The Atmospheric Oxygen Cycle: the Oxygen Isotopes of Atmospheric C02 and 02 and the 02/N2 Ratio

Total Page:16

File Type:pdf, Size:1020Kb

The Atmospheric Oxygen Cycle: the Oxygen Isotopes of Atmospheric C02 and 02 and the 02/N2 Ratio REVIEWS OF GEOPHYSICS, SUPPLEMENT, PAGES 1253-1262, JULY 1995 U.S. NATIONAL REPORT TO INTERNATIONAL UNION OF GEODESY AND GEOPHYSICS 1991-1994 The atmospheric oxygen cycle: The oxygen isotopes of atmospheric C02 and 02 and the 02/N2 ratio Ralph F. Keeling Scripps Institution of Oceanography, University of California, San Diego, La Jolla Introduction to come to isotopic equilibrium with liquid water is the same as the time scale for hydration, i.e., around 30 sec­ 18 16 Oxygen is the most abundant element in the earth's onds [Mills and Urey, 1940]. The 0/ 0 ratio of C02 crust, it accounts for 89% of the mass of the ocean, and in equilibrium with water at 25° C is 1.041 times higher 18 16 it is the second most abundant element in the earth's than the 0/ 0 ratio of the water. This equilibrium atmosphere. Much work on the oxygen cycle has fo­ fractionation factor varies slightly with temperature. Isotopic ratios are generally reported according to cused on the question of the origin of atmospheric 02 and its variations over geologic time [see Kump et al, 18 16 18 16 1991, and references therein). This review focuses on S = ( 0/ 0)sampie/( 0/ 0),Wflrd " 1 (1) several other aspects of the oxygen cycle including the short-term controls on the oxygen isotopic abundance where the S value is customarily multiplied by 1000 and expressed in per mille (%<>)• Bottinga and Craig [1969] of atmospheric C02 and 02, and the short-term vari- abilitiy in the 0 /N ratio. suggested using a standard based on CO2 in equilib­ 2 2 rium with the Standard Mean Ocean Water (SMOW) at These aspects of the oxygen cycle depend mainly on 25°C [Craig and Gordon, 1965]. Most recent measure­ material exchanges between the atmosphere and living ments have been reported relative to the 180/160 ra­ organisms at the earth's surface or in the ocean. Like tio of C0 derived from the Pee-Dee Belemnite (PDB) several other atmospheric variables which have received 2 carbonate standard. This standard has an 180/160 ra­ much attention recently, e.g., the abundances of C0 , 2 tio that is 0.22%o higher than the Bottinga and Craig CH4, and N 0, the oxygen isotopic content of C0 and 2 2 standard [Friedman and O'Neil, 1977]. 02 and the 02/N2 ratio have atmospheric lifetimes that 18 16 are long relative to the time scale of atmospheric mix­ The 0/ 0 ratio of atmospheric CO2 is primarily ing and thus reflect an integration of material exchanges determined by exchanges with leaf water, soil water, over the globe. Recently, our knowledge of these vari­ and surface sea water [Francey and Tans, 1987; Far- ables has expanded through laboratory experiments ex­ quhar et al., 1993]. Oxygen atom exchange with leaf water occurs because a significant fraction of the C0 ploring the exchange pathways, and through measure­ 2 ments on contemporary air samples or in ancient air which diffuses into the chloroplasts of leaf cells is not samples extracted from polar ice cores. This review assimilated but diffuses back into the air, and this frac­ summarizes recent literature on these subjects, and also tion will have equilibrated isotopically with chloroplast emphasizes how these aspects of the global oxygen cycle water. Equilibration occurs in spite of the short (< 1 second) residence time of C0 in leaves because of the can provide new information on the material exchanges 2 between the atmosphere and biota integrated over large presence of the enzyme carbonic anhydrase, which is areas. concentrated in the chloroplasts of leaf cells and which dramatically speeds up the hydration reaction. Oxygen atom exchange with soil water occurs primarily through The 180/160 Ratio of Atmospheric C0 2 C02 which is released into the soil by below-ground res­ piration and which subsequently diffuses into the atmo­ The oxygen isotopic content of atmospheric C02 is sphere. Oxygen atom exchange with seawater occurs mainly determined by interactions between C02 and through the exchange of C02 molecules across the air- the global reservoirs of liquid water. This follows be­ sea interface. cause direct gas phase interactions of C02 with 02 and The oxygen isotopic composition of soil water and H20 vapor do not result in O atom exchange [Francey leaf water vary considerably. Soil water isotopic com­ and Tans, 1987]. When C02 dissolves in water, oxy­ position tends to follow the composition of precipitation gen atoms are exchanged through a mechanism that which is progressively depleted in 180 relative to seawa­ involves the hydration of dissolved C02 to form car­ ter towards high latitudes and towards the-interior of bonic acid (H2C03). The time scale for dissolved C02 continents. Chloroplast water, in turn, tends to be en­ riched in 180 relative to soil water by evaporation from leaves because H2160 evaporates preferentially relative Copyright 1995 by the American Geophysical Union. to H2180. This enrichment of chloroplast water is sensi­ tive to relative humidity and temperature, which can be Paper number 95RG00438. highly variable [Dongmann et al., 1974; Forstel, 1978; 8755-1209/95/95RG-00438$15.00 Zundel et al, 1978]. 1253 1254 KEELING: ATMOSPHERIC OXYGEN CYCLE A global steady-state budget for 6lsO of atmospheric is where does chloroplast water fall in this range. Far­ CO2 is shown in Figure 1. This budget uses figures quhar et al. [1993] present results based on isotope ex­ from Farquhar et al [1993] for fluxes and isotopic ex­ change experiments with several varieties of fruit trees changes of atmospheric CO2 with leaf, soil, and sea wa­ that suggest the isotopic composition of chloroplast wa­ ter. One significant source of uncertainty here is the ter is virtually identical to that of water at the evap­ global average isotopic composition of chloroplast wa­ orating surfaces in leaves. The budget in Figure 1 is ter. Logically, the 6lsO of chloroplast water should be based on this assumption, taking into account the vari­ intermediate between that of soil water and water at ability of leaf water over the surface of the earth. In the evaporating surface in the leaves where the max­ contrast, Yakir and coworkers have conducted isotope imum isotopic enrichment occurs. A critical question exchange experiments on sunflowers that indicate that Figure 1. The global "pre-anthropogenic" steady-state budget for the oxygen isotopes of atmo­ spheric CO2 based on Farquhar et al. [1993] showing annual fluxes of CO2 in units of 1015 moles of carbon and showing the isotopic composition of C02 in equilibrium with dominant exchangeable water reservoirs [see also Keeling, 1993]. CO2 exchange with soil water involves uptake of CO2 by leaves, respiration within the soil, and diffusion of the respiratory C02 out through the soil. The budget shown here assumes that the kinetic isotope fractionation that results from diffusion through stomata and through the soil cancel each other out (see also Table 2, Eq. (F)). According to this budget, the bulk composition of atmospheric CO2 can be explained by assuming that 45% of the oxygen atoms come from chloroplast water at an average isotopic composition of -f5%o> 34% come from soil water at an average of — 7%o, and 21% come from sea water at an average of l%o- This combination yields atmospheric CO2 at approximately 0%o- All numbers here are relative to the PDB standard. KEELING: ATMOSPHERIC OXYGEN CYCLE 1255 chloroplast water is typically 6 to 10%o depleted in 180 Table 1. Summarizing Two Alternative Formulations for compared to water at the evaporating surface [Yakir et Describing Exchanges of Oxygen Isotopes of C02 with al, 1993; Yakir et al, 1994]. The difference in 6180 be­ Terrestrial Ecosystems tween chloroplasts and evaporation sites probably varies NOTATION: significantly from species to species [Yakir et al, 1993]. C0 Atmospheric CO2 partial pressure (PCO2) A global model describing oxygen atom exchanges of Cc PCO2 in chloroplast 18 18 ie CO2 with terrestrial ecosystems has been developed by Ca Atmospheric C O O partial pressure Farquhar et al [1993] (see Table 1, Equation G). This 18 16 Ra 0/ 0 ratio of atmospheric C02 model is based on a formulation in which the oxygen- 18 16 Rc 0/ 0 ratio of C02 in equilibrium with chloro­ atom exchanges with leaf water are described using an plast water effective fractionation factor A a (see Table 1) against 18 16 R0 0/ 0 ratio of C02 in equilibrium with soil 180 on net uptake of CO2. The isotopic exchange flux water between the atmosphere and leaves is thus obtained by Rpdb 180/160 ratio of CO2 derived from the carbonate multiplying Aa by net flux of CO2 into the leaves (basi­ standard Pee-Dee Belemnite [see Friedman and cally equal to gross primary production, GPP). The fac­ O'Neil, 1977] tor Aa is not a true fractionation factor because it de­ 6a (Ra-RPDB)/RPDB pends on the isotopic composition of atmospheric CO2. 6c (Rc—Rpdb)/Rpdb Aa is nevertheless useful because it can be measured 63 (R«—Rpdb)/Rpdb in controlled experiments as well as modeled over the 6r 68 + e80u surface of the earth [Farquhar et al, 1993]. Fin Gross flux of CO2 into stomata The latitudinal distribution of Aa as estimated by Fout Gross flux of CO2 out of stomata Farquhar et al [1993], is shown in Figure 2. Also shown R Flux of CO2 out of soil from root and soil respiration is the latitudinal variation of C02 in equilibrium with surface seawater (6°), the isotopic composition of CO2 ttsto Fractionation factor of diffusion through stomata (same both directions) returned to the atmosphere through soils (6r), the sum 1S or8oii Fractionation factor for diffusion out of soil 6r + AA, and the annual mean surface values of S 0 —5 er Csto Qfsto ~ 1 [ P Farquhar et al., 1993] of atmospheric CO2.
Recommended publications
  • The Dole Effect and Its Variations During the Last 130,000 Years As Measured in the Vostok Ice Core
    GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 8, NO. 3, PAGES 363-376, SEPTEMBER 1994 The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core Michael Bender • and Todd Sowers 2 GraduateSchool of Oceanography,University of RhodeIsland, Kingston Laurent Labeyrie Centredes Faibles Radioactivites, Centre National de la RechercheScientifique, Commissariat a L'EnergieAtomique, Gif-sur- Yvette, France Abstract. We review the currentunderstanding of the Dole effect (the observeddifference between the •5180of atmospheric0 2 andthat of seawater)and its causes, extend the record of variationsin theDole effectback to 130kyr before present using data on the •5180 of 0 2obtained from studying the Vostok ice core(Sowers et al., 1993), anddiscuss the significanceof temporalvariations. The Dole effectreflects oxygenisotope fractionation during photosynthesis, respiration, and hydrologic processes (evaporation, precipitation,and evapotranspiration). Our bestprediction of the present-dayDole effect,+20.8 %0,is considerablylower thanthe observedvalue, + 23.5 %0,and we discusspossible causes of this discrepancy. During the past 130 kyr, the Dole effecthas been 0.05 %0lower thanthe present value, on average.The standarddeviation of the Dole effect from the meanhas been only _+0.2 %0,and the Dole effect is nearly unchangedbetween glacial maxima and interglacial periods. The smallvariability in theDole effect suggeststhat relative rates of primaryproduction in theland and marine realms have been relatively constant.Most periodicvariability in the Dole effectis in the precessionband, suggesting that changes in thisglobal biogeochemical term reflects variations in low-latitudeland hydrology and productivity or possiblyvariability in low-latitudeoceanic productivity. Introduction they can potentially be made to do so. Ice core reconstructionsof the concentrationsof bioactivegases in air Our understanding of the response of the biosphere to provide an integratedglobal signal which complementsthe Pleistoceneclimate change is actually quite limited.
    [Show full text]
  • Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents by T
    U.S. Department of the Interior U.S. Geological Survey Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents by T. B. Coplen', J. A. Hopple', J. K. Bohlke', H. S. Reiser', S. E. Rieder', H. R. o *< A R 1 fi Krouse , K. J. R. Rosman , T. Ding , R. D. Vocke, Jr., K. M. Revesz, A. Lamberty, P. Taylor, and P. De Bievre6 'U.S. Geological Survey, 431 National Center, Reston, Virginia 20192, USA 2The University of Calgary, Calgary, Alberta T2N 1N4, Canada 3Curtin University of Technology, Perth, Western Australia, 6001, Australia Institute of Mineral Deposits, Chinese Academy of Geological Sciences, Beijing, 100037, China National Institute of Standards and Technology, 100 Bureau Drive, Stop 8391, Gaithersburg, Maryland 20899 "institute for Reference Materials and Measurements, Commission of the European Communities Joint Research Centre, B-2440 Geel, Belgium Water-Resources Investigations Report 01-4222 Reston, Virginia 2002 U.S. Department of the Interior GALE A. NORTON, Secretary U.S. Geological Survey Charles G. Groat, Director The use of trade, brand, or product names in this report is for identification purposes only and does not imply endorsement by the U.S. Government. For additional information contact: Chief, Isotope Fractionation Project U.S. Geological Survey Mail Stop 431 - National Center Reston, Virginia 20192 Copies of this report can be purchased from: U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286 CONTENTS Abstract......................................................
    [Show full text]
  • Boron and Oxygen in Cometary Particles: O. J
    79th Annual Meeting ofBORON the Meteoritical AND OXYGEN Society IN COMETARY (2016) PARTICLES: O. J. Stenzel and J. Paquette 6380.pdf BORON AND OXYGEN IN COMETARY PARTICLES. Oliver J. Stenzel and J. Paquette and the COSIMA Team, Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen, Germany, [email protected]. Introduction: The cometary dust experiment COSIMA is a time of flight secondary ion mass spectrometer (ToF-SIMS) on board the Rosetta space craft. Since August 2014, COSIMA has been collecting dust from the inner coma of 67P/Churyumov-Gerasimenko [1], [2]. The particles have been analyzed for their size distribution, particle flux and morphology [3], [4]. [5] as well as [1] found high amounts of sodium in the particles using the high resolution ToF-SIMS. In this work we present some of our results for boron and oxygen and compare with meteorite samples analyzed in the lab with the COSIMA reference model (RM). Varying degrees of oxygen isotopic fractionation have long been known in solar system solids such as the terrestrial planets, chondrules, and CAIs (calcium-aluminum-rich inclusions) [6] and, more recently, in the sun [7]. A value has also been measured for the cometary gas from comet 67P [8]. Evidence for the presence of CAIs (which can have quite different oxygen isotopic content than the terrestrial value) has already been seen in this comet [9]. Thus a comparison of the isotopic ratio of a cometary dust particle may shed light on the history of Churyumov-Gerasimenko. Data and Methods: COSIMA produces high resolution mass spectra (1400 at 100 u).
    [Show full text]
  • Investigation of Nitrogen Cycling Using Stable Nitrogen and Oxygen Isotopes in Narragansett Bay, Ri
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 2014 INVESTIGATION OF NITROGEN CYCLING USING STABLE NITROGEN AND OXYGEN ISOTOPES IN NARRAGANSETT BAY, RI Courtney Elizabeth Schmidt University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Schmidt, Courtney Elizabeth, "INVESTIGATION OF NITROGEN CYCLING USING STABLE NITROGEN AND OXYGEN ISOTOPES IN NARRAGANSETT BAY, RI" (2014). Open Access Dissertations. Paper 209. https://digitalcommons.uri.edu/oa_diss/209 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. INVESTIGATION OF NITROGEN CYCLING USING STABLE NITROGEN AND OXYGEN ISOTOPES IN NARRAGANSETT BAY, RI BY COURTNEY ELIZABETH SCHMIDT A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN OCEANOGRAPHY UNIVERSITY OF RHODE ISLAND 2014 DOCTOR OF PHILOSOPHY DISSERTATION OF COURTNEY ELIZABETH SCHMIDT APPROVED: Thesis Committee: Major Professor Rebecca Robinson Candace Oviatt Arthur Gold Nassar H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2014 ABSTRACT Estuaries regulate nitrogen (N) fluxes transported from land to the open ocean through uptake and denitrification. In Narragansett Bay, anthropogenic N loading has increased over the last century with evidence for eutrophication in some regions of Narragansett Bay. Increased concerns over eutrophication prompted upgrades at wastewater treatment facilities (WWTFs) to decrease the amount of nitrogen discharged. The upgrade to tertiary treatment – where bioavailable nitrogen is reduced and removed through denitrification – has occurred at multiple facilities throughout Narragansett Bay’s watershed.
    [Show full text]
  • Carbon Dioxide Oxygen Cycle Diagram Worksheet
    Carbon Dioxide Oxygen Cycle Diagram Worksheet Albert remains subjunctive: she glass her prayer novelises too penetrably? Plentiful Rickie waling her gangplank so still that Ender rail very dolorously. Puffingly needed, Dominic sleeved half-pike and cooperate epicenter. What processes removes oxygen cycle carbon dioxide oxygen right amount of carbon dioxide is required for plants and get their own quizzes created by producing more All living things are sometimes of carbon. Carbon Dioxide Oxygen Cycle Worksheet. Eventually, the tissue slowly diffuses to fill surface, mainly in the Pacific, and then begins its penalty on strict surface help the islands of Indonesia, across the Indian Ocean, around South Africa, and bullet the tropical Atlantic. Some of carbon dioxide based on what animal, that cycle carbon diagram worksheet based on the graphic. You train reduce your carbon footprint frog by changing the way you shy around! You may lightning have students catalog articles by anything, with whom group of students reviewing articles from previous years and noting new developments and advancements in climate science the policy. Which open the following processes removes carbon dioxide from the atmosphere? It down the wide common element of subsequent human body. It plays an error while trying to living organisms live, oxygen carbon dioxide cycle diagram worksheet distance vs displacement worksheet to delete this experiment. Trees that oxygen when crops or comments or cool your worksheet. Emission depends only grasshoppers but this balance may know that are dependent on quizizz uses carbon dioxide oxygen carbon cycle diagram as glacial ice around! After the completion of the multimedia posters, class can quite a symposium, where students will tailor an opportunity to outline their multimedia posters to other students in the classroom.
    [Show full text]
  • Analytical Developments in the Measurements of Boron, Nitrate
    XA9848324 ANALYTICAL DEVELOPMENTS IN THE MEASUREMENTS OF BORON, NITRATE, PHOSPHATE AND SULPHATE ISOTOPES AND CASE EXAMPLES OF DISCRIMINATION OF NITROGEN AND SULPHUR SOURCES IN POLLUTION STUDIES J. AGGARWAL, D.S. SHEPPARD Institute of Geological & Nuclear Sciences, Lower Hutt B.W. ROBINSON Wairakei Research Centre, Institute of Geological & Nuclear Sciences, Taupo New Zealand Abstract - Methods are documented for the analysis of B isotopes, O and N isotopes in nitrates. B isotopes can be measured by negative ion thermal ionisation mass spectrometry. Nitrate is recovered from groundwaters by ion exchange and the resulting silver nitrate combusted for stable isotope gas analysis. Oxygen isotope analysis of phosphates can be determined by generating and analysing CO2 gas from the combustion of silver phosphate produced from aqueous samples. Sulphate in ground and surface waters can be separated and concentrated by ion exchange and precipitated as barium sulphate. This is reacted with graphite to yield CO2 and CO, the latter being spark discharged to CO2 and the total CO2 measured for oxygen isotope analysis. Barium sulphide from this reaction is converted to silver sulphide which is reacted with cuprous oxide to give SO2 gas for sulphur isotope measurements. A case study of the semi-rural Manakau area in New Zealand was conducted to see if nitrate isotopes could be used to detect the source of nitrate contamination (groundwater nitrate <0.5 to 11.3 mg/L NO'3-N). Nitrogen isotope (+4 to +12%o) coupled with oxygen isotope measurements (+5 to +9%o) demonstrated that the nitrogen is not sourced from fertilisers but from some combination of septic tank and animal waste.
    [Show full text]
  • The Carbon Cycle High School Environmental Science Instructional Sequence
    District of Columbia Office of the State Superintendent of Education The Carbon Cycle High School Environmental Science Instructional Sequence 1 This high school environmental science instructional sequence was created to support teaching the Next Generation Science Standards through the Biological Sciences Curriculum Study (BSCS) 5E instructional model. Developed by District of Columbia teachers, these lessons include real-world contexts for learning about environmental science through a lens that encourages student investigation of local issues. The lessons also support Scope and Sequence documents used by District local education agencies: Unit 1: Ecosystems: Interactions, Energy and Dynamics Advisory 1 and 2 Acknowledgements: Charlene Cummings, District of Columbia International School This curriculum resource can be downloaded online: https://osse.dc.gov/service/environmental-literacy-program-elp 2 Overview and Goal of the Lesson: In this sequence of lessons, students will go into depth via investigations about what processes drive the carbon cycle. Students are first introduced to the carbon cycle in an interactive game that triggers prior knowledge and touches on how carbon moves through Earth’s interconnected spheres. Students then investigate and gather evidence of the carbon transformation that carbon atoms encounter throughout the cycle. Since carbon is seen in students’ everyday lives, they will calculate their carbon footprint, calculate ways to deduct their carbon footprint, and trace carbon interaction throughout a typical school day. Essential Question(s): How are the cycles of matter and energy transferred in ecosystems? What processes drive the carbon cycle? NGSS Emphasized and Addressed in this Lesson Sequence: Carbon Cycle PERFORMANCE SCIENCE AND ENGINEERING DISCIPLINARY CORE IDEAS CROSSCUTTING CONCEPTS EXPECTATIONS PRACTICES HS-LS2-3.
    [Show full text]
  • Ecological Succession and Biogeochemical Cycles
    Chapter 10: Changes in Ecosystems Lesson 10.1: Ecological Succession and Biogeochemical Cycles Can a plant really grow in hardened lava? It can if it is very hardy and tenacious. And that is how succession starts. It begins with a plant that must be able to grow on new land with minimal soil or nutrients. Lesson Objectives ● Outline primary and secondary succession, and define climax community. ● Define biogeochemical cycles. ● Describe the water cycle and its processes. ● Give an overview of the carbon cycle. ● Outline the steps of the nitrogen cycle. ● Understand the phosphorus cycle. ● Describe the ecological importance of the oxygen cycle. Vocabulary ● biogeochemical cycle ● groundwater ● primary succession ● carbon cycle ● nitrogen cycle ● runoff ● climax community ● nitrogen fixation ● secondary succession ● condensation ● phosphorus cycle ● sublimation ● ecological succession ● pioneer species ● transpiration ● evaporation ● precipitation ● water cycle Introduction Communities are not usually static. The numbers and types of species that live in them generally change over time. This is called ecological succession. Important cases of succession are primary and secondary succession. In Earth science, a biogeochemical cycle or substance turnover or cycling of substances is a ​ ​ pathway by which a chemical substance moves through both biotic (biosphere) and abiotic ​ ​ ​ ​ (lithosphere, atmosphere, and hydrosphere) compartments of Earth. A cycle is a series of change which ​ ​ ​ ​ ​ ​ ​ ​ comes back to the starting point and which can be repeated. The term "biogeochemical" tells us that biological, geological and chemical factors are all involved. The circulation of chemical nutrients like carbon, oxygen, nitrogen, phosphorus, calcium, and water etc. through the biological and physical world are known as biogeochemical cycles. In effect, the element is recycled, although in some cycles there may be places (called reservoirs) where the element ​ ​ is accumulated or held for a long period of time (such as an ocean or lake for water).
    [Show full text]
  • Cycles Worksheet Please Answer the Following Using the Words in the Text Box
    Integrated Science Name ____________________________ Cycles worksheet Please answer the following using the words in the text box. Carbon Cycle Coal Oil Natural Gas burning of fossil fuels volcanoes Photosynthesis Respiration ocean sugar Greenhouse decayed 1. Plants use CO2 in the process of ___________________ to make ___________ and oxygen. 2. Animals use oxygen in the process of _______________ and make more CO2. 3. The ____________ is the main regulator of CO2 in the atmosphere because CO2 dissolves easily in it. 4. In the past, huge deposits of carbon were stored as dead plants and animals __________. 5. Today these deposits are burned as fossil fuels, which include _____________, _______________, and ______________. 6. More CO2 is released in the atmosphere today than in the past because of _________ ___________________ . 7. Another natural source for CO2 is __________________. 8. Too much CO2 in the atmosphere may be responsible for the _______________ effect. 9. Write the equation for photosynthesis. 10. Draw a simple diagram of the Carbon Cycle using the words in the text box above. Oxygen Cycle Photosynthesis Ozone Waste Crust Oceans Respiration 1. Plants release 430-470 billion tons of oxygen during process of _________________. 2. Atmospheric oxygen in the form of ___________ provides protection from harmful ultraviolet rays. 3. Oxygen is found everywhere on Earth, from Earth’s _____________ (rocks) to the ______________ where it is dissolved. 4. Oxygen is vital for ________________ by animals, a process which produces CO2.and water. 5. Oxygen is also necessary for the decomposition of ______________ into other elements necessary for life. 6. Write the equation for respiration.
    [Show full text]
  • Global Oceanic and Atmospheric Oxygen Stability Considered In
    ..... ~- OCEANOLOGICA ACTA- VOL. 17- N°2 Global oceanic and atmospheric oxygen Air-sea ex ge CyC4 photosynthesis stability considered in relation to the Global change Oxygène carbon cycle and to different time scales Dioxide de carbone Échange air-mer Photosynthèse C3/C4 Changement global i, Egbert K. DUURSMA a and Michel P.R.M. BOISSON b 1 le ( a Résidence Les Marguerites, Appartement 15, 1305, Chemin des Revoires, 06320 La Turbie, France. '·•· b Service de l'Environnement, Ministère d'État, 3, avenue de Fontvieille, MC 98000 Monaco. Received 12/03/93, in revised form 20/01194, accepted 23/01/94. ABSTRACT This paper constitutes an overview and synthesis conceming atmospheric and oceanic oxygen and related carbon dioxide, particular attention being paid to potential regulation mechanisms on different time scales. The world atmospheric oxygen reserve is remarkably large, so that a lack of oxygen will not easily occur, whether in confined spaces or in major conurbations. On "short" scales, measured in hundreds or thousands of years, feedback processes with regard to oxygen regulation, solely based on atmospheric oxygen variations, would have to be so highly sensitive as to be barely conceivable. Only oxygen in the oceans can vary between zero and about twice the saturation - a fact which suggests that here, at !east potentially, there exist possibilities for a feedback based on oxygen changes. Atmospheric oxygen production began sorne 3.2 billion years ago, and has resul­ ted in a net total amount of 5.63 x 1020 mol (1.8 x 1022 g) of oxygen, of which 3.75 x I019 mol is present as free oxygen in the atmosphere and 3.1 x I017 mol as dissolved oxygen in the oceans, the remainder being stored in a large number of oxidized terrestrial and oceanic compounds.
    [Show full text]
  • Earth's Oxygen Cycle and the Evolution of Animal Life
    Earth’s oxygen cycle and the evolution of animal life Christopher T. Reinharda,1, Noah J. Planavskyb, Stephanie L. Olsonc, Timothy W. Lyonsc, and Douglas H. Erwind aSchool of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332; bDepartment of Geology & Geophysics, Yale University, New Haven, CT 06511; cDepartment of Earth Sciences, University of California, Riverside, CA 92521; and dDepartment of Paleobiology, National Museum of Natural History, Washington, DC 20560 Edited by Andrew H. Knoll, Harvard University, Cambridge, MA, and approved June 17, 2016 (received for review October 31, 2015) The emergence and expansion of complex eukaryotic life on Earth is The requisite environmental O2 levels for each of these biotic linked at a basic level to the secular evolution of surface oxygen milestones may vary substantially, and some may depend strongly levels. However, the role that planetary redox evolution has played on environmental variability, whereas others may be more directly in controlling the timing of metazoan (animal) emergence and linked to the environment achieving a discrete “threshold” or diversification, if any, has been intensely debated. Discussion has range of oxygen levels. Our focus here is on reconstructing an gravitated toward threshold levels of environmental free oxygen ecological context for the emergence and expansion of early animal (O2) necessary for early evolving animals to survive under controlled life during the Middle to Late Proterozoic [∼1.8–0.6 billion years conditions. However, defining such thresholds in practice is not ago (Ga)] in the context of evolving Earth surface O2 levels. straightforward, and environmental O2 levels can potentially con- Most work on the coevolution of metazoan life and surface oxy- strain animal life in ways distinct from threshold O2 tolerance.
    [Show full text]
  • Isotopes Are Atoms with the Same # of Protons (Making Them the SAME ELEMENT), but Have a Different # of Neutrons
    Each element has a unique # of protons. So…EVERY SINGLE ATOM of that element MUST HAVE the SAME number of protons, ALWAYS! This is the reason why each element has a unique Atomic Number that never changes! Isotopes are atoms with the same # of protons (making them the SAME ELEMENT), but have a different # of neutrons. Having different # of neutrons for the same element means that the isotopes will have different mass numbers, too! There are 3 isotopes of oxygen: 8 8 8 O8 O9 O10 neutronsOxygen neutronsOxygen neutronsOxygen ALL oxygen16 isotopes 17have an atomic 18# of 8, so they all have 8 protons! How many protons does each isotope have? How many neutrons does each isotope have? There are 3 isotopes of carbon: 6 6 6 C6 C7 C8 neutronsCarbon neutronsCarbon neutronsCarbon ALL carbon12 isotopes 13have an atomic #14 of 6, so they all have 6 protons! How many protons does each isotope have? How many neutrons does each isotope have? Atomic Masses on the periodic table are normally decimals. WHY?? Atomic Masses are decimals because it is an AVERAGE mass of all of the element’s isotopes. Some isotopes are more common than others, so this is a weighted average. 5 So the Mass # from the periodic table is B always closest to the most common Boron isotope’s mass. 10.81 In the universe, there are MUCH more carbon-12 atoms that exist than carbon-13 and carbon-14 atoms. 6 C Carbon- 12 Carbon 12.01 When you find the weighted average of the masses of the carbon isotopes, the average will be closest to 12! The Atomic Mass of calcium is 40.08.
    [Show full text]