In Memoriam Jan Willems: Een Diepe Denker

Total Page:16

File Type:pdf, Size:1020Kb

In Memoriam Jan Willems: Een Diepe Denker Harry Trentelman Een diepe denker NAW 5/16 nr. 1 maart 2015 37 Harry Trentelman Johann Bernoulli Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen [email protected] In Memoriam Jan Willems (1939–2013) Een diepe denker Op 31 augustus 2013 is op 73-jarige leeftijd Jan Willems overleden in Brasschaat, België. het tekstboek The Analysis of Feedback Sys- Met het overlijden van Jan Willems heeft de internationale onderzoeksgemeenschap in de tems door MIT Press in 1971. Van 1968 tot wiskundige systeem- en regeltheorie een van zijn belangrijkste vertegenwoordigers verloren. 1973 werkte hij als assistant professor aan de Harry Trentelman, hoogleraar Systems and Control aan de Rijksuniversiteit Groningen, blikt afdeling Electrical Engineering van MIT. Zijn terug op leven en werk van deze inspirerende wetenschapper. onderzoek in deze periode was gericht op een aantal onderwerpen, waaronder het zoge- Jan Willems behoorde tot een selecte kern van ing aan de Universiteit van Rhode Island, en in naamde lineair-kwadratische regelprobleem, onderzoekers in de systeem- en regeltheorie 1968 zijn PhD in electrical engineering aan het de netwerksynthese van elektrische circuits, die het onderzoeksveld rond de jaren zeven- Massachusetts Institute of Technology (met en de algemene theorie van dissipativiteit tig van de vorige eeuw vorm gaven. Hij com- als promotor Roger W. Brockett). Zijn proef- van input-outputsystemen in toestandsruim- bineerde creativiteit, associatieve kracht, fy- schrift, over input-outputstabiliteit van open tevorm. Uit deze periode stammen zijn baan- sisch inzicht, en een enorm brede kennis, met dynamische systemen, werd gepubliceerd als brekende artikelen ‘Least squares stationa- energie, enthousiasme, perfectionisme en de wil om tot de essentie van problemen door te dringen. Daarbij was hij charismatisch, en had die speciale eigenschap die tegenwoor- dig wel de ‘X-factor’ wordt genoemd. Binnen de internationale systeem- en regeltheoriege- meenschap was hij een iconisch persoon. Een mooie eigenschap was dat dit hem niet echt scheen te interesseren: gedreven door de wil om tot de essentie van dingen door te drin- gen en ideeën over te dragen praatte hij net zo lief met jonge, beginnende PhD-studenten als met gearriveerde topwetenschappers. Bij Jan Willems ging het altijd om wetenschappe- lijke inhoud en nooit om status. Promotieonderzoek Jan Willems werd geboren in Brugge, op 18 september 1939. Na zijn basisschooltijd in Maldegem en Gent, en zijn middelbareschool- tijd aan het Sint-Barbaracollege in Gent, stu- deerde hij ingenieurswetenschappen aan de Universiteit van Gent. In 1963 vertrok hij naar de Verenigde Staten. Hij behaalde daar in 1965 het MSc-diploma in electrical engineer- Jan Willems in Rome 1 1 38 NAW 5/16 nr. 1 maart 2015 Een diepe denker Harry Trentelman ry optimal control and the algebraic Riccati het baanbrekende boek Linear Multivariable rende programma van colleges voor promo- equation’, verschenen in de IEEE Transactions Control: a Geometric Approach van W. Murray vendi in de systeem- en regeltheorie aan de on Automatic Control in 1971, ‘Dissipative dy- Wonham uit 1974, stortte hij zich aan het eind algemene en technische universiteiten in Ne- namical systems, General theory’ en ‘Dissipa- van de jaren zeventig op de zogenaamde ‘geo- derland. Hoewel het heden ten dage als van- tive dynamical systems, Linear systems with metrisch aanpak’ van de lineaire systeem- en zelfsprekend wordt gezien dat een dergelijk quadratic supply rates’, beide verschenen in regeltheorie, en het storingsontkoppelings- onderwijsprogramma enorm veel voordelen Archive for Rational Mechanics in 1972. In de- probleem. Dit onderzoeksonderwerp binnen biedt, waren veel oudere hoogleraren in de ze artikelen combineerde Jan Willems optima- de systeem- en regeltheorie trok enorm veel systeem- en regeltheorie het hier niet mee le regeltheorie en de daarmee geassocieerde aandacht in die tijd, en werd later ook uit- eens, en zagen het als een aanval op hun algebraïsche Riccati-vergelijking met het fy- gebreid tot niet-lineaire systemen met be- gezag. De jongere generatie was echter una- sische idee van dissipativiteit. Het belangrij- hulp van ideeën uit de differentiaalmeetkun- niem voor. Het kostte veel moeite en vele pitti- ke concept linear matrix inequality (LMI) werd de. Jan introduceerde aan het eind van de ja- ge vergaderingen om het idee van een lande- in deze artikelen geïntroduceerd. Later, vanaf ren zeventig de begrippen ‘bijna stuurinvari- lijk onderwijsprogramma aanvaard te krijgen. de jaren negentig van de vorige eeuw, werden ante deelruimte’ en ‘bijna conditioneel inva- Vooral Jan nam het voortouw in dit experiment dissipativiteit en LMI de centrale begrippen in riante deelruimte’, en paste deze concepten en zijn stijl van vergaderingen voorzitten en de theorie van robuuste regelsystemen, zowel toe in het oplossen van ‘bijna’ storingsont- grondige voorbereiding, gecombineerd met voor lineaire als niet-lineaire systemen. koppelingsproblemen: regelproblemen waar- zijn nimmer aflatende drang om mensen van bij wordt gezocht naar nodige en voldoende zijn standpunten te overtuigen, leidde uitein- Hoogleraar in Groningen voorwaarden voor het bestaan van regelaars delijk tot de oprichting van het Netwerk Sys- Op 1 februari 1973 werd Jan Willems benoemd die de input-output-operator van het closed teemtheorie met als ‘penvoerder’ de Rijksuni- tot hoogleraar aan het Mathematisch Insti- loop-systeem willekeurig klein maken. De the- versiteit Groningen en Jan als voorzitter (van tuut van de Rijksuniversiteit Groningen, om orie die hij hier ontwikkelde, paste hij in de 1986 tot 1996). Het Netwerk Systeemtheorie het nieuwe specialisme wiskundige systeem- jaren tachtig ook toe bij het vinden van een al- leidde uiteindelijk tot de oprichting van de en regeltheorie op te zetten. Al snel werden gemene oplossing van het singuliere lineair- landelijke onderzoeksschool DISC (Dutch In- de colleges lineaire systeemtheorie van Jan kwadratische regelprobleem. stitute for Systems and Control) die in 1995 populair bij de studenten. Jan bleek een in- werd opgericht. Ook hiervan was Jan voorzit- spirerende docent en werd ook erg gewaar- Systems and Control Letters ter tussen 1995 en 1999. deerd om zijn manier van omgaan met stu- In deze periode richtte hij ook samen met Ro- denten en promovendi. Hij verwachtte veel ger Brockett het tijdschrift Systems and Con- Behavioristische benadering van zijn studenten, en befaamd waren zijn trol Letters op, oorspronkelijk met name be- In de jaren tachtig werd Jan zich meer en meer ‘take home-examens’, verzamelingen van sys- stemd voor korte publicaties in de systeem- bewust van de beperkingen van het gangba- teemtheoretische problemen waar de studen- en regeltheorie, met als specifiek doel een re denken binnen de systeem- en regeltheo- ten thuis individueel aan moesten werken om korte doorlooptijd tussen opsturen van het rie in termen van inputs en outputs. Traditi- tot een eindcijfer te komen. Jan had ook veel manuscript en publicatie daarvan. De eerste oneel worden in de analyse en synthese van aandacht voor andere aspecten van de op- uitgave van het tijdschrift verscheen in 1981, open en geïnterconnecteerde systemen zoals leiding, en organiseerde regelmatig bij hem en op het moment van dit schrijven is het toe die worden bestudeerd in de systeem- en re- thuis borrels voor studenten en promoven- aan zijn 34ste jaargang, volume 75. In de be- geltheorie de externe variabelen opgesplitst di, waarbij hij het energieke middelpunt was ginperiode van Systems and Control Letters in twee soorten, namelijk de inputvariabelen van allerlei intellectuele en politieke discus- runde Jan het blad als een soort familiebedrijf, en de outputvariabelen. Deze traditionele op- sies. Ook meer prozaïsche onderwerpen zoals waarbij zijn toenmalige vrouw Margherita en splitsing komt eigenlijk voort uit de oorsprong de Vlaamse voorjaarswielerklassiekers ble- zijn kinderen Mark en Mia werden ingezet van het vakgebied, en vooral zoals het zich ven niet onbesproken. Jan vond het heerlijk voor de secretariële ondersteuning. Om het ontwikkelde in de jaren dertig van de vori- om eindeloos te discussiëren, en had dit ook doel van een snelle doorloop te bereiken werd ge eeuw rond de uitvinding van de feedback- nodig om zich emotioneel op te laden. Op het het meeste reviewing werk gedaan door de versterker door Harold Stephen Black bij Bell Mathematisch Instituut in Groningen trok hij beide managing editors Willems en Brockett. Laboratories in Manhattan. Bij Bell Labs werk- veel knappe studenten aan als afstudeerders Daarbij moet worden opgemerkt dat het aan- te men aan het versterken van signalen in en promovendi, en zo stond hij aan de wieg tal ingezonden artikelen voor tijdschriften in de langeafstandstelefonie. Het probleem was van de ‘Groningse school’ in de systeem- en die tijd natuurlijk veel minder groot was dan dat de versterkingsfactor van de gebruikte regeltheorie. Veel van zijn promovendi uit die op dit moment in 2015. Van 1989 tot 1994 versterkers sterk afhankelijk was van de sterk- tijd kregen later vaste aanstellingen op ver- was Jan ook nog editor-in-chief van het het te van het inputsignaal, met vervorming van schillende universiteiten en werden zelf hoog- tijdschrift SIAM Journal on Control and Opti- het outputsignaal als gevolg. Harold Stephen leraar. Gedurende de dertig jaar dat hij hoog- mization. Ook dat was in die tijd bepaald geen Black kwam met een revolutionair ontwerp leraar was in Groningen begeleidde
Recommended publications
  • Review of Feedback Systems
    CHAPTER 1 Review of Feedback Systems Marc Thompson Dr. Marc Thompson leads us to an appreciation of how the world has learned about FEEDBACK (negative) over the years, so we can understand how to do better feedback in our systems. /rap Introduction and Some Early History of Feedback Control A feedback system is one that compares its output to a desired input and takes corrective action to force the output to follow the input. Arguably, the beginnings of automatic feedback control 1 can be traced back to the work of James Watt in the 1700s. Watt did lots of work on steam engines, and he adapted 2 a centrifugal governor to automatically control the speed of a steam engine. The governor comprised two rotating metal balls that would fl y out due to centrifugal force. The amount of “ fl y-out ” was then used to regulate the speed of the steam engine by adjusting a throttle. This was an example of proportional control. The steam engines of Watt ’ s day worked well with the governor, but as steam engines became larger and better engineered, it was found that there could be stability problems in the engine speed. One of the problems was hunting , or an engine speed that would surge and decrease, apparently hunting for a stable operating point. This phenomenon was not well understood until the latter part of the 19th century, when James Maxwell 3 (yes, the same Maxwell famous for all those equations) developed the mathematics of the stability of the Watt governor using differential equations. 1 Others may argue that the origins of feedback control trace back to the water clocks and fl oat regulators of the ancients.
    [Show full text]
  • Genios De La Ingeniería Eléctrica
    Genios de la Ingeniería Eléctrica COLECCIÓN GIGANTES Genios de la Ingeniería Eléctrica De la A a la Z Jesús Fraile Mora Fundación Iberdrola • 2006 • Patronato de la Fundación Iberdrola Presidente: D. Íñigo de Oriol Ybarra Vicepresidente: D. Javier Herrero Sorriqueta Patronos: D. Ricardo Álvarez Isasi D. José Ignacio Berroeta Echevarría D. José Orbegozo Arroyo D. Ignacio de Pinedo Cabezudo D. Antonio Sáenz de Miera D. Ignacio Sánchez Galán D. Víctor Urrutia Vallejo Secretario: D. Federico San Sebastián Flechoso Colección Gigantes Genios de la Ingeniería Eléctrica. De la A a la Z. © Jesús Fraile Mora © Fundación Iberdrola C/ Serrano, 26 - 1.ª 28001 Madrid Director de la Colección: José Luis de la Fuente O´Connor Editora: Marina Conde Morala ISBN: 84-609-9775-8 Depósito legal: M. 11.849-2006 Diseño, preimpresión e impresión: Gráficas Arias Montano, S. A. 28935 Móstoles (Madrid) Impreso en España - Printed in Spain Reservados todos los derechos. Está prohibido reproducir, registrar o transmitir esta publicación, íntegra o parcialmente, salvo para fines de crítica o comentario, por cualquier medio digital o analógico, sin permiso por escrito de los depositarios de los derechos. Los análisis, opiniones, conclusiones y recomendaciones que se puedan verter en esta publicación son del autor y no tienen por qué coincidir necesariamente con los de la Fundación Iberdrola. AGRADECIMIENTOS Quienquiera que se dedique a un trabajo de investigación histórica de la guisa de éste, se convierte en una pesadilla para los biblioteca- rios. Han sido muchos los años que me he dedicado a hurgar en los fondos antiguos de diversas bibliotecas, en busca de libros y revistas de todo tipo, por lo que he tenido tiempo de convivir con archi- veros y bibliotecarios que soportaron con paciencia y buen humor todas mis depredaciones.
    [Show full text]
  • Rifasamento: Carico Monofase
    Esperienze di Laboratorio II Circuiti elettrici Circuiti RCL Notazione generale NOTA: s1 ed s2 <0 !! Smorzamento Pulsazione di risonanza NOTA: s1 ed s2 <0 !! FATTORE DI MERITO RCL Serie DUALITA’ La risonanza in fisica Notazione universale Analisi di Fourier Relazioni di ortogonalità Potenza elettrica In CC In CA, invece E allora chiaro il significato fisico dell'intensità efficace della corrente: essa è l'intensità di corrente continua che passando attraverso la resistenza R produce la stessa quantità di calore per effetto Joule prodotta dal passaggio della corrente periodica I(t). Per cui si ha L’energia cinetica degli elettroni è ceduta al reticolo del metallo con generazione di calore (EFFETTO JOULE) (1 Caloria = 4.18 Joule) Fornitura ENEL: Potenza impianto: KW; Energia consumata: KWh . ( 1W s = J; 1 Wh = 3.6 KJ) 55 Corrente efficace 2 cos 퐴 cos 퐵 = cos 퐴 + 퐵 + cos 퐴 − 퐵 2 sin 퐴 sin 퐵 = cos 퐴 − 퐵 − cos 퐴 + 퐵 푃 = 푉퐼 cos 휑 Potenza attiva 푄 = 푉퐼 sin 휑 Potenza reattiva 푊 푡 = 푉퐼 cos 휑 + 푉퐼 cos(2휔푡 + 휑) 푊 푡 = 푃(1 + cos 2휔푡) − 푄 sin 2휔푡 2 2 푊푅 = R퐼 cos 휑 + 푅퐼 cos 2휔푡 휑 = 0 2 푊퐿 = 휔퐿퐼 sin 2휔푡 휑 = 90 2 푊퐶 = - 휔퐶푉 sin 2휔푡 휑 = −90 CALCOLO DELLA CAPACITÀ DI RIFASAMENTO: CARICO MONOFASE P VI cos Q P tan Q VI sin I Si calcola il valore che deve avere la capacità C del condensatore per raggiungegere il U valore cos(’) (ad esempio cos(’) = 0.9) del C fattore di carico del carico rifasato Q P tan Q Q P tan ' C V 2 QC P tan ' - tan ; QC -CV ’ I L I C I P C tan - tan ' ω V 2 Magnetismo nella materia Il campo di induzione B in un punto di un materiale si può scrivere come: B = Be + Bp + Bd dove Be è il campo “esterno” generato dalle correnti nei fili (correnti Macroscopiche) mentre Bp e Bd sono i campi dovuti alle correnti microscopiche, conseguenti alla magnetizzazione (para/ferromagnetica o diamagnetica) della materia.
    [Show full text]
  • Analog Circuits: World Class Designs Robert A
    Analog Circuits World Class Designs Newnes World Class Designs Series Analog Circuits: World Class Designs Robert A. Pease ISBN: 978-0-7506-8627-3 Embedded Systems: World Class Designs Jack Ganssle ISBN: 978-0-7506-8625-9 Power Sources and Supplies: World Class Designs Marty Brown ISBN:978-0-7506-8626-6 For more information on these and other Newnes titles, visit: www.newnespress.com Analog Circuits World Class Designs Robert A. Pease, Editor with Bonnie Baker Richard S. Burwen Sergio Franco Phil Perkins Marc Thompson Jim Williams Steve Winder AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Newnes is an imprint of Elsevier Newnes is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA Linacre House, Jordan Hill, Oxford OX2 8DP, UK Copyright © 2008, by Elsevier Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (ϩ44) 1865 843830, fax: (ϩ44) 1865 853333, E-mail: [email protected]. You may also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.” Recognizing the importance of preserving what has been written, Elsevier prints its books on acid-free paper whenever possible. Library of Congress Cataloging-in-Publication Data Application Submitted British Library Cataloguing-in-Publication Data A Catalogue record for this book is available from the British Library.
    [Show full text]
  • CE2004 II‐1 : Operational Amplifiers (Op-Amps)
    CE2004 II‐1 : Operational Amplifiers (Op-Amps) Weisi Lin Email: [email protected] School of Computer Science and Engineering Nanyang Technological University Singapore CE 2004 – Circuits & Signal Analysis 1 Major Topics of Part 2 • Principles of Op‐Amps • General Signals & Systems • Laplace Transform & frequency‐based system analysis Important Concepts, Logic & Methodology (Principles of Op-Amps) Introduction to Op-Amps (operational amplifiers) Concept of Negative Feedback Two Commonly-used Circuits with Negative Feedback oNon-Inverting Amplifiers oInverting Amplifiers Recap/Summary CE 2004 – Circuits & Signal Analysis 3 We are starting to talk about amplifiers. What is an ideal amplifier? Considerations: Voltage gain Input impedance Output impedance CE 2004 – Circuits & Signal Analysis 4 First op amps built in 1934 Invented by a Bell engineer named Harry Black* Didn’t gain the name operational amplifier until the computer age began a decade or so later Vacuum Tube Op-Amps Vacuum Tube Op-Amps Used in WWII to help to strike military targets - Buffers, summers, differentiators, inverters Took ±300V to ± 100V to power Transistors replaced vacuum tubes in 1950’s Integrated circuits (ICs) invented in the 1960’s, op amps were among the first chips to be designed. *In 1934,Harry Black commuted from his home in New York City to work at Bell Labs in New Jersey by way of a railroad/ferry. The ferry ride relaxed Harry enabling him to do some conceptual thinking… CE 2004 – Circuits & Signal Analysis 5 Introduction to Operational Amplifiers (Op-Amps) Op-amp is a high gain amplifier having (nearly ideal): - Very high voltage gain (104 to 106) - Very high input impedance (typically a few more megohms) explanations in the next - Low output impedance (less than 100 ohm).
    [Show full text]
  • Black, Harold S
    Harold S. Black MS 09 07/06/2010 Harold S. Black Papers MS 09 Personal Papers SCOPE AND CONTENT The paper consists of notes, articles and research relating to the Negative Feedback Theory; a series of presentation, speeches, and lectures; research notes and photographs and slides relating Bell Laboratories; patent information; biographical information and personal correspondence; miscellaneous reports, publications, and research notes. BACKGROUND Harold S. Black was born in 1898 in Leominster, MA. He worked for AT&T's Bell Laboratories as an engineer, where he proved to be an important contributor to the advance of 20th century electronics and communications. Among his achievements was the negative feedback theory (1927), his most well-known accomplishment, which is a fundamental principle in electronics today. The negative feedback theory allows distortions introduced into a signal due to amplification to be eliminated by feeding part of the output signal back to the input and then comparing the two signals. Pulse Modulation, another of his more outstanding inventions, has many uses in military and domestic radio relay systems and has also played a major role in the process of moving from analog to digital electronics. Black was known primarily as a prominent engineer, but was also a literary critic, teacher and lecturer. Through his career Black lived in New York City and then in Summit, N.J. where he died on December 11, 1983 at the age of 85. Black graduated from Worcester Polytechnic Institute (WPI) in 1921 and received an honorary doctorate in engineering from WPI in 1955. The honors that Black received throughout the years are too numerous to list in their entirety.
    [Show full text]
  • A Guide to the Harold S. Black Papers Worcester Polytechnic Institute
    Worcester Polytechnic Institute DigitalCommons@WPI Collection Guides CPA Collections 2014 A guide to the Harold S. Black papers Worcester Polytechnic Institute Follow this and additional works at: http://digitalcommons.wpi.edu/cpa-guides Suggested Citation , (2014). A guide to the Harold S. Black papers. Retrieved from: http://digitalcommons.wpi.edu/cpa-guides/9 This Other is brought to you for free and open access by the CPA Collections at DigitalCommons@WPI. It has been accepted for inclusion in Collection Guides by an authorized administrator of DigitalCommons@WPI. Harold S. Black MS 09 07/06/2010 Harold S. Black Papers MS 09 Personal Papers SCOPE AND CONTENT The paper consists of notes, articles and research relating to the Negative Feedback Theory; a series of presentation, speeches, and lectures; research notes and photographs and slides relating Bell Laboratories; patent information; biographical information and personal correspondence; miscellaneous reports, publications, and research notes. BACKGROUND Harold S. Black was born in 1898 in Leominster, MA. He worked for AT&T's Bell Laboratories as an engineer, where he proved to be an important contributor to the advance of 20th century electronics and communications. Among his achievements was the negative feedback theory (1927), his most well-known accomplishment, which is a fundamental principle in electronics today. The negative feedback theory allows distortions introduced into a signal due to amplification to be eliminated by feeding part of the output signal back to the input and then comparing the two signals. Pulse Modulation, another of his more outstanding inventions, has many uses in military and domestic radio relay systems and has also played a major role in the process of moving from analog to digital electronics.
    [Show full text]
  • IFAC PROFESSIONAL BRIEF Abstract
    IFAC PROFESSIONAL BRIEF Modelling of Physical Systems for the Design and Control of Mechatronic Systems Job van Amerongen [email protected] Peter Breedveld [email protected] Control Engineering, Drebbel Institute for Mechatronics and Faculty of Electrical Engineering, University of Twente, Netherlands Abstract Mechatronic design requires that a mechanical system and its control system be designed as an integrated system. This contribution covers the background and tools for modelling and simulation of physical systems and their controllers, with parameters that are directly related to the real-world system. The theory will be illustrated with examples of typical mechatronic systems such as servo systems and a mobile robot. Hands-on experience is realized by means of exercises with the 20-sim software package (a demo version is freely available on the internet). In mechatronics, where a controlled system has to be designed as a whole, it is advantageous that model structure and parameters are directly related to physical components. In addition it is desired that (sub-)models be reusable. Common block-diagram- or equation-based simulation packages hardly support these features. The energy-based approach towards modelling of physical systems allows the construction of reusable and easily extendible models. This contribution starts with an overview of mechatronic design problems and the various ways to solve such problems. A few examples will be discussed that show the use of such a tool in various stages of the design. The examples include a typical mechatronic system with a flexible transmission and a mobile robot. The energy-based approach towards modelling is treated in some detail.
    [Show full text]
  • Feedback Control: an Invisible Thread in the History of Technology
    COREL By Dennis S. Bernstein he history of technology is a rich and fascinat- The Escapement ing subject, combining engineering with eco- For Mercury there is, beyond the correction at leap nomic, social, and political factors. Technology year, provision for a secondary correction after 144 seems to advance in waves. Small advances in years by setting the wheel M forward 1 tooth. In the ar- science and technology accumulate slowly, gument of Mercury there is an annual deficit of 42′5″, sometimes over long periods of time, until a so that the dial should be set forward 2/3° annually critical level of technological success and economic advan- with a residual correction of 1° in 29 years. Ttage is achieved. The last century witnessed several of these — Giovanni di Dondi, describing the proce- waves: automobiles, radio, aircraft, television, and comput- dure for maintaining his astronomical clock ers, each of which had a profound effect on civilization. completed in 1364 [Gimpel, 1976, p. 165] Woven into the rich fabric of technological history is an The Kelantese approach to time is typified by their co- invisible thread that has had a profound effect on each of conut clocks—an invention they use as a timer for these waves and earlier ones as well. This thread is the idea sporting competitions. This clock consists of a half co- of feedback control. Like all ideas, feedback control impacts conut shell with a small hole in its center that sits in a technology only when it is embodied in technology; it is not pail of water.
    [Show full text]
  • 1920S 1 the 1920S Was a Decade That Began on January 1, 1920 And
    1920s 1 1920s From left, clockwise: Third Tipperary Brigade Flying Column No. 2 under Sean Hogan during the Irish Civil War; Prohibition agents destroying barrels of alcohol in accordance to the 18th amendment, which made alcoholic beverages illegal throughout the entire decade; In 1927, Charles Lindbergh embarks on the first nonstop flight from New York to Paris, France on the Spirit of St. Louis; A crowd gathering on Wall Street after the 1929 stock market crash, which led to the Great Depression; Benito Mussolini and Fascist Blackshirts during the March on Rome in 1922; the People's Liberation Army attacking government defensive positions in Shandong, during the Chinese Civil War; The Women's suffrage campaign leads to the ratification of the 19th amendment in the United States and numerous countries granting women the right to vote and be elected; Babe Ruth becomes the most iconic baseball player of the time. Millennium: 2nd millennium Centuries: 19th century – 20th century – 21st century Decades: 1890s 1900s 1910s – 1920s – 1930s 1940s 1950s Years: 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 Categories: Births – Deaths – Architecture Establishments – Disestablishments The 1920s was a decade that began on January 1, 1920 and ended on December 31, 1929. It is sometimes referred to as the Roaring Twenties or the Jazz Age, when speaking about the United States and Canada. In Europe the decade is sometimes referred to as the "Golden Age Twenties"[1] because of the economic boom following World War I. Since the end of the 20th century, the economic strength during the 1920s has drawn close comparison with the 1950s and 1990s, especially in the United States of America.
    [Show full text]
  • Introduction to Feedback Control
    Plan of the Lecture I Today's topic: what is feedback control? past, present, future Goal: get comfortable with the idea of feedback control as a means of getting unreliable or unstable components to behave reliably. Recommended reading: I FPE, Chap. 1 | some historical background I K.J. Astr¨omand˚ P.R. Kumar, \Control: a perspective," Automatica, vol. 50, no. 1, pp. 3{43, 2014 Control All Around Us: The Thermostat Honeywell T-86 \Round" Nest 2nd Gen Learning Thermostat (1953) Thermostat (2014) The thermostat maintains desired (reference) temperature despite disturbances (such as doors opening/closing, variations of outside temperature, number of persons in the house, etc.) Control All Around Us: The Toilet Tank The flush toilet employs a control mechanism that ensures that the toilet gets flushed and that the tank is filled to a set reference level. Similar systems are used in other applications where fluid levels need to be regulated. Components of a Control System Some terminology: I the plant is the system being controlled I the sensors measure the quantity that is subject to control I the actuators act on the plant I the controller processes the sensor signals and drives the actuators I the control law is the rule for mapping sensor signals to actuator signals Feedback Control: Some History 1788: James Watt patents the centrifugal governor for controlling the speed of a steam engine. The governor combines sensing, actuation, and control. The original governor kept the engine running at (more or less) constant speed via what is known today as proportional control. Many improvements were added to the original design.
    [Show full text]
  • Vývoj Elektrotechniky
    Vývoj elektrotechniky Z historického hľadiska sa o prvých záznamoch o magnetizme a elektrine dozvedáme z poznatkov starých Grékov. Magnetit, magnetický oxid zo železa je uvedený v gréckych textoch už 800 rokov pred naším letopočtom. Tento nerast sa ťažil v provincii Magnesia v Tesália. Možno to bola práve blízkosť, ktorá dopomohla Thalesovi ako prvému Grékovi, zaoberať sa magnetickými silami. Thales z Milétu okolo roku 585 p. n. l., zistil, že keď potrel jantár kúskom kožušiny, tak ten bol schopný k sebe pritiahnuť ľahšie predmety. Thales, takto objavil princíp statickej elektriny. Jantár je skamenelá živica ihličnatého stromu s pred miliónmi rokov starého a v tom čase bol jantár cenený ako šperk, pre svoju peknú slnečnú farbu. Gréci poznali jantár pod menom „elektron“, ktoré sa zachovalo po klasických gréckych spisovateľoch. Na obrázku je vidieť poštovú známku z Grécka, na ktorej je nakreslená podobizeň Thalesa a kúsok jantáru ako priťahuje k sebe pierko. Thales sa narodil v roku 624 pred naším letopočtom v meste Milétu a bol gréckym filozofom, matematikom, astronómom a obchodníkom. Uznaný je ako jeden zo siedmich mudrcov v starom Grécku. Jeho hlavným prínosom je snaha o poskytnutie vedeckého vysvetlenia, ktoré boli doterez vysvetľované iba na základe mytológie. Za to ho Aristoteles nazval prvým filozofom v gréckej tradícií. Žiaľ, ani jedno jeho dielo sa nezachovalo v písomnej forme. Dostupné informácie pochádzajú iba od historika Diogenes Laertius, ktorý žil v 3. storočí pred naším letopočtom a citovanie Apollodorusa z Atén, ktorý žil okolo roku 140 pred naším letopočtom. Z dôvodu časovej medzery, je veľmi ťažké posúdiť jeho diela alebo poskytnúť bližšie údaje o ňom.
    [Show full text]