Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents by T

Total Page:16

File Type:pdf, Size:1020Kb

Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents by T U.S. Department of the Interior U.S. Geological Survey Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents by T. B. Coplen', J. A. Hopple', J. K. Bohlke', H. S. Reiser', S. E. Rieder', H. R. o *< A R 1 fi Krouse , K. J. R. Rosman , T. Ding , R. D. Vocke, Jr., K. M. Revesz, A. Lamberty, P. Taylor, and P. De Bievre6 'U.S. Geological Survey, 431 National Center, Reston, Virginia 20192, USA 2The University of Calgary, Calgary, Alberta T2N 1N4, Canada 3Curtin University of Technology, Perth, Western Australia, 6001, Australia Institute of Mineral Deposits, Chinese Academy of Geological Sciences, Beijing, 100037, China National Institute of Standards and Technology, 100 Bureau Drive, Stop 8391, Gaithersburg, Maryland 20899 "institute for Reference Materials and Measurements, Commission of the European Communities Joint Research Centre, B-2440 Geel, Belgium Water-Resources Investigations Report 01-4222 Reston, Virginia 2002 U.S. Department of the Interior GALE A. NORTON, Secretary U.S. Geological Survey Charles G. Groat, Director The use of trade, brand, or product names in this report is for identification purposes only and does not imply endorsement by the U.S. Government. For additional information contact: Chief, Isotope Fractionation Project U.S. Geological Survey Mail Stop 431 - National Center Reston, Virginia 20192 Copies of this report can be purchased from: U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286 CONTENTS Abstract....................................................... Introduction...................................................................^ Basic Concepts ................................................................................................................................................2 Aclmowledgements...........................................^ Hydrogen...............................................................................................................................................^ Reference materials and reporting of isotope ratios......................................................................................5 Ranges in isotopic composition......................................................................................................................5 Water...................................................................................................................................... Silicates............................................................................................................................................^ Hydroxides...........:...............................................................................^ Organic hydrogen....................................................................................................................................8 Methane .................................................................................................................................................10 Hydrogen gas......................................................................................................................................... 10 Lithium................................................^ Reference materials and reporting of isotope ratios.................................................................................... 11 Ranges in isotopic composition.................................................................................................................... 11 Marine sources ......................................................................................................................................11 Non-marine sources............................................................................................................................... 13 Lithium in rocks.................................................................................................................................... 13 Phosphates............................................................................................................................................. 13 Silicates....... ... ........... .... .. .. .... ....... .._ Reagents............................ .. ..... ... ... .. ... ..............J^ Boron......................................................................... Reference materials and reporting of isotope ratios.................................................................................... 15 Ranges in isotopic composition.................................................................................................................... 15 Marine sources ......................................................................................................................................15 Non-marine sources............................................................................................................................... 16 Igneous rocks......................................................................................................................................... 19 Metamorphic rocks................................................................................................................................ 19 Sediments............................................................................^ Organic boron........................................................................................................................................19 Carbon ......................................................................................20 Reference materials and reporting of isotope ratios....................................................................................20 Ranges in isotopic composition....................................................................................................................20 Carbonate and bicarbonate ...................................................................................................................20 Carbon dioxide......................................................................................................................................25 Oxalates...............................................................................26 Carbon monoxide..................................................................................................................................26 Organic carbon ......................................................................................................................................26 Elemental carbon...................................................................................................................................28 Ethane ....................................................................................................................................................28 Methane .................................................................................................................................................28 Nitrogen............................................................ Reference materials and reporting of isotope ratios....................................................................................29 Ranges in isotopic composition....................................................................................................................29 Nitrate................................................................................................................................ Nitrite............................................................................................ Nitrogen oxide gases.......................................................................................30 Nitrogen gas ................................................................................................30 Organic nitrogen....................................................................................................................................32 Nitrogen in rocks...................................................................................................................................34 Ammonium.................................................................................................................................^ Oxygen ........................................................... Reference materials and reporting of isotope ratios....................................................................................36 Ranges in isotopic composition....................................................................................................................37 Oxygen gas.............................................................................................................................................39 Water........................................................^ Carbon monoxide..................................................................................................................................41 Carbon dioxide ......................................................................................................................................41 Carbonates .............................................................................................................................................41 Nitrogen oxides.....................................................................................................................................42 Other Oxides..........................................................................................................................................42
Recommended publications
  • Acadia Geology Alumni/Ae Newsletter
    Acadia Geology Alumni/ae Newsletter Issue 21 December, 2009 Department of Earth and Environmental Science, Acadia University, Wolfville, Nova Scotia, B4P 2R6 [email protected] VIEW FROM ACADIA As I write this message, my term as the “acting head” course, it costs less to deliver. Another aspect of of Earth and Environmental Science is rapidly budgetary constraints is a lack of replacements for drawing to a close. Rob Raeside returns as head faculty on sabbatical. In the “good old days” such beginning Jan. 1, 2010, and it is probably a “toss-up” absences were typically covered by a full-time faculty as to which one of us is happier about that! To be replacement, but now we are lucky to receive one honest, however, I found many aspects of being “per-course replacement”. Such replacements have department head to be rewarding, and if we did not been great but they are paid specifically to teach the have a capable and willing incumbent returning to the single course assigned to them, and hence do not job, continuing in the role would have been OK. provide any coverage for other activities integral to running a department, such as counselling students, The past year at Acadia has more than lived up to the supervising honours and special project students, supposed ancient Chinese curse “may you live in serving on committees, and so on. This ripple-down interesting times”. The main topic occupying effect hits especially hard in a small department such everyone’s mind on campus has been the university as ours. Fortunately, faculty in E&ES have been budget.
    [Show full text]
  • Australian Aborigines and Meteorites
    Records of the Western Australian Museum 18: 93-101 (1996). Australian Aborigines and meteorites A.W.R. Bevan! and P. Bindon2 1Department of Earth and Planetary Sciences, 2 Department of Anthropology, Western Australian Museum, Francis Street, Perth, Western Australia 6000 Abstract - Numerous mythological references to meteoritic events by Aboriginal people in Australia contrast with the scant physical evidence of their interaction with meteoritic materials. Possible reasons for this are the unsuitability of some meteorites for tool making and the apparent inability of early Aborigines to work metallic materials. However, there is a strong possibility that Aborigines witnessed one or more of the several recent « 5000 yrs BP) meteorite impact events in Australia. Evidence for Aboriginal use of meteorites and the recognition of meteoritic events is critically evaluated. INTRODUCTION Australia, although for climatic and physiographic The ceremonial and practical significance of reasons they are rarely found in tropical Australia. Australian tektites (australites) in Aboriginal life is The history of the recovery of meteorites in extensively documented (Baker 1957 and Australia has been reviewed by Bevan (1992). references therein; Edwards 1966). However, Within the continent there are two significant areas despite abundant evidence throughout the world for the recovery of meteorites: the Nullarbor that many other ancient civilizations recognised, Region, and the area around the Menindee Lakes utilized and even revered meteorites (particularly of western New South Wales. These accumulations meteoritic iron) (e.g., see Buchwald 1975 and have resulted from prolonged aridity that has references therein), there is very little physical or allowed the preservation of meteorites for documentary evidence of Aboriginal acknowledge­ thousands of years after their fall, and the large ment or use of meteoritic materials.
    [Show full text]
  • The Dole Effect and Its Variations During the Last 130,000 Years As Measured in the Vostok Ice Core
    GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 8, NO. 3, PAGES 363-376, SEPTEMBER 1994 The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core Michael Bender • and Todd Sowers 2 GraduateSchool of Oceanography,University of RhodeIsland, Kingston Laurent Labeyrie Centredes Faibles Radioactivites, Centre National de la RechercheScientifique, Commissariat a L'EnergieAtomique, Gif-sur- Yvette, France Abstract. We review the currentunderstanding of the Dole effect (the observeddifference between the •5180of atmospheric0 2 andthat of seawater)and its causes, extend the record of variationsin theDole effectback to 130kyr before present using data on the •5180 of 0 2obtained from studying the Vostok ice core(Sowers et al., 1993), anddiscuss the significanceof temporalvariations. The Dole effectreflects oxygenisotope fractionation during photosynthesis, respiration, and hydrologic processes (evaporation, precipitation,and evapotranspiration). Our bestprediction of the present-dayDole effect,+20.8 %0,is considerablylower thanthe observedvalue, + 23.5 %0,and we discusspossible causes of this discrepancy. During the past 130 kyr, the Dole effecthas been 0.05 %0lower thanthe present value, on average.The standarddeviation of the Dole effect from the meanhas been only _+0.2 %0,and the Dole effect is nearly unchangedbetween glacial maxima and interglacial periods. The smallvariability in theDole effect suggeststhat relative rates of primaryproduction in theland and marine realms have been relatively constant.Most periodicvariability in the Dole effectis in the precessionband, suggesting that changes in thisglobal biogeochemical term reflects variations in low-latitudeland hydrology and productivity or possiblyvariability in low-latitudeoceanic productivity. Introduction they can potentially be made to do so. Ice core reconstructionsof the concentrationsof bioactivegases in air Our understanding of the response of the biosphere to provide an integratedglobal signal which complementsthe Pleistoceneclimate change is actually quite limited.
    [Show full text]
  • Online Determination of Boron Isotope Ratio in Boron Trifluoride By
    applied sciences Article Online Determination of Boron Isotope Ratio in Boron Trifluoride by Infrared Spectroscopy Weijiang Zhang, Yin Tang and Jiao Xu * School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China; [email protected] (W.Z.); [email protected] (Y.T.) * Correspondence: [email protected]; Tel.: +86-022-27402028 Received: 17 September 2018; Accepted: 3 December 2018; Published: 6 December 2018 Abstract: Enriched boron-10 and its related compounds have great application prospects, especially in the nuclear industry. The chemical exchange rectification method is one of the most important ways to separate the 10B and 11B isotope. However, a real-time monitoring method is needed because this separation process is difficult to characterize. Infrared spectroscopy was applied in the separation device to realize the online determination of the boron isotope ratio in boron trifluoride (BF3). The possibility of determining the isotope ratio via the 2ν3 band was explored. A correction factor was introduced to eliminate the difference between the ratio of peak areas and the true value of the boron isotope ratio. It was experimentally found that the influences of pressure and temperature could be ignored. The results showed that the infrared method has enough precision and stability for real-time, in situ determination of the boron isotope ratio. The instability point of the isotope ratio can be detected with the assistance of the online determination method and provides a reference for the production of boron isotope. Keywords: isotope; boron; infrared spectroscopy; online determination 1. Introduction Boron in naturally occurring compounds is composed of two isotopes, one of mass 10 and the other of mass 11.
    [Show full text]
  • 12 Natural Isotopes of Elements Other Than H, C, O
    12 NATURAL ISOTOPES OF ELEMENTS OTHER THAN H, C, O In this chapter we are dealing with the less common applications of natural isotopes. Our discussions will be restricted to their origin and isotopic abundances and the main characteristics. Only brief indications are given about possible applications. More details are presented in the other volumes of this series. A few isotopes are mentioned only briefly, as they are of little relevance to water studies. Based on their half-life, the isotopes concerned can be subdivided: 1) stable isotopes of some elements (He, Li, B, N, S, Cl), of which the abundance variations point to certain geochemical and hydrogeological processes, and which can be applied as tracers in the hydrological systems, 2) radioactive isotopes with half-lives exceeding the age of the universe (232Th, 235U, 238U), 3) radioactive isotopes with shorter half-lives, mainly daughter nuclides of the previous catagory of isotopes, 4) radioactive isotopes with shorter half-lives that are of cosmogenic origin, i.e. that are being produced in the atmosphere by interactions of cosmic radiation particles with atmospheric molecules (7Be, 10Be, 26Al, 32Si, 36Cl, 36Ar, 39Ar, 81Kr, 85Kr, 129I) (Lal and Peters, 1967). The isotopes can also be distinguished by their chemical characteristics: 1) the isotopes of noble gases (He, Ar, Kr) play an important role, because of their solubility in water and because of their chemically inert and thus conservative character. Table 12.1 gives the solubility values in water (data from Benson and Krause, 1976); the table also contains the atmospheric concentrations (Andrews, 1992: error in his Eq.4, where Ti/(T1) should read (Ti/T)1); 2) another category consists of the isotopes of elements that are only slightly soluble and have very low concentrations in water under moderate conditions (Be, Al).
    [Show full text]
  • Stable Isotopic Composition of Boron in Groundwater – Analytical
    LLNL‐TR‐498360 LAWRENCE LIVERMORE NATIONAL LABORATORY California GAMA Special Study: Stable isotopic composition of boron in groundwater – analytical method development Gary R. Eppich, Josh B. Wimpenny*, Qing­zhu Yin*, and Bradley K. Esser Lawrence Livermore National Laboratory *University of California, Davis October, 2011 Final report for the California State Water Resources Control Board GAMA Special Studies Task 10.4 : Development of New Wastewater Indicator Methods Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. Auspices Statement This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE‐AC52‐07NA27344. GAMA: GROUNDWATER AMBIENT MONITORING & ASSESSMENT PROGRAM SPECIAL STUDY California GAMA Special Study: Stable isotopic composition of boron in groundwater – analytical method development By Gary R.
    [Show full text]
  • Boron and Oxygen in Cometary Particles: O. J
    79th Annual Meeting ofBORON the Meteoritical AND OXYGEN Society IN COMETARY (2016) PARTICLES: O. J. Stenzel and J. Paquette 6380.pdf BORON AND OXYGEN IN COMETARY PARTICLES. Oliver J. Stenzel and J. Paquette and the COSIMA Team, Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen, Germany, [email protected]. Introduction: The cometary dust experiment COSIMA is a time of flight secondary ion mass spectrometer (ToF-SIMS) on board the Rosetta space craft. Since August 2014, COSIMA has been collecting dust from the inner coma of 67P/Churyumov-Gerasimenko [1], [2]. The particles have been analyzed for their size distribution, particle flux and morphology [3], [4]. [5] as well as [1] found high amounts of sodium in the particles using the high resolution ToF-SIMS. In this work we present some of our results for boron and oxygen and compare with meteorite samples analyzed in the lab with the COSIMA reference model (RM). Varying degrees of oxygen isotopic fractionation have long been known in solar system solids such as the terrestrial planets, chondrules, and CAIs (calcium-aluminum-rich inclusions) [6] and, more recently, in the sun [7]. A value has also been measured for the cometary gas from comet 67P [8]. Evidence for the presence of CAIs (which can have quite different oxygen isotopic content than the terrestrial value) has already been seen in this comet [9]. Thus a comparison of the isotopic ratio of a cometary dust particle may shed light on the history of Churyumov-Gerasimenko. Data and Methods: COSIMA produces high resolution mass spectra (1400 at 100 u).
    [Show full text]
  • Investigation of Nitrogen Cycling Using Stable Nitrogen and Oxygen Isotopes in Narragansett Bay, Ri
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 2014 INVESTIGATION OF NITROGEN CYCLING USING STABLE NITROGEN AND OXYGEN ISOTOPES IN NARRAGANSETT BAY, RI Courtney Elizabeth Schmidt University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Schmidt, Courtney Elizabeth, "INVESTIGATION OF NITROGEN CYCLING USING STABLE NITROGEN AND OXYGEN ISOTOPES IN NARRAGANSETT BAY, RI" (2014). Open Access Dissertations. Paper 209. https://digitalcommons.uri.edu/oa_diss/209 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. INVESTIGATION OF NITROGEN CYCLING USING STABLE NITROGEN AND OXYGEN ISOTOPES IN NARRAGANSETT BAY, RI BY COURTNEY ELIZABETH SCHMIDT A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN OCEANOGRAPHY UNIVERSITY OF RHODE ISLAND 2014 DOCTOR OF PHILOSOPHY DISSERTATION OF COURTNEY ELIZABETH SCHMIDT APPROVED: Thesis Committee: Major Professor Rebecca Robinson Candace Oviatt Arthur Gold Nassar H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2014 ABSTRACT Estuaries regulate nitrogen (N) fluxes transported from land to the open ocean through uptake and denitrification. In Narragansett Bay, anthropogenic N loading has increased over the last century with evidence for eutrophication in some regions of Narragansett Bay. Increased concerns over eutrophication prompted upgrades at wastewater treatment facilities (WWTFs) to decrease the amount of nitrogen discharged. The upgrade to tertiary treatment – where bioavailable nitrogen is reduced and removed through denitrification – has occurred at multiple facilities throughout Narragansett Bay’s watershed.
    [Show full text]
  • Abstract: Investigation of the Form and Age of the Bloody Creek Crater
    Atlantic Geology . Volume 48 . 2012 40 Investigation of the form and age of the Bloody Creek Crater, southwestern Nova Scotia Mariella Nalepa1, Ian Spooner1, and Peter Williams2 1. Department of Earth and Environmental Science, Acadia Uni- versity, Wolfville, Nova Scotia B4P 2R6, Canada <[email protected]> ¶ 2. Department of Physics, Acadia Uni- versity, Wolfville, Nova Scotia B4P 2R6, Canada Virtually all terrestrial impact craters exhibit a circular geometry in plan-form; only three impact sites exhibiting non-circular, elongate forms have been identified on Earth. One of these exceptional sites is the Bloody Creek Crater located in southwestern Nova Scotia, an approximately 0.42 km long-axis elliptical crater first identified in 1987 during a regional air photo survey. It was confirmed as an impact crater in 2009 through integrated geomorphic, geophysical, and petrographic data. The structure’s rare ellipticity, pristine definition, preservation through shock metamorphic features of anomalously high pressures at the rim, low depth-to-diameter ratio, as well as age remain ambiguous and complicate the interpretation of the origin and evolution of the crater. The purpose of this study is to quantify the form of the feature in order to better understand the nature and age of impact. To achieve this objective, analytical software was used to assess the shape of the crater rim. An extensive review of the literature was also performed to understand the controls on crater formation as well as to synthesize a model for the geological evolution of the site which would aid in the interpretation of the age of the structure. Results demonstrate that the form of the crater rim is best approximated by an ellipse, as illustrated by comparison of the RMSE (Root-Mean-Square Error) calculated for various geometric models.
    [Show full text]
  • Analytical Developments in the Measurements of Boron, Nitrate
    XA9848324 ANALYTICAL DEVELOPMENTS IN THE MEASUREMENTS OF BORON, NITRATE, PHOSPHATE AND SULPHATE ISOTOPES AND CASE EXAMPLES OF DISCRIMINATION OF NITROGEN AND SULPHUR SOURCES IN POLLUTION STUDIES J. AGGARWAL, D.S. SHEPPARD Institute of Geological & Nuclear Sciences, Lower Hutt B.W. ROBINSON Wairakei Research Centre, Institute of Geological & Nuclear Sciences, Taupo New Zealand Abstract - Methods are documented for the analysis of B isotopes, O and N isotopes in nitrates. B isotopes can be measured by negative ion thermal ionisation mass spectrometry. Nitrate is recovered from groundwaters by ion exchange and the resulting silver nitrate combusted for stable isotope gas analysis. Oxygen isotope analysis of phosphates can be determined by generating and analysing CO2 gas from the combustion of silver phosphate produced from aqueous samples. Sulphate in ground and surface waters can be separated and concentrated by ion exchange and precipitated as barium sulphate. This is reacted with graphite to yield CO2 and CO, the latter being spark discharged to CO2 and the total CO2 measured for oxygen isotope analysis. Barium sulphide from this reaction is converted to silver sulphide which is reacted with cuprous oxide to give SO2 gas for sulphur isotope measurements. A case study of the semi-rural Manakau area in New Zealand was conducted to see if nitrate isotopes could be used to detect the source of nitrate contamination (groundwater nitrate <0.5 to 11.3 mg/L NO'3-N). Nitrogen isotope (+4 to +12%o) coupled with oxygen isotope measurements (+5 to +9%o) demonstrated that the nitrogen is not sourced from fertilisers but from some combination of septic tank and animal waste.
    [Show full text]
  • NUCLEAR GEOMETRY: from HYDROGEN to BORON Alexander I
    Materials Physics and Mechanics 45 (2020) 132-149 Received: March 11, 2020 NUCLEAR GEOMETRY: FROM HYDROGEN TO BORON Alexander I. Melker St. Petersburg Academy of Sciences on Strength Problems, Peter the Great St. Petersburg Polytechnic University Polytekhnicheskaya 29, 195251, St. Petersburg, Russian Federation e-mail: [email protected] Abstract. Possible ways of nuclear synthesis in the range from hydrogen to boron are studied. The geometric model of these nuclei is suggested. The basis for this model is the analogy 4 4 between tetrahedral fullerene C4 and helium 2He . It is assumed that a nucleus of helium 2He has the form of a tetrahedron, where: 1) All the apices are equivalent and therefore they are protons, 2) Each neutron in a nucleus decomposes into a proton and three negatively charged particles having the charge ⅓ of that of an electron, 3) Interaction of the negative particles creates a special electronic pattern, which symmetry does not coincide with that of protons one, but determines it. On the basis of the postulates, the structure of other nuclei has been designed using geometric modeling. For hydrogen, deuterium, tritium and helium 3, a point, a linear and a plane structure respectively have been obtained. Helium 4 has tetrahedral symmetry. Then there was transition from three-fold symmetry prisms (lithium 6 and 7) to five-fold symmetry (boron 10 and 11) through four-fold one (beryllium 8, 9, 10). The nuclear electron patterns are more complex; their polyhedrons resemble the electron pairs arrangement at the valence shells of molecules. Keywords: beryllium, boron, deuterium, graph representation, helium, hydrogen, lithium, nuclear electron, nuclear geometry 1.
    [Show full text]
  • ANIC IMPACTS: MS and IRONMENTAL P ONS Abstracts Edited by Rainer Gersonde and Alexander Deutsch
    ANIC IMPACTS: MS AND IRONMENTAL P ONS APRIL 15 - APRIL 17, 1999 Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany Abstracts Edited by Rainer Gersonde and Alexander Deutsch Ber. Polarforsch. 343 (1999) ISSN 01 76 - 5027 Preface .......3 Acknowledgements .......6 Program ....... 7 Abstracts P. Agrinier, A. Deutsch, U. Schäre and I. Martinez: On the kinetics of reaction of CO, with hot Ca0 during impact events: An experimental study. .11 L. Ainsaar and M. Semidor: Long-term effect of the Kärdl impact crater (Hiiumaa, Estonia) On the middle Ordovician carbonate sedimentation. ......13 N. Artemieva and V.Shuvalov: Shock zones on the ocean floor - Numerical simulations. ......16 H. Bahlburg and P. Claeys: Tsunami deposit or not: The problem of interpreting the siliciclastic K/T sections in northeastern Mexico. ......19 R. Coccioni, D. Basso, H. Brinkhuis, S. Galeotti, S. Gardin, S. Monechi, E. Morettini, M. Renard, S. Spezzaferri, and M. van der Hoeven: Environmental perturbation following a late Eocene impact event: Evidence from the Massignano Section, Italy. ......21 I von Dalwigk and J. Ormö Formation of resurge gullies at impacts at sea: the Lockne crater, Sweden. ......24 J. Ebbing, P. Janle, J, Koulouris and B. Milkereit: Palaeotopography of the Chicxulub impact crater and implications for oceanic craters. .25 V. Feldman and S.Kotelnikov: The methods of shock pressure estimation in impacted rocks. ......28 J.-A. Flores, F. J. Sierro and R. Gersonde: Calcareous plankton stratigraphies from the "Eltanin" asteroid impact area: Strategies for geological and paleoceanographic reconstruction. ......29 M.V.Gerasimov, Y. P. Dikov, 0 . I. Yakovlev and F.Wlotzka: Experimental investigation of the role of water in the impact vaporization chemistry.
    [Show full text]