60% marks (Chemistry, Mathematics, Physics and Computer Science/Biology) for general category, 55% marks for OBC (Non-creamy layer) and 50% marks for SC/ST candidates. The candidates should not have completed 20 years of age as on 01-07-2015. Course Structure The five year program is spread into ten semesters where in first four semesters are designed for broad subject based understanding. Later six semesters will have increased focus on chemistry. The subject courses in the early stage of iM.Sc programme are simplified and of basic level that bolsters the inter-disciplinary way of learning. The third and subsequent year courses have been designed on advanced theories in chemistry with emphasis on concurrent modern laboratory techniques. Further the iM.Sc (Chemistry) programme has been included with experiments that provide exhaustive hands on experience on various sophisticated instruments, experimental techniques to enable the students secure jobs in corporate. The final semester is dedicated to specialization within the subject with research level training. The rules and regulations of Choice Based Credit System (CBCS) are applicable to this program. Generally, a student takes ten semesters to complete the program. The courses offered under CBCS, has certain credit number (2, 3 or 4). Core requirements of the programs are clearly defined. In the first two years of the program, a student has common course load with students from other departments.
    [Show full text]
  • The Ship 2014/2015
    A more unusual focus in your magazine this College St Anne’s year: architecture and the engineering skills that make our modern buildings possible. The start of our new building made this an obvious choice, but from there we go on to look at engineering as a career and at the failures and University of Oxford follies of megaprojects around the world. Not that we are without the usual literary content, this year even wider in range and more honoured by awards than ever. And, as always, thanks to the generosity and skills of our contributors, St Anne’s College Record a variety of content and experience that we hope will entertain, inspire – and at times maybe shock you. My thanks to the many people who made this issue possible, in particular Kate Davy, without whose support it could not happen. Hope you enjoy it – and keep the ideas coming; we need 2014 – 2015 them! - Number 104 - The Ship Annual Publication of the St Anne’s Society 2014 – 2015 The Ship St Anne’s College 2014 – 2015 Woodstock Road Oxford OX2 6HS UK The Ship +44 (0) 1865 274800 [email protected] 2014 – 2015 www.st-annes.ox.ac.uk St Anne’s College St Anne’s College Alumnae log-in area Development Office Contacts: Lost alumnae Register for the log-in area of our website Over the years the College has lost touch (available at https://www.alumniweb.ox.ac. Jules Foster with some of our alumnae. We would very uk/st-annes) to connect with other alumnae, Director of Development much like to re-establish contact, and receive our latest news and updates, and +44 (0)1865 284536 invite them back to our events and send send in your latest news and updates.
    [Show full text]
  • Mev for Ne, 166 Mev for 0, and 2 -125 Mev for 12C
    Lawrence Berkeley National Laboratory Recent Work Title ON-LINE SPECTROSCOPY OF NEUTRON-DEFICIENT ACTINIUM ISOTOPES Permalink https://escholarship.org/uc/item/8nb5n8f3 Authors Treytl, William J. Hyde, Earl K. Valli, Kalevi. Publication Date 1967-05-01 eScholarship.org Powered by the California Digital Library University of California UCRL-17405 ~f*J- University of California Ernest O. Lawrence Radiation Laboratory ON -LINE a SPECTROSCOPY OF NEUTRON -DEFICIENT ACTINIUM ISOTOPES William J. Treytl, Earl K. Hyde, and Kalevi Valli May 1967 REC lVED U\WP..rNU c::. Ri~D!~'!'nN ll':BC:tA'f()RY ~ ~,- TWO-WEEK LOAN COpy ~ ,-I This is a library Circul atin9 Copy tI ~ which may be borrowed for two weeks. ,.c::. For a personal retention copy, call l-f' 0 Tech. 'nfo. Dioision, Ext. 5545 \Il DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
    [Show full text]