CE2004 II‐1 : Operational Amplifiers (Op-Amps)

Total Page:16

File Type:pdf, Size:1020Kb

CE2004 II‐1 : Operational Amplifiers (Op-Amps) CE2004 II‐1 : Operational Amplifiers (Op-Amps) Weisi Lin Email: [email protected] School of Computer Science and Engineering Nanyang Technological University Singapore CE 2004 – Circuits & Signal Analysis 1 Major Topics of Part 2 • Principles of Op‐Amps • General Signals & Systems • Laplace Transform & frequency‐based system analysis Important Concepts, Logic & Methodology (Principles of Op-Amps) Introduction to Op-Amps (operational amplifiers) Concept of Negative Feedback Two Commonly-used Circuits with Negative Feedback oNon-Inverting Amplifiers oInverting Amplifiers Recap/Summary CE 2004 – Circuits & Signal Analysis 3 We are starting to talk about amplifiers. What is an ideal amplifier? Considerations: Voltage gain Input impedance Output impedance CE 2004 – Circuits & Signal Analysis 4 First op amps built in 1934 Invented by a Bell engineer named Harry Black* Didn’t gain the name operational amplifier until the computer age began a decade or so later Vacuum Tube Op-Amps Vacuum Tube Op-Amps Used in WWII to help to strike military targets - Buffers, summers, differentiators, inverters Took ±300V to ± 100V to power Transistors replaced vacuum tubes in 1950’s Integrated circuits (ICs) invented in the 1960’s, op amps were among the first chips to be designed. *In 1934,Harry Black commuted from his home in New York City to work at Bell Labs in New Jersey by way of a railroad/ferry. The ferry ride relaxed Harry enabling him to do some conceptual thinking… CE 2004 – Circuits & Signal Analysis 5 Introduction to Operational Amplifiers (Op-Amps) Op-amp is a high gain amplifier having (nearly ideal): - Very high voltage gain (104 to 106) - Very high input impedance (typically a few more megohms) explanations in the next - Low output impedance (less than 100 ohm). pages. An op-amp consists of multi-stage transistor amplifier fabricated in an integrated circuit (IC) form. CE 2004 – Circuits & Signal Analysis 6 Internal Circuitry of the Standard 741 Op-Amp Positive DC power supply An IC consisting of transistors resistors capacitors Negative DC power supply CE 2004 – Circuits & Signal Analysis 7 A voltage source followed by an amplifier (very different from Vs) Loading effect if minimization: input impedance of an i.e, amplifier should be much With the same Rs, greater (infinite for an ideal case) than the (similar to V ) CE 2004 – Circuits & Signal Analysis s source impedance. 8 An amplifier followed by another amplifier For amplifier #1: Loading effect minimization: input impedance of Amplif#2 similar analysis as in should be much greater the previous page (infinite for an ideal case) than output impedance of Amplif#1. if Zi2 >>Zo1 CE 2004 – Circuits & Signal Analysis 9 Typical Uses of Op-Amps: Voltage amplifiers, Oscillators, Filter circuits, Instrumentation circuits, and so on. Op-Amp Equivalent Circuit V (see next CC page) As represented in the previous pages V+ ZOUT ZIN Vout V- Zout Vo=AoVin VEE Vin Zin ~ AdVd Vout CE 2004 – Circuits & Signal Analysis 10 Input port: Modeled as a resistance of value ZIN . (Very large, typically 106 ). The input v is known as non-inverting input and v is the inverting input. Output port: Modeled as a dependent voltage source, vo in series with a resistance ZOUT .( is very small, ZOUT typically 100 ). Two DC power supplies: VCC (+ve) and VEE (‐ve). The use of positive and negative voltage allows the output of the op‐amp to swing in both directions. CE 2004 – Circuits & Signal Analysis 11 Input-Output Relationship: Vout Ao (v v ) ‐Ao is the internal voltage gain (open loop voltage gain) of the op‐amp. 4 6 ‐ Typically, Ao will have values 10 to10 (very high) Output Saturation Limits vo can never exceed the op‐amp’s power supply voltages, VCC and (saturation limits of VEE vo ) . VEE Ao(v v) VCC CE 2004 – Circuits & Signal Analysis 12 Voltage transfer characteristics of an op-amp Vout Positive saturation VCC= +15V VCC Linear, i.e., Vo=Ao(Vin) Vin=(V+)–(V-) V V = -15V Negative saturation EE EE Linear region . The slope of linear region is big (Why?) CE 2004 – Circuits & Signal Analysis 13 Op-Amps 1.The saturation limits ofvo are equal to the op-amp supply voltagesVCC andVEE. 2.The gainAo is so high(Ao ) that a very small nonzero value of differential input(v v ) drivesvo to saturation (non linear operation). 3.(v v ) positive vo will saturate at its positive saturation limit VCC . 4.(v v ) negative vo will saturate at its negative saturation limit VEE. VCC V+ ZOUT ZIN Vout V- VEE CE 2004 – Circuits & Signal Analysis 14 5.For linear operation, the differential input voltage (v v ) must be close to zero (very small). 6.The internal input resistance Z IN . Hence the input currents (in +ve and –ve terminals) are assumed to be zero. 7.The internal output resistance ZOUT 0. Hence Vout Vo. Q: What is the main concern in using op-amp as a linear device? A: Saturates for a small Vin. Q: How do we get rid of this problem, and also obtain the desired voltage gain? VCC A: Negative Feedback V+ ZOUT ZIN Vout V- V CE 2004 – Circuits & Signal Analysis EE 15 Harold Stephen Black (April 14, 1898 – December 11, 1983) invented the negative feedback amplifier while he was a passenger on the Lackawanna Ferry (from Hoboken Terminal to Manhattan) on his way to work at Bell Laboratories (located in Manhattan instead of New Jersey in 1927) on August 2, 1927 (US Patent 2,102,671, issued in 1937)— obviously he was thinking while taking ferry. His invention is considered as an important breakthrough of the 20th century in electronics, since it has a wide area of applications. On August 8, 1928, Black submitted his invention to the U. S. Patent Office, which took more than 9 years to issue the patent. The patent office was inundated with fraudulent “perpetual motion” (motion of bodies that continues indefinitely) claims, and dismissed Black’s invention at first sight. Black later wrote: "One reason for the delay was that the concept was so contrary to established beliefs that the Patent Office initially did not believe it would work.” CE 2004 – Circuits & Signal Analysis 16 Concept of Negative Feedback In negative feedback, the output signal (or part of it) is connected back (feedback) to the negative input terminal of an op-amp. Summing Amplifier Node VM VO InputAo Output + - VR output/K (to “‐” terminal) 1/K Vo (VM VR )Ao (VM Vo / K)Ao CE 2004 – Circuits & Signal Analysis 17 Ao K Ao Vo 1 VM Ao Vo VM Ao K K VM Ao Vo K Ao K K Vo VM Ao K Ao K (As Ao K , VM Ao Ao Ao K Ao) Vo=K VM CE 2004 – Circuits & Signal Analysis 18 Negative feedback reduces the closed loop gain to K (this is under the condition that Ao is very high; notice that K is not related to Ao.) Using resistors (as to be illustrated with non-inverting & inverting Op-Amps next) to obtain appropriate value of K such that the output will not reach the saturation limits. Thus, negative feedback ensures linear operation of op- amps, and also yield the required voltage gain. CE 2004 – Circuits & Signal Analysis 19 A question for you to think while we move on… Why are op-amps designed with very high Ao, while the required voltage gain of amplifiers is much lower in practice (so we use negative feedback to reduce the gain and ensure linear operation)? Why not to design op-amps with a lower Ao? Hint: thinking along the flexibility provided to users and benefits to manufacturers. CE 2004 – Circuits & Signal Analysis 20 The Op-amp Golden Rules – with Nagative Feedback Circuits 1.Voltage Rule: Through negative feedback, the output attempts to do whatever is necessary to make the voltage difference between the inputs zero. In a negative feedback op-amp, V+ -V- ≈ 0 (very small). 2. Current Rule: The inputs draw no current, due to the very high input impedance of the op-amp. The input current is so low (0.08 microamps for the standard 741 op-amp). CE 2004 – Circuits & Signal Analysis 21 Linear (not saturated) Op-Amp Circuits V+ 1. Non-Inverting Amplifier VIN + V is applied to the +ve input VOUT IN V terminal of the op-amp. - _ R1 ApartofVO is fed back to the A way to –ve terminal of the op-amp. R2 materialize the negative feedback How does negative feedback concept presented help? previously. If a +ve voltage* is applied to VIN : (V V ) will increase VOU will increase. T *Similar analysis for a -ve voltage case. CE 2004 – Circuits & Signal Analysis 22 •A part ofVOUT is fed back to theV terminal. (Determined by the voltage divider resistors R1 and R2). R2 V VOUT (1) R1 R2 • V increases ( V V ) decreases V OU T decreases. i.e., due to negative feedback,(V V ) is decreased, and thenVOUT is decreased. CE 2004 – Circuits & Signal Analysis 23 •Equilibrium condition V OUT forces ( V V ) to a very small value VOUT will not reach the saturation limits. • Op-Amp golden voltage rule: Input difference voltage is very small Approximated as zero (practically, small non-zero). V V (2) Applying (2) in (1): R2 V VOUT VIN (3) R1 R2 Closed loop-gain, A V: VOUT (R1 R2) R1 Av 1 (4) VIN R2 R2 CE 2004 – Circuits & Signal Analysis 24 Significant Parameters of Non-Inverting Op-Amps ●A V will be always ≥ 1. ●VOUT is always in phase with VIN (i.e., with same polarity, or non-inverting). CE 2004 – Circuits & Signal Analysis 25 Non-Inverting Op-Amps since V+=V- Input impedance: ZIN is very high.
Recommended publications
  • Review of Feedback Systems
    CHAPTER 1 Review of Feedback Systems Marc Thompson Dr. Marc Thompson leads us to an appreciation of how the world has learned about FEEDBACK (negative) over the years, so we can understand how to do better feedback in our systems. /rap Introduction and Some Early History of Feedback Control A feedback system is one that compares its output to a desired input and takes corrective action to force the output to follow the input. Arguably, the beginnings of automatic feedback control 1 can be traced back to the work of James Watt in the 1700s. Watt did lots of work on steam engines, and he adapted 2 a centrifugal governor to automatically control the speed of a steam engine. The governor comprised two rotating metal balls that would fl y out due to centrifugal force. The amount of “ fl y-out ” was then used to regulate the speed of the steam engine by adjusting a throttle. This was an example of proportional control. The steam engines of Watt ’ s day worked well with the governor, but as steam engines became larger and better engineered, it was found that there could be stability problems in the engine speed. One of the problems was hunting , or an engine speed that would surge and decrease, apparently hunting for a stable operating point. This phenomenon was not well understood until the latter part of the 19th century, when James Maxwell 3 (yes, the same Maxwell famous for all those equations) developed the mathematics of the stability of the Watt governor using differential equations. 1 Others may argue that the origins of feedback control trace back to the water clocks and fl oat regulators of the ancients.
    [Show full text]
  • Genios De La Ingeniería Eléctrica
    Genios de la Ingeniería Eléctrica COLECCIÓN GIGANTES Genios de la Ingeniería Eléctrica De la A a la Z Jesús Fraile Mora Fundación Iberdrola • 2006 • Patronato de la Fundación Iberdrola Presidente: D. Íñigo de Oriol Ybarra Vicepresidente: D. Javier Herrero Sorriqueta Patronos: D. Ricardo Álvarez Isasi D. José Ignacio Berroeta Echevarría D. José Orbegozo Arroyo D. Ignacio de Pinedo Cabezudo D. Antonio Sáenz de Miera D. Ignacio Sánchez Galán D. Víctor Urrutia Vallejo Secretario: D. Federico San Sebastián Flechoso Colección Gigantes Genios de la Ingeniería Eléctrica. De la A a la Z. © Jesús Fraile Mora © Fundación Iberdrola C/ Serrano, 26 - 1.ª 28001 Madrid Director de la Colección: José Luis de la Fuente O´Connor Editora: Marina Conde Morala ISBN: 84-609-9775-8 Depósito legal: M. 11.849-2006 Diseño, preimpresión e impresión: Gráficas Arias Montano, S. A. 28935 Móstoles (Madrid) Impreso en España - Printed in Spain Reservados todos los derechos. Está prohibido reproducir, registrar o transmitir esta publicación, íntegra o parcialmente, salvo para fines de crítica o comentario, por cualquier medio digital o analógico, sin permiso por escrito de los depositarios de los derechos. Los análisis, opiniones, conclusiones y recomendaciones que se puedan verter en esta publicación son del autor y no tienen por qué coincidir necesariamente con los de la Fundación Iberdrola. AGRADECIMIENTOS Quienquiera que se dedique a un trabajo de investigación histórica de la guisa de éste, se convierte en una pesadilla para los biblioteca- rios. Han sido muchos los años que me he dedicado a hurgar en los fondos antiguos de diversas bibliotecas, en busca de libros y revistas de todo tipo, por lo que he tenido tiempo de convivir con archi- veros y bibliotecarios que soportaron con paciencia y buen humor todas mis depredaciones.
    [Show full text]
  • Rifasamento: Carico Monofase
    Esperienze di Laboratorio II Circuiti elettrici Circuiti RCL Notazione generale NOTA: s1 ed s2 <0 !! Smorzamento Pulsazione di risonanza NOTA: s1 ed s2 <0 !! FATTORE DI MERITO RCL Serie DUALITA’ La risonanza in fisica Notazione universale Analisi di Fourier Relazioni di ortogonalità Potenza elettrica In CC In CA, invece E allora chiaro il significato fisico dell'intensità efficace della corrente: essa è l'intensità di corrente continua che passando attraverso la resistenza R produce la stessa quantità di calore per effetto Joule prodotta dal passaggio della corrente periodica I(t). Per cui si ha L’energia cinetica degli elettroni è ceduta al reticolo del metallo con generazione di calore (EFFETTO JOULE) (1 Caloria = 4.18 Joule) Fornitura ENEL: Potenza impianto: KW; Energia consumata: KWh . ( 1W s = J; 1 Wh = 3.6 KJ) 55 Corrente efficace 2 cos 퐴 cos 퐵 = cos 퐴 + 퐵 + cos 퐴 − 퐵 2 sin 퐴 sin 퐵 = cos 퐴 − 퐵 − cos 퐴 + 퐵 푃 = 푉퐼 cos 휑 Potenza attiva 푄 = 푉퐼 sin 휑 Potenza reattiva 푊 푡 = 푉퐼 cos 휑 + 푉퐼 cos(2휔푡 + 휑) 푊 푡 = 푃(1 + cos 2휔푡) − 푄 sin 2휔푡 2 2 푊푅 = R퐼 cos 휑 + 푅퐼 cos 2휔푡 휑 = 0 2 푊퐿 = 휔퐿퐼 sin 2휔푡 휑 = 90 2 푊퐶 = - 휔퐶푉 sin 2휔푡 휑 = −90 CALCOLO DELLA CAPACITÀ DI RIFASAMENTO: CARICO MONOFASE P VI cos Q P tan Q VI sin I Si calcola il valore che deve avere la capacità C del condensatore per raggiungegere il U valore cos(’) (ad esempio cos(’) = 0.9) del C fattore di carico del carico rifasato Q P tan Q Q P tan ' C V 2 QC P tan ' - tan ; QC -CV ’ I L I C I P C tan - tan ' ω V 2 Magnetismo nella materia Il campo di induzione B in un punto di un materiale si può scrivere come: B = Be + Bp + Bd dove Be è il campo “esterno” generato dalle correnti nei fili (correnti Macroscopiche) mentre Bp e Bd sono i campi dovuti alle correnti microscopiche, conseguenti alla magnetizzazione (para/ferromagnetica o diamagnetica) della materia.
    [Show full text]
  • Analog Circuits: World Class Designs Robert A
    Analog Circuits World Class Designs Newnes World Class Designs Series Analog Circuits: World Class Designs Robert A. Pease ISBN: 978-0-7506-8627-3 Embedded Systems: World Class Designs Jack Ganssle ISBN: 978-0-7506-8625-9 Power Sources and Supplies: World Class Designs Marty Brown ISBN:978-0-7506-8626-6 For more information on these and other Newnes titles, visit: www.newnespress.com Analog Circuits World Class Designs Robert A. Pease, Editor with Bonnie Baker Richard S. Burwen Sergio Franco Phil Perkins Marc Thompson Jim Williams Steve Winder AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Newnes is an imprint of Elsevier Newnes is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA Linacre House, Jordan Hill, Oxford OX2 8DP, UK Copyright © 2008, by Elsevier Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (ϩ44) 1865 843830, fax: (ϩ44) 1865 853333, E-mail: [email protected]. You may also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.” Recognizing the importance of preserving what has been written, Elsevier prints its books on acid-free paper whenever possible. Library of Congress Cataloging-in-Publication Data Application Submitted British Library Cataloguing-in-Publication Data A Catalogue record for this book is available from the British Library.
    [Show full text]
  • Black, Harold S
    Harold S. Black MS 09 07/06/2010 Harold S. Black Papers MS 09 Personal Papers SCOPE AND CONTENT The paper consists of notes, articles and research relating to the Negative Feedback Theory; a series of presentation, speeches, and lectures; research notes and photographs and slides relating Bell Laboratories; patent information; biographical information and personal correspondence; miscellaneous reports, publications, and research notes. BACKGROUND Harold S. Black was born in 1898 in Leominster, MA. He worked for AT&T's Bell Laboratories as an engineer, where he proved to be an important contributor to the advance of 20th century electronics and communications. Among his achievements was the negative feedback theory (1927), his most well-known accomplishment, which is a fundamental principle in electronics today. The negative feedback theory allows distortions introduced into a signal due to amplification to be eliminated by feeding part of the output signal back to the input and then comparing the two signals. Pulse Modulation, another of his more outstanding inventions, has many uses in military and domestic radio relay systems and has also played a major role in the process of moving from analog to digital electronics. Black was known primarily as a prominent engineer, but was also a literary critic, teacher and lecturer. Through his career Black lived in New York City and then in Summit, N.J. where he died on December 11, 1983 at the age of 85. Black graduated from Worcester Polytechnic Institute (WPI) in 1921 and received an honorary doctorate in engineering from WPI in 1955. The honors that Black received throughout the years are too numerous to list in their entirety.
    [Show full text]
  • In Memoriam Jan Willems: Een Diepe Denker
    Harry Trentelman Een diepe denker NAW 5/16 nr. 1 maart 2015 37 Harry Trentelman Johann Bernoulli Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen [email protected] In Memoriam Jan Willems (1939–2013) Een diepe denker Op 31 augustus 2013 is op 73-jarige leeftijd Jan Willems overleden in Brasschaat, België. het tekstboek The Analysis of Feedback Sys- Met het overlijden van Jan Willems heeft de internationale onderzoeksgemeenschap in de tems door MIT Press in 1971. Van 1968 tot wiskundige systeem- en regeltheorie een van zijn belangrijkste vertegenwoordigers verloren. 1973 werkte hij als assistant professor aan de Harry Trentelman, hoogleraar Systems and Control aan de Rijksuniversiteit Groningen, blikt afdeling Electrical Engineering van MIT. Zijn terug op leven en werk van deze inspirerende wetenschapper. onderzoek in deze periode was gericht op een aantal onderwerpen, waaronder het zoge- Jan Willems behoorde tot een selecte kern van ing aan de Universiteit van Rhode Island, en in naamde lineair-kwadratische regelprobleem, onderzoekers in de systeem- en regeltheorie 1968 zijn PhD in electrical engineering aan het de netwerksynthese van elektrische circuits, die het onderzoeksveld rond de jaren zeven- Massachusetts Institute of Technology (met en de algemene theorie van dissipativiteit tig van de vorige eeuw vorm gaven. Hij com- als promotor Roger W. Brockett). Zijn proef- van input-outputsystemen in toestandsruim- bineerde creativiteit, associatieve kracht, fy- schrift, over input-outputstabiliteit van open tevorm. Uit deze periode stammen zijn baan- sisch inzicht, en een enorm brede kennis, met dynamische systemen, werd gepubliceerd als brekende artikelen ‘Least squares stationa- energie, enthousiasme, perfectionisme en de wil om tot de essentie van problemen door te dringen.
    [Show full text]
  • A Guide to the Harold S. Black Papers Worcester Polytechnic Institute
    Worcester Polytechnic Institute DigitalCommons@WPI Collection Guides CPA Collections 2014 A guide to the Harold S. Black papers Worcester Polytechnic Institute Follow this and additional works at: http://digitalcommons.wpi.edu/cpa-guides Suggested Citation , (2014). A guide to the Harold S. Black papers. Retrieved from: http://digitalcommons.wpi.edu/cpa-guides/9 This Other is brought to you for free and open access by the CPA Collections at DigitalCommons@WPI. It has been accepted for inclusion in Collection Guides by an authorized administrator of DigitalCommons@WPI. Harold S. Black MS 09 07/06/2010 Harold S. Black Papers MS 09 Personal Papers SCOPE AND CONTENT The paper consists of notes, articles and research relating to the Negative Feedback Theory; a series of presentation, speeches, and lectures; research notes and photographs and slides relating Bell Laboratories; patent information; biographical information and personal correspondence; miscellaneous reports, publications, and research notes. BACKGROUND Harold S. Black was born in 1898 in Leominster, MA. He worked for AT&T's Bell Laboratories as an engineer, where he proved to be an important contributor to the advance of 20th century electronics and communications. Among his achievements was the negative feedback theory (1927), his most well-known accomplishment, which is a fundamental principle in electronics today. The negative feedback theory allows distortions introduced into a signal due to amplification to be eliminated by feeding part of the output signal back to the input and then comparing the two signals. Pulse Modulation, another of his more outstanding inventions, has many uses in military and domestic radio relay systems and has also played a major role in the process of moving from analog to digital electronics.
    [Show full text]
  • IFAC PROFESSIONAL BRIEF Abstract
    IFAC PROFESSIONAL BRIEF Modelling of Physical Systems for the Design and Control of Mechatronic Systems Job van Amerongen [email protected] Peter Breedveld [email protected] Control Engineering, Drebbel Institute for Mechatronics and Faculty of Electrical Engineering, University of Twente, Netherlands Abstract Mechatronic design requires that a mechanical system and its control system be designed as an integrated system. This contribution covers the background and tools for modelling and simulation of physical systems and their controllers, with parameters that are directly related to the real-world system. The theory will be illustrated with examples of typical mechatronic systems such as servo systems and a mobile robot. Hands-on experience is realized by means of exercises with the 20-sim software package (a demo version is freely available on the internet). In mechatronics, where a controlled system has to be designed as a whole, it is advantageous that model structure and parameters are directly related to physical components. In addition it is desired that (sub-)models be reusable. Common block-diagram- or equation-based simulation packages hardly support these features. The energy-based approach towards modelling of physical systems allows the construction of reusable and easily extendible models. This contribution starts with an overview of mechatronic design problems and the various ways to solve such problems. A few examples will be discussed that show the use of such a tool in various stages of the design. The examples include a typical mechatronic system with a flexible transmission and a mobile robot. The energy-based approach towards modelling is treated in some detail.
    [Show full text]
  • Feedback Control: an Invisible Thread in the History of Technology
    COREL By Dennis S. Bernstein he history of technology is a rich and fascinat- The Escapement ing subject, combining engineering with eco- For Mercury there is, beyond the correction at leap nomic, social, and political factors. Technology year, provision for a secondary correction after 144 seems to advance in waves. Small advances in years by setting the wheel M forward 1 tooth. In the ar- science and technology accumulate slowly, gument of Mercury there is an annual deficit of 42′5″, sometimes over long periods of time, until a so that the dial should be set forward 2/3° annually critical level of technological success and economic advan- with a residual correction of 1° in 29 years. Ttage is achieved. The last century witnessed several of these — Giovanni di Dondi, describing the proce- waves: automobiles, radio, aircraft, television, and comput- dure for maintaining his astronomical clock ers, each of which had a profound effect on civilization. completed in 1364 [Gimpel, 1976, p. 165] Woven into the rich fabric of technological history is an The Kelantese approach to time is typified by their co- invisible thread that has had a profound effect on each of conut clocks—an invention they use as a timer for these waves and earlier ones as well. This thread is the idea sporting competitions. This clock consists of a half co- of feedback control. Like all ideas, feedback control impacts conut shell with a small hole in its center that sits in a technology only when it is embodied in technology; it is not pail of water.
    [Show full text]
  • 1920S 1 the 1920S Was a Decade That Began on January 1, 1920 And
    1920s 1 1920s From left, clockwise: Third Tipperary Brigade Flying Column No. 2 under Sean Hogan during the Irish Civil War; Prohibition agents destroying barrels of alcohol in accordance to the 18th amendment, which made alcoholic beverages illegal throughout the entire decade; In 1927, Charles Lindbergh embarks on the first nonstop flight from New York to Paris, France on the Spirit of St. Louis; A crowd gathering on Wall Street after the 1929 stock market crash, which led to the Great Depression; Benito Mussolini and Fascist Blackshirts during the March on Rome in 1922; the People's Liberation Army attacking government defensive positions in Shandong, during the Chinese Civil War; The Women's suffrage campaign leads to the ratification of the 19th amendment in the United States and numerous countries granting women the right to vote and be elected; Babe Ruth becomes the most iconic baseball player of the time. Millennium: 2nd millennium Centuries: 19th century – 20th century – 21st century Decades: 1890s 1900s 1910s – 1920s – 1930s 1940s 1950s Years: 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 Categories: Births – Deaths – Architecture Establishments – Disestablishments The 1920s was a decade that began on January 1, 1920 and ended on December 31, 1929. It is sometimes referred to as the Roaring Twenties or the Jazz Age, when speaking about the United States and Canada. In Europe the decade is sometimes referred to as the "Golden Age Twenties"[1] because of the economic boom following World War I. Since the end of the 20th century, the economic strength during the 1920s has drawn close comparison with the 1950s and 1990s, especially in the United States of America.
    [Show full text]
  • Introduction to Feedback Control
    Plan of the Lecture I Today's topic: what is feedback control? past, present, future Goal: get comfortable with the idea of feedback control as a means of getting unreliable or unstable components to behave reliably. Recommended reading: I FPE, Chap. 1 | some historical background I K.J. Astr¨omand˚ P.R. Kumar, \Control: a perspective," Automatica, vol. 50, no. 1, pp. 3{43, 2014 Control All Around Us: The Thermostat Honeywell T-86 \Round" Nest 2nd Gen Learning Thermostat (1953) Thermostat (2014) The thermostat maintains desired (reference) temperature despite disturbances (such as doors opening/closing, variations of outside temperature, number of persons in the house, etc.) Control All Around Us: The Toilet Tank The flush toilet employs a control mechanism that ensures that the toilet gets flushed and that the tank is filled to a set reference level. Similar systems are used in other applications where fluid levels need to be regulated. Components of a Control System Some terminology: I the plant is the system being controlled I the sensors measure the quantity that is subject to control I the actuators act on the plant I the controller processes the sensor signals and drives the actuators I the control law is the rule for mapping sensor signals to actuator signals Feedback Control: Some History 1788: James Watt patents the centrifugal governor for controlling the speed of a steam engine. The governor combines sensing, actuation, and control. The original governor kept the engine running at (more or less) constant speed via what is known today as proportional control. Many improvements were added to the original design.
    [Show full text]
  • Vývoj Elektrotechniky
    Vývoj elektrotechniky Z historického hľadiska sa o prvých záznamoch o magnetizme a elektrine dozvedáme z poznatkov starých Grékov. Magnetit, magnetický oxid zo železa je uvedený v gréckych textoch už 800 rokov pred naším letopočtom. Tento nerast sa ťažil v provincii Magnesia v Tesália. Možno to bola práve blízkosť, ktorá dopomohla Thalesovi ako prvému Grékovi, zaoberať sa magnetickými silami. Thales z Milétu okolo roku 585 p. n. l., zistil, že keď potrel jantár kúskom kožušiny, tak ten bol schopný k sebe pritiahnuť ľahšie predmety. Thales, takto objavil princíp statickej elektriny. Jantár je skamenelá živica ihličnatého stromu s pred miliónmi rokov starého a v tom čase bol jantár cenený ako šperk, pre svoju peknú slnečnú farbu. Gréci poznali jantár pod menom „elektron“, ktoré sa zachovalo po klasických gréckych spisovateľoch. Na obrázku je vidieť poštovú známku z Grécka, na ktorej je nakreslená podobizeň Thalesa a kúsok jantáru ako priťahuje k sebe pierko. Thales sa narodil v roku 624 pred naším letopočtom v meste Milétu a bol gréckym filozofom, matematikom, astronómom a obchodníkom. Uznaný je ako jeden zo siedmich mudrcov v starom Grécku. Jeho hlavným prínosom je snaha o poskytnutie vedeckého vysvetlenia, ktoré boli doterez vysvetľované iba na základe mytológie. Za to ho Aristoteles nazval prvým filozofom v gréckej tradícií. Žiaľ, ani jedno jeho dielo sa nezachovalo v písomnej forme. Dostupné informácie pochádzajú iba od historika Diogenes Laertius, ktorý žil v 3. storočí pred naším letopočtom a citovanie Apollodorusa z Atén, ktorý žil okolo roku 140 pred naším letopočtom. Z dôvodu časovej medzery, je veľmi ťažké posúdiť jeho diela alebo poskytnúť bližšie údaje o ňom.
    [Show full text]