<<

The following supplement accompanies the article

Benthic trophic networks of the southern North Sea: contrasting soft-sediment communities share high food web similarity

Jan Steger*, Hendrik Pehlke, Benoit Lebreton, Thomas Brey, Jennifer Dannheim

*Corresponding author: [email protected]

Marine Ecology Progress Series 628: 17–36 (2019)

Supplement 1.

Section 1. Supplementary Table S1 and references used to characterize consumer diets

Table S1: Literature and data sources used for the identification of prey items and the feeding guild affinity of sampled taxa (target and additional taxa, see Materials and Methods section of the article for details). Information from citations within these publications has been included in the analysis if appropriate.

Species Code References

Phylum

Class

Metridiidae dianthus MED 1-5 Sagartiidae Sagartiidae SAG 3, 6, 7 Phylum Nemertea

Nemertea NEM 3, 8-18

Phylum Annelida

Class Polychaeta

Aphroditidae Aphrodita aculeata APA 3, 9, 11, 19, 20 Capitellidae Notomastus latericeus NOL 3, 11, 21, 22 Echiuridae Echiurus echiurus ECE 3, 16, 23 Goniadidae Goniada maculata GOM 21, 24 Magelonidae Magelona johnstoni MAJ 7, 11, 21, 25-27 Nephtyidae Nephtys assimilis NEA 3, 16, 21, 28 Nephtyidae Nephtys caeca NEC 3, 16, 21, 29-32 Nephtyidae Nephtys spp. NES 3, 7, 11, 16, 21, 26, 28-40 Oweniidae Owenia fusiformis OWF 19, 22, 41, 42 Spionidae Spiophanes bombyx SPB 29, 43, 44 Terebellidae Lanice conchilega LAC 3, 21, 29, 45, 46 Terebellidae Lysilla loveni LYL 46, 47 Phylum

Class

Arcticidae islandica ARI 48 Nuculidae Nucula nitidosa NUN 3, 11, 19, 49, 50 ENSI 19, 51 Pharidae Ensis sp. ENSP 11, 19, 51-53 Pharidae pellucidus PHP 3, 11, 19, 50 Semelidae ABA 3, 11, 26, 41, 54 Semelidae Abra nitida ABN 3, 55, 56 FAF 3, 11, 19, 54, 57

1 Veneridae CHG 3, 11, 50 Phylum Arthropoda

Class

Callianassidae Callianassa subterranea CAS 11, 58, 59 Cancridae Cancer pagurus CAP 9, 60-66 typicus PAT 67-69 Corystidae Corystes cassivelaunus COC 11, 70 Crangonidae Crangon crangon CRC 3, 32, 71-81 Crangonidae Crangon sp. CRS 3, 32, 71-82 Paguridae Pagurus bernhardus PAB 3, 11, 65, 74, 83-85 Polybiidae Liocarcinus holsatus LIH 74, 86 Urothoidae Urothoe poseidonis URP 11, 44, 87, 88 Phylum Phoronida

Phoronidae Phoronis spp. PHS 58, 89 Phylum Echinodermata

Class Asteroidea

Asteriidae Asterias rubens ASR 3, 11, 64, 90-94 Astropectinidae Astropecten irregularis ASI 11, 64, 92, 93, 95-99 Class Echinoidea

Loveniidae cordatum ECC 3, 11, 100-104 Class Ophiuroidea

Amphiuridae Amphiura filiformis AMF 3, 11, 26, 105-107 Ophiuridae Ophiura albida OPA 3, 32, 67, 93, 106, 108-110 Phylum Chordata

Class Actinopteri

Agonidae Agonus cataphractus AGC 76, 111-117 Ammodytidae Hyperoplus lanceolatus HYL 118-120 Bothidae Arnoglossus laterna ARL 121-137 Callionymidae Callionymus lyra CAL 64, 76, 114, 125, 137-143 3, 64, 76, 82, 111, 113, 116, 120, 134, Gadidae Merlangius merlangus MEM 137, 141, 144-154 Gobiidae Pomatoschistus minutus POMI 76, 113, 115-118, 134, 155-157 3, 9, 64, 76, 111, 116, 121, 124, 134, Pleuronectidae Limanda limanda LIL 137, 141, 143, 151, 153, 154, 158-171 3, 32, 76, 113, 118, 121, 151, 154, 155, Pleuronectidae Platichthys flesus PLF 166, 172-184 3, 9, 32, 64, 76, 111, 113, 121, 124, 137, Pleuronectidae Pleuronectes platessa PLP 141, 143, 151, 153, 158, 166-171, 177, 185-189 120, 126, 137, 142, 154, 168-170, 190 Scophthalmidae Scophthalmus rhombus SCR cited in 142, 191 114, 121, 124, 126, 127, 131-133, 136, Soleidae Buglossidium luteum BUL 137, 192, 193 76, 121, 127, 131-133, 137, 141, 151, Soleidae Solea solea SOS 154, 169-171, 177, 183, 187, 194-199 Triglidae Eutrigla gurnardus EUG 64, 111, 113, 120, 134, 137, 151, 154

2 References

(1) Sebens, K.P. & Koehl, M.A.R. (1984): Predation on by the benthic anthozoans Alcyonium siderium (Alcyonacea) and Metridium senile (Actiniaria) in the New England subtidal. Marine Biology 81(3): 255-271.(2) Purcell, J.E. (1977): The Diet of Large and Small Individuals of the Metridium senile. Bulletin of the Southern California Academy of Sciences 76(3): 168-172. (3) Blegvad, H. (1914): Food and conditions of nourishment among the communities of invertebrate found on or in the sea bottom in Danish waters. Report of the Danish Biological Station 22: 41-78. (4) Anthony, K.R.N. (1997): Prey Capture by the Sea Anemone Metridium senile (L.): Effects of Body Size, Flow Regime, and Upstream Neighbors. The Biological Bulletin 192(1): 73-86. (5) Shick, J.M. (1991): A Functional Biology of Sea Anemones. Chapman & Hall, London, New York, Tokyo, Melbourne, Madras. 395 pp. (6) Riemann-Zürneck, K. (1969): Sagartia troglodytes (Anthozoa): Biologie und Morphologie einer schlickbewohnenden Aktinie. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven 12: 169-230. (7) van Oevelen, D., Soetaert, K., Franco, M.A., Moodley, L., van IJzerloo, L., Vincx, M. & Vanaverbeke, J. (2009): Organic matter input and processing in two contrasting North Sea sediments: insights from stable isotope and biomass data. Marine Ecology Progress Series 380: 19-32. (8) Thiel, M. & Kruse, I. (2001): Status of the Nemertea as predators in marine ecosystems. Hydrobiologia 456: 21-32. (9) McDermott, J.J. (2001): Status of the Nemertea as prey in marine ecosystems. Hydrobiologia 456: 7-20. (10) McDermott, J.J. & Roe, P. (1985): Food, Feeding Behavior and Feeding Ecology of Nemerteans. American Zoologist 25: 113-125. (11) Hunt, O.D. (1925): The Food of the Bottom Fauna of the Plymouth Fishing Grounds. Journal of the Marine Biological Association of the United Kingdom 13(3): 560-599. (12) Jennings, J.B. & Gibson, R. (1969): Observations on the Nutrition of Seven Species of Rhynchocoelan Worms. The Biological Bulletin 136(3): 405-433. (13) Jennings, J.B. (1960): Observations on the Nutrition of the Rhynchocoelan Lineus ruber (O. F. Müller). The Biological Bulletin 119(2): 189-196. (14) McDermott, J.J. (1976): Observations on the Food and Feeding Behavior of Estuarine Nemertean Worms Belonging to the Order Hoplonemertea. The Biological Bulletin 150(1): 57-68. (15) Nordhausen, W. (1988): Impact of the nemertean Lineus viridis on its prey on an intertidal sandflat. Hydrobiologia 156: 39-46. (16) Hagmeier, A. & Künne, C. (1951): Die Nahrung der Meerestiere IV. Beziehungen der Ernährung zur Verbreitung der Arten und der Gemeinschaften der Bodentiere. In: Lübbert, H., Ehrenbaum, E. & Willer, A. (Eds.): Handbuch der Seefischerei Nordeuropas, Bd. 1, H. 5b. E. Schweizerbart'sche Verlagsbuchhandlung (Erwin Nägele), Stuttgart: 177-242. (17) Bartsch, I. (1975): Nahrung und Nahrungsaufnahme bei zwei Schnurwurm-(Nemertinen-) Arten. Mikrokosmos 1: 16-19. (18) Coe, W.R. (1943): Biology of the Nemerteans of the Atlantic Coast of North America. Transactions of the Conneticut Academy of Arts and Sciences 35: 129-328. (19) Le Pape, O., Baulier, L., Cloarec, A., Martin, J., Le Loc'h, F. & Désaunay, Y. (2007): Habitat suitability for juvenile common sole (Solea solea, L.) in the Bay of Biscay (France): A quantitative description using indicators based on epibenthic fauna. Journal of Sea Research 57(2-3): 126-136. (20) Mettam, C. (1980): On the Feeding Habits of Aphrodita aculeata and Commensal Polynoids. Journal of the Marine Biological Association of the United Kingdom 60(3): 833-834.

3 (21) Fauchald, K. & Jumars, P.A. (1979): The diet of worms: a study of polychaete feeding guilds. Oceanography and Marine Biology - An Annual Review 17: 193-284. (22) Martin, D., Pinedo, S. & Sardá, R. (2000): Distribution patterns and trophic structure of soft- bottom polychaete assemblages in a north-western Mediterranean shallow-water bay. Ophelia 53(1): 1-17. (23) Goto, R., Okamoto, T., Ishikawa, H., Hamamura, Y. & Kato, M. (2013): Molecular phylogeny of echiuran worms (Phylum: Annelida) reveals evolutionary pattern of feeding mode and sexual dimorphism. PloS One 8(2): e56809. (24) Mattson, S. (1981): Burrowing and Feeding of Goniada maculata Ørsted (Polychaeta). Sarsia 66(1): 49-51. (25) , M.L. (1968): On the morphology, feeding, and behavior of Magelona sp. The Biological Bulletin 134(2): 272-297. (26) Mare, M.F. (1942): A Study of a Marine Benthic Community with Special Reference to the Micro-Organisms. Journal of the Marine Biological Association of the United Kingdom 25(3): 517-554. (27) Mortimer, K. & Mackie, A.S.Y. (2014): Morphology, feeding and behaviour of British Magelona (Annelida: Magelonidae), with discussions on the form and function of abdominal lateral pouches. Memoirs of Museum 71: 177-201. (28) Rainer, S.F. (1991): Distribution, Growth and Production of Nephtys hombergii and N. assimilis (Polychaeta: Nephtyidae) in Benthic Communities of the North Sea. Bulletin of Marine Science 48(2): 330-345. (29) Hartmann-Schröder, G. (1996): Annelida, Borstenwürmer, Polychaeta. Gustav Fischer Verlag, Jena, 2nd volume. 648 pp. (30) Caron, A., Desrosiers, G., Olive, P.J.W., Retière, C. & Nozais, C. (2004): Comparison of diet and feeding activity of two , Nephtys caeca (Fabricius) and Nereis virens (Sars), in an estuarine intertidal environment in Québec, Canada. Journal of Experimental Marine Biology and Ecology 304(2): 225-242. (31) Wolff, W.J. (1973): The Estuary as a Habitat: An Analysis of Data on the Soft-Bottom Macrofauna of the Estuarine Area of the Rivers Rhine, Meuse and Scheldt. Brill, Leiden. 251 pp. (32) Rauschenplat, E. (1901): Über die Nahrung von Thieren aus der Kieler Bucht. Inaugural- Dissertation, Christian-Albrechts-Universität zu Kiel, Germany. 71 pp. (33) Olive, P.J.W., Garwood, P.R., Bentley, M.G. & , N. (1981): Reproductive Success, Relative Abundance and Population Structure of Two Species of Nephtys in an Estuarine Beach. Marine Biology 63(2): 189-196. (34) Beukema, J.J. (1987): Influence of the predatory polychaete Nephtys hombergii on the abundance of other polychaetes. Marine Ecology Progress Series 40: 95-101. (35) Braeckman, U., Provoost, P., Sabbe, K., Soetaert, K., Middelburg, J.J., Vincx, M. & Vanaverbeke, J. (2012): Temporal dynamics in the diet of two marine polychaetes as inferred from fatty acid biomarkers. Journal of Sea Research 68: 6-19. (36) , R.B. (1962): Observations on the Food of Nephtys. Limnology and Oceanography 7(3): 380-385. (37) Schubert, A. & Reise, K. (1986): Predatory effects of Nephtys hombergii on other polychaetes in tidal flat sediments. Marine Ecology Progress Series 34: 117-124. (38) Warwick, R.M. & Price, R. (1975): Macrofauna Production in an Estuarine Mud-Flat. Journal of the Marine Biological Association of the United Kingdom 55(1): 1-18. (39) Sanders, H.L. (1960): Benthic studies in Buzzards Bay. III. The structure of the soft-bottom community. Limnology and Oceanography 5(2): 138-153. (40) Walker, A.J.M. & Rees, E.I.S. (1980): Benthic Ecology of Dublin Bay in Relation to Sludge Dumping: Fauna. Irish Fisheries Investigations, Series B (Marine) 22: 1-59. (41) Braeckman, U., Provoost, P., Sabbe, K., Soetaert, K., Middelburg, J.J., Vincx, M. & Vanaverbeke, J. (2015): Temporal dynamics in a shallow coastal benthic food web: Insights from fatty acid biomarkers and their stable isotopes. Marine Environmental Research 108: 55- 68. 4 (42) Dales, R.P. (1957): The Feeding Mechanism and Structure of the Gut of Owenia fusiformis delle Chiaje. Journal of the Marine Biological Association of the United Kingdom 36(1): 81-89. (43) Dauer, D.M., Maybury, C.A. & Ewing, R.M. (1981): Feeding behavior and general ecology of several spionid polychaetes from the Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 54: 21-38. (44) Kröncke, I., Stoeck, T., Wieking, G. & Palojärvi, A. (2004): Relationship between structural and functional aspects of microbial and macrofaunal communities in different areas of the North Sea. Marine Ecology Progress Series 282: 13-31. (45) Buhr, K.-J. (1976): Suspension-Feeding and Assimilation Efficiency in Lanice conchilega (Polychaeta). Marine Biology 38: 373-383. (46) Jirkov, I.A. & Leontovich, M.K. (2013): Identification keys for Terebellomorpha (Polychaeta) of the eastern Atlantic and the North Polar Basin. Invertebrate Zoology 10(2): 217-243. (47) Fallesen, G. (1994): The ecology of macrozoobenthos in Århus Bay, Denmark. Dissertation, University of Stirling, Scotland, United Kingdom. 407 pp. (48) Josefson, A.B., Jensen, J.N., Nielsen, T.G. & Rasmussen, B. (1995): Growth parameters of a benthic suspension feeder along a depth gradient across the pycnocline in the southern Kattegat, Denmark. Marine Ecology Progress Series 125: 107-115. (49) Davis, J.P. & Wilson, J.G. (1985): The energy budget and population structure of Nucula turgida in Dublin Bay. The Journal of Ecology 54: 557-571. (50) Koulouri, P., Dounas, C., Arvanitidis, C., Koutsoubas, D. & Eleftheriou, A. (2006): Molluscan diversity along a Mediterranean soft bottom sublittoral ecotone. Scientia Marina 70(4): 573- 583. (51) Breen, M., Howell, T. & Copland, P. (2011): A report on electrical fishing for razor clams (Ensis sp.) and its likely effects on the marine environment. Marine Scotland Science Report, Aberdeen, Scotland. 117 pp. (52) Leavitt, D.F. (2010): Biology of the Atlantic Jacknife (Razor) Clam (Ensis directus Conrad, 1843). Northeastern Regional Aquaculture Center, Publication No. 217, Maryland, USA. 5 pp. (53) Gollasch, S., Kerckhof, F., Craeymeersch, J., Goulletquer, P., Jensen, K., Jelmert, A. & Minchin, D. (2015): Alien Species Alert: Ensis directus. Current status of invasions by the marine bivalve Ensis directus. ICES Cooperative Research Report, Copenhagen, Denmark. 32 pp. (54) Yonge, C.M. (1949): On the Structure and Adaptations of the Tellinacea, Deposit-Feeding Eulamellibranchia. Philosophical Transactions of the Royal Society of London B, Biological Sciences 234(609): 29-76. (55) Wikander, P.B. (1981): Quantitative aspects of deposit feeding in Abra nitida (Müller) and A. longicallus (Scacchi) (Bivalvia, Tellinacea). Sarsia 66(1): 35-48. (56) Grémare, A., Duchêne, J.C., Rosenberg, R., David, E. & Desmalades, M. (2004): Feeding behaviour and functional response of Abra ovata and A. nitida compared by image analysis. Marine Ecology Progress Series 267: 195-208. (57) Holme, N.A. (1961): Notes on the mode of life of the Tellinidae (Lamellibranchia). Journal of the Marine Biological Association of the United Kingdom 41: 699-703. (58) Macdonald, T.A., Burd, B.J., Macdonald, V.I. & van Roodselaar, A. (2010): Taxonomic and Feeding Guild Classification for the Marine Benthic Macroinvertebrates of the Strait of Georgia, British Columbia. Canadian Technical Report of Fisheries and Aquatic Sciences 2874, Fisheries and Oceans Canada, Ocean Sciences Division, Sidney, British Columbia, Canada. iv +63 pp. (59) Stamhuis, E.J., Dauwe, B. & Videler, J.J. (1998): How to bite the dust: morphology, motion pattern and function of the feeding appendages of the deposit-feeding thalassinid shrimp Callianassa subterranea. Marine Biology 132: 43-58. (60) Ness, J.P. (2014): Cadmium concentrations of macrofauna in the Salten region, northern . Master Thesis, University of Nordland, Bodø, Norway. 54 pp. (61) Lawton, P. (1989): Predatory interaction between the brachyuran crab Cancer pagurus and decapod prey. Marine Ecology Progress Series 52: 169-179.

5 (62) Woll, A.K. (2006): The edible crab: Biology - grading - handling live crabs. Møreforsking Ålesund, Ålesund, Norway. 32 pp. (63) Woll, A.K. & van der Meeren, G.I. (1997): Taskekrabben (Cancer pagurus) – biologi, næring og forvaltning. Rapport nr. Å9703. Møreforsking Ålesund, Ålesund, Norway. 63 pp. (64) Groenewold, S. & Fonds, M. (2000): Effects on benthic scavengers of discards and damaged benthos produced by the beam-trawl fishery in the southern North Sea. ICES Journal of Marine Science: Journal du Conseil 57(5): 1395-1406. (65) Lancaster, I. (1988): Pagurus bernhardus (L.)—an Introduction to the Natural History of Hermit Crabs. Field Studies 7: 189-238. (66) Hall, S.J., Basford, D.J., Robertson, M.R., Raffaelli, D.G. & Tuck, I. (1991): Patterns of recolonisation and the importance of pit-digging by the crab Cancer pagurus in a subtidal sand habitat. Marine Ecology Progress Series 72: 93-102. (67) Volbehr, U. & Rachor, E. (1997): The association between the caprellid Pariambus typicus Krøyer (Crustacea, ) and ophiuroids. Hydrobiologia 355: 71-76. (68) Guerra-García, J.M., de Figueroa, J.M.T., Navarro-Barranco, C., Ros, M., Sánchez-Moyano, J.E. & Moreira, J. (2014): Dietary analysis of the marine Amphipoda (Crustacea: Peracarida) from the Iberian Peninsula. Journal of Sea Research 85: 508-517. (69) Navarro-Barranco, C., Tierno-de-Figueroa, J.M., Guerra-García, J.M., Sánchez-Tocino, L. & García-Gómez, J.C. (2013): Feeding habits of amphipods (Crustacea: Malacostraca) from shallow soft bottom communities: Comparison between marine caves and open habitats. Journal of Sea Research 78: 1-7. (70) Hartnoll, R.G. (1972): The biology of the burrowing crab, Corystes cassivelaunus. Bijdragen tot de Dierkunde 42(2): 139-155. (71) Lloyd, A.J. & Yonge, C.M. (1947): The biology of Crangon vulgaris L. in the Bristol Channel and Severn Estuary. Journal of the Marine Biological Association of the United Kingdom 26(4): 626-661. (72) Oh, C.-W., Hartnoll, R.G. & Nash, R.D.M. (2001): Feeding ecology of the common shrimp Crangon crangon in Port Erin Bay, Isle of Man, Irish Sea. Marine Ecology Progress Series 214: 211-223. (73) Campos, J. (2009): The eco-geography of the brown shrimp Crangon crangon in Europe. Dissertation, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. 189 pp. (74) Ansell, A.D., Comely, C.A. & Robb, L. (1999): Distribution, movements and diet of macrocrustaceans on a Scottish sandy beach with particular reference to predation on juvenile fishes. Marine Ecology Progress Series 176: 115-130. (75) Pihl, L. & Rosenberg, R. (1984): Food selection and consumption of the shrimp Crangon crangon in some shallow marine areas in western Sweden. Marine Ecology Progress Series 15: 159-168. (76) Jayamanne, S.C. (1995): Population dynamics, Biology and Ecology of the caridean shrimps; Crangon crangon Linnaeus, Crangon allmanni Kinahan and Pandalus montagui Leach in the Estuary and Firth of Forth, Scotland. Dissertation, University of Stirling, Scotland, United Kingdom. 193 pp. (77) Plagmann, J. (1939): Ernährungsbiologie der Garnele (Crangon vulgaris Fabr.). Helgoländer Wissenschaftliche Meeresuntersuchungen 2(1): 113-162. (78) Pihl, L. (1990): Year-class strength regulation in plaice (Pleuronectes platessa L.) on the Swedish west coast. Hydrobiologia 195(1): 79-88. (79) Modin, J. & Pihl, L. (1996): Smallscale distribution of juvenile plaice and flounder in relation to predatory shrimp in a shallow Swedish bay. Journal of Fish Biology 49(6): 1070-1085. (80) van der Veer, H.W., Bergman, M.J.N., Dapper, R. & Witte, J.I.J. (1991): Population dynamics of an intertidal 0-group flounder Platichthys flesus population in the western Dutch Wadden Sea. Marine Ecology Progress Series 73: 141-148. (81) Ehrenbaum, E. (1890): Zur Naturgeschichte von Crangon vulgaris Fabr. Studien über Bau, Entwicklung, Lebensweise und Fangverhältnisse des Nordsee-Granat. Sonderbeilage zu den Mittheilungen der Sektion für Küsten- und Hochseefischerei, W. Moeser Hofbuchhandlung, Berlin: 1-124. 6 (82) Allen, J.A. (1960): On the biology of Crangon allmani Kinahan in Northumberland waters. Journal of the Marine Biological Association of the United Kingdom 39(3): 481-508. (83) Gerlach, S.A., Ekstrøm, D.K. & Eckardt, P.B. (1976): Filter Feeding in the Hermit Crab, Pagurus bernhardus. Oecologia 24: 257-264. (84) Ramsay, K., , M.J. & Hughes, R.N. (1996): Changes in hermit crab feeding patterns in response to trawling disturbance. Marine Ecology Progress Series 144: 63-72. (85) Orton, J.H. (1927): On the Mode of Feeding of the Hermit-crab, Eupagurus Bernhardus, and some other Decapoda. Journal of the Marine Biological Association of the United Kingdom (New Series) 14(4): 909-921. (86) Choy, S.C. (1986): Natural diet and feeding habits of the crabs Liocarcinus puber and L. holsatus (Decapoda, Brachyura, Portunidae). Marine Ecology Progress Series 31: 87-99. (87) Dubois, S., Marin-Léal, J.C., Ropert, M. & Lefebvre, S. (2007): Effects of oyster farming on macrofaunal assemblages associated with Lanice conchilega tubeworm populations: A trophic analysis using natural stable isotopes. Aquaculture 271(1): 336-349. (88) Lackschewitz, D. & Reise, K. (1998): Macrofauna on flood delta shoals in the Wadden Sea with an underground association between the lugworm Arenicola marina and the amphipod Urothoe poseidonis. Helgoländer Meeresuntersuchungen 52: 147-158. (89) Riisgård, H.U. (2002): Methods of ciliary filter feeding in adult Phoronis muelleri (phylum Phoronida) and in its free-swimming actinotroch . Marine Biology 141: 75-87. (90) Allen, P.L. (1983): Feeding behaviour of Asterias rubens (L.) on soft bottom bivalves: a study in selective predation. Journal of Experimental Marine Biology and Ecology 70: 79-90. (91) Anger, K., Rogal, U., Schriever, G. & Valentin, C. (1977): In-situ investigations on the Asterias rubens as a predator of soft-bottom communities in the western . Helgoländer Wissenschaftliche Meeresuntersuchungen 29(4): 439-459. (92) Jangoux, M. (1982): Food and feeding mechanisms: Asteroidea. In: Jangoux, M. & Lawrence, J.M. (Eds.): Echinoderm Nutrition. A.A. Balkema, Rotterdam: 117-159. (93) Eichelbaum, E. (1909): Über Nahrung und Ernährungsorgane von Echinodermen. Wissenschaftliche Meeresuntersuchungen, Abt. Kiel 11: 187-275. (94) Sloan, N.A. (1980): Aspects of the Feeding Biology of Asteroids. Oceanography and Marine Biology: An Annual Review 18: 57-124. (95) de Juan, S., Cartes, J.E. & Demestre, M. (2007): Effects of commercial trawling activities in the diet of the flat fish Citharus linguatula (Osteichthyes: Pleuronectiformes) and the Astropecten irregularis (Echinodermata: Asteroidea). Journal of Experimental Marine Biology and Ecology 349: 152-169. (96) Baeta, M. & Ramón, M. (2013): Feeding ecology of three species of Astropecten (Asteroidea) coexisting on shallow sandy bottoms of the northwestern Mediterranean Sea. Marine Biology 160(11): 2781-2795. (97) Freeman, S.M. (1999): The Ecology of Astropecten irregularis and its Potential Role as a Benthic Predator in Structuring a Soft-sediment Community. Dissertation, University of North Wales Bangor, Anglesey, Wales, United Kingdom. 268 pp. (98) Christensen, A.M. (1970): Feeding Biology of the Sea-Star Astropecten irregularis Pennant. Ophelia 8(1): 1-134. (99) Kisch, B.S. (1958): Astropecten irregularis precieux auxiliare du malacologiste. Bulletin du Centre d'Etudes et de Recherches Scientifiques Biarritz 2(1): 9-15. (100) Boon, A.R. & Duineveld, G.C.A. (2012): Phytopigments and fatty acids in the gut of the deposit-feeding heart urchin in the southern North Sea: Selective feeding and its contribution to the benthic carbon budget. Journal of Sea Research 67: 77-84. (101) Jenness, M.I. & Duineveld, G.C.A. (1985): Effects of tidal currents on chlorophyll a content of sandy sediments in the southern North Sea. Marine Ecology Progress Series 21: 283-287. (102) Buchanan, J.B. (1966): The biology of Echinocardium cordatum [Echinodermata: Spatangoidea] from different habitats. Journal of the Marine Biological Association of the United Kingdom 46(1): 97-114.

7 (103) De Ridder, C., Jangoux, M. & Van Impe, E. (1984): Food selection and absorption efficiency in the spatangoid echinoid Echinocardium cordatum (Echinodermata). Proceedings of the Fifth International Echinoderm Conference. Galway: 245-251. (104) De Ridder, C. & Jangoux, M. (1985): Origine des sédiments ingérés et durée du transit digestif chez l'oursin spatangide, Echinocardium cordatum (Pennant) (Echinodermata). Annales de l'Institut Océanographique, Paris 61: 51-58. (105) Loo, L.-O., Jonsson, P.R., Sköld, M. & Karlsson, Ö. (1996): Passive suspension feeding in Amphiura filiformis (Echinodermata: Ophiuroidea): feeding behaviour in flume flow and potential feeding rate of field populations. Marine Ecology Progress Series 139: 143-155. (106) Warner, G.F. (1982): Food and feeding mechanisms: Ophiuroidea. In: Jangoux, M. & Lawrence, J.M. (Eds.): Echinoderm Nutrition. A.A. Balkema, Rotterdam: 161-181. (107) Buchanan, J.B. (1964): A Comparative Study of Some Features of the Biology of Amphiura filiformis and Amphiura chiajei [Ophiuroidea] Considered in Relation to their Distribution. Journal of the Marine Biological Association of the United Kingdom 44(3): 565-576. (108) Boos, K., Gutow, L., Mundry, R. & Franke, H.-D. (2010): Sediment preference and burrowing behaviour in the sympatric brittlestars Ophiura albida Forbes, 1839 and Ophiura ophiura (Linnaeus, 1758) (Ophiuroidea, Echinodermata). Journal of Experimental Marine Biology and Ecology 393: 176-181. (109) Tyler, P. (1977): Seasonal variation and ecology of gametogenesis in the genus Ophiura (Ophiuroidea: Echinodermata) from the Bristol Channel. Journal of Experimental Marine Biology and Ecology 30: 185-197. (110) Wintzell, J. (1918): Bidrag till de Skandinaviska Ophiuridernas Biologi och Fysiologi. Dissertation, Uppsala, Sweden. 155 pp. (111) Krämer, P. (2008): Take it with a grain of sand. - Feeding of demersal fish in different soft bottom habitats. Diploma Thesis, Carl von Ossietzky University, Oldenburg, Germany. 65 pp. (112) Hostens, K. & Mees, J. (1999): The mysidfeeding guild of demersal fishes in the brackish zone of the Westerschelde estuary. Journal of Fish Biology 55: 704-719. (113) Gibson, R.N. & Robb, L. (1996): Piscine predation on juvenile fishes on a Scottish sandy beach. Journal of Fish Biology 49: 120-138. (114) Klimpel, S., Seehagen, A. & Palm, H.W. (2003): Metazoan parasites and feeding behaviour of four small-sized fish species from the central North Sea. Parasitology Research 91(4): 290- 297. (115) Kühl, H. (1961): Nahrungsuntersuchungen an einigen Fischen im Elbe-Mündungsgebiet. Berichte der Deutschen Wissenschaftlichen Kommission für Meeresforschung 16(2): 90-104. (116) Jansen, S. (2002): Das Räuber-Beutesystem juveniler Gadiden, Grundeln und Garnelen im Wattenmeer nördlich von Sylt. Dissertation, University of Hamburg, Germany. 154 pp. (117) Kühl, H. (1964): Protokolle zu den Nahrungsuntersuchungen an einigen Fischen der Elbmündung. Veröffentlichungen des Instituts für Küsten- und Binnenfischerei 32: 1-30. (118) Ustups, D., Uzars, D. & Müller-Karulis, B. (2007): Structure and Feeding Ecology of the Fish Community in the Surf Zone of the Eastern Baltic Latvian Coast. Proceedings of the Latvian Academy of Sciences. Section B 61(3): 20-30. (119) Macer, C.T. (1966): Sand eels (Ammodytidae) in the -western North Sea; their biology and fishery. Fishery Investigations, Series II 24(6): 1-57. (120) ICES (2010): ICES Stomach Dataset 2010, ICES, Copenhagen. ICES Cooperative Research Reports No. 164, No. 219 and IMARES (Institute for Marine Resources & Ecosystem Studies). http://www.ices.dk/marine-data/data-portals/Pages/Fish-stomach.aspx. Downloaded on: 09. February 2016. (121) De Groot, S.J. (1971): On the interrelationships between morphology of the alimentary tract, food and feeding behaviour in flatfishes (Pisces: Pleuronectiformes). Netherlands Journal of Sea Research 5(2): 121-196. (122) Avsar, D. (1994): Diel diet and feeding behavior of scaldfish (Arnoglossus laterna Walbaum, 1792) in the Bay of Mersin. Acta Adriatica 34(1): 89-101. (123) Karachle, P.K. & Stergiou, K.I. (2011): Feeding and ecomorphology of seven flatfish species in the North-North-West Aegean Sea, Greece. African Journal of Marine Science 33(1): 67-78. 8 (124) Schückel, S., Sell, A.F., Kröncke, I. & Reiss, H. (2012): Diet overlap among flatfish species in the southern North Sea. Journal of Fish Biology 80: 2571-2594. (125) Castro, N., Costa, J.L., Domingos, I. & Angélico, M.M. (2013): Trophic ecology of a coastal fish assemblage in Portuguese waters. Journal of the Marine Biological Association of the United Kingdom 93(5): 1151-1161. (126) Cabral, H.N., Lopes, M. & Loeper, R. (2002): Trophic niche overlap between flatfishes in a nursery area on the Portuguese coast. Scientia Marina 66(3): 293-300. (127) Darnaude, A.M., Harmelin-Vivien, M.L. & Salen-Picard, C. (2001): Food partitioning among flatfish (Pisces: Pleuronectiforms) juveniles in a Mediterranean coastal shallow sandy area. Journal of the Marine Biological Association of the United Kingdom 81(1): 119-127. (128) Fanelli, E., Badalamenti, F., D'Anna, G. & Pipitone, C. (2009): Diet and trophic level of scaldfish Arnoglossus laterna in the southern Tyrrhenian Sea (western Mediterranean): contrasting trawled versus untrawled areas. Journal of the Marine Biological Association of the United Kingdom 89(4): 817-828. (129) Gibson, R.N. & Ezzi, I.A. (1980): The biology of the scaldfish, Arnoglossus laterna (Walbaum) on the west coast of Scotland. Journal of Fish Biology 17(5): 565-575. (130) Bayhan, B., Sever, T.M. & Taskavak, E. (2008): Age, Length-Weight Relationships and Diet Composition of Scaldfish Arnoglossus laterna (Walbaum, 1792) (Pisces: Bothidae) in Izmir Bay (Aegean Sea). Journal of Animal and Veterinary Advances 7(8): 924-929. (131) Darnaude, A.M., Salen-Picard, C. & Harmelin-Vivien, M.L. (2004): Depth variation in terrestrial particulate organic matter exploitation by marine coastal benthic communities off the Rhone River delta (NW Mediterranean). Marine Ecology Progress Series 275: 47-57. (132) Darnaude, A.M., Salen-Picard, C., Polunin, N.V.C. & Harmelin-Vivien, M.L. (2004): Trophodynamic linkage between river runoff and coastal fishery yield elucidated by stable isotope data in the Gulf of Lions (NW Mediterranean). Oecologia 138(3): 325-332. (133) Darnaude, A.M. (2005): Fish ecology and terrestrial carbon use in coastal areas: implications for marine fish production. Journal of Animal Ecology 74(5): 864-876. (134) Gibson, R.N. & Ezzi, I.A. (1987): Feeding relationships of a demersal fish assemblage on the west coast of Scotland. Journal of Fish Biology 31(1): 55-69. (135) PauloMartins, C., Vinagre, C., Silva, A. & Cabral, H. (2011): Variation of diet and food consumption of the scaldfish Arnoglossus laterna (Walbaum, 1792). Journal of Applied Ichthyology 27(4): 977-983. (136) Schückel, S., Sell, A., Kröncke, I. & Reiss, H. (2011): Diet composition and resource partitioning in two small flatfish species in the German Bight. Journal of Sea Research 66(3): 195-204. (137) Quiniou, L. (1986): Les peuplements de poissons démersaux de la pointe de Bretagne : environnement, biologie, structure démographique, relations trophiques. Dissertation, Université de Bretagne Occidentale, Brest, France. 366 pp. (138) Griffin, R., Pearce, B. & Handy, R.D. (2012): Dietary preference and feeding selectivity of common dragonet Callionymus lyra in UK. Journal of Fish Biology 81: 1019-1031. (139) López-Jamar, E., Iglesias, J. & Otero, J.J. (1984): Contribution of infauna and mussel-raft epifauna to demersal fish diets. Marine Ecology Progress Series 15: 13-18. (140) King, P.A., Fives, J.M. & McGrath, D. (1994): Reproduction, Growth and Feeding of the Dragonet, Callionymus lyra (Teleostei: Callionymidae), in Galway Bay, Ireland. Journal of the Marine Biological Association of the United Kingdom 74(3): 513-526. (141) Duineveld, G.C.A. & Van Noort, G.J. (1986): Observations on the Population Dynamics of Amphiura filiformis (Ophiuroidea: Echinodermata) in the Southern North Sea and its Exploitation by the Dab, Limanda limanda. Netherlands Journal of Sea Research 20(1): 85-94. (142) van der Veer, H.W., Creutzberg, F., Dapper, R., Duineveld, G.C.A., Fonds, M., Kuipers, B.R., Van Noort, G.J. & Witte, J.I.J. (1990): On the Ecology of the Dragonet Callionymus lyra L. in the Southern North Sea. Netherlands Journal of Sea Research 26(1): 139-150. (143) Johnson, A.F. (2012): Determining the habitat requirements of demersal fish for the design of marine protected areas. Dissertation, University of Wales, Bangor, Wales, United Kingdom. 229 pp. 9 (144) Hislop, J.R.G., Robb, A.P., Bell, M.A. & Armstrong, D.W. (1991): The diet and food consumption of whiting (Merlangius merlangus) in the North Sea. ICES Journal of Marine Science: Journal du Conseil 48(2): 139-156. (145) Demain, D.K., Gallego, A., Jaworski, A., Priede, I.G. & Jones, E.G. (2011): Diet and feeding niches of juvenile Gadus morhua, Melanogrammus aeglefinus and Merlangius merlangus during the settlement transition in the northern North Sea. Journal of Fish Biology 79(1): 89- 111. (146) Malyshev, V.I. (1980): Evaluation of the Food Requirements of the North Sea Whiting, Odontogadus merlangus. Journal of Ichthyology 20: 68-74. (147) Patterson, K.R. (1985): The trophic ecology of whiting (Merlangius merlangus) in the Irish Sea and its significance to the Manx herring stock. Journal du Conseil, Conseil International pour l'Exploration de la Mer 42(2): 152-161. (148) Rindorf, A. (2003): Diel feeding pattern of whiting in the North Sea. Marine Ecology Progress Series 249: 265-276. (149) , S.D., Gislason, H., Andersen, N.G., Lewy, P. & Nielsen, J.R. (2016): The diet of whiting Merlangius merlangus in the western Baltic Sea. Journal of Fish Biology 88(5): 1965-1988. (150) Trenkel, V.M., Pinnegar, J.K., Dawson, W.A., du Buit, M.H. & Tidd, A.N. (2005): Spatial and temporal structure of predator-prey relationships in the Celtic Sea fish community. Marine Ecology Progress Series 299: 257-268. (151) Franz, V. (1910): Ueber die Ernährungsweise einiger Nordseefische, besonders der Scholle. Arbeiten der Deutschen wissenschaftlichen Kommission für die internationale Meeresforschung. B. Aus der Biologischen Anstalt auf Helgoland 14: 197-215. (152) Kühl, H. (1973): Nahrungsuntersuchungen an einigen Gadiden im Elbe-Mündungsgebiet. Archiv für Fischereiwissenschaft 24(1-3): 141-149. (153) Pihl, L. (1994): Changes in the Diet of Demersal Fish due to Eutrophication-Induced Hypoxia in the Kattegat, Sweden. Canadian Journal of Fisheries and Aquatic Sciences 51(2): 321-336. (154) Todd, R.A. (1907): Second Report on the Food of Fishes (North Sea, 1904-1905). Marine Biogical Association of the United Kingdom. Second Report on Fishery and Hydrographical Investigations in the North Sea and adjacent waters (Southern Area), 1904–1905 2(1): 49-163. (155) Złoch, I. & Sapota, M. (2010): Trophic interactions between preadult and adult Pomatoschistus minutus and Pomatoschistus microps and young Platichthys flesus occurring in inshore waters of the Gulf of Gdańsk (Southern Baltic). Oceanological and Hydrobiological Studies 39(2): 37- 53. (156) Hamerlynck, O. & Cattrijsse, A. (1994): The food of Pomatoschistus minutus (Pisces, Gobiidae) in Belgian coastal waters, and a comparison with the food of its potential competitor P. lozanoi. Journal of Fish Biology 44: 753-771. (157) Leitão, R., Martinho, F., Neto, J.M., Cabral, H., Marques, J.C. & Pardal, M.A. (2006): Feeding ecology, population structure and distribution of Pomatoschistus microps (Krøyer, 1838) and Pomatoschistus minutus (Pallas, 1770) in a temperate estuary, Portugal. Estuarine, Coastal and Shelf Science 66: 231-239. (158) Amezcua, F., Nash, R.D.M. & Veale, L. (2003): Feeding habits of the Order Pleuronectiformes and its relation to the sediment type in the north Irish Sea. Journal of the Marine Biological Association of the United Kingdom 83(3): 593-601. (159) Arntz, W.E. (1971): Die Nahrung der Kliesche (Limanda limanda [L.]) in der Kieler Bucht. Berichte der Deutschen Wissenschaftlichen Kommission für Meeresforschung 22: 129-183. (160) De Clerck, R. & Torreele, E. (1988): Feeding Habits of Common Dab (Limanda limanda L.) in the Southern North Sea. ICES, Demersal Fish Committee, C. M. 1988/G:26: 1-9. (161) Hinz, H., Kröncke, I. & Ehrich, S. (2005): The feeding strategy of dab Limanda limanda in the southern North Sea: linking stomach contents to prey availability in the environment. Journal of Fish Biology 67(Supplement B): 125-145. (162) Ursin, E. & Arntz, W.E. (1985): The stomach contents of dab (Limanda limanda) in the Baltic as indicator of different feeding strategies. ICES, Baltic Fish Committee, Ref. Demersal Fish Committee, C. M. 1985/J:7: 1-15.

10 (163) Kühl, H. (1963): Über die Nahrung der Scharbe (Limanda limanda L.). Archiv für Fischereiwissenschaft 14(1): 8-18. (164) Kühl, H. (1964): Protokolle zu den Nahrungsuntersuchungen an Scharben (Limanda limanda L.). 33: 1-27. (165) Knust, R. (1996): Food ecology of North Sea dab (Limanda limanda). Part I: Seasonal changes in food uptake and condition in the German Bight and on Dogger Bank. Archive of Fishery and Marine Research 44(1): 1-12. (166) Try, I. (2000): Mollusc Species in the Diets of Dab (Limanda limanda), Flounder (Platichthys flesus) and Plaice (Pleuronectes platessa) in Aarhus Bay, Denmark. Phuket Marine Biological Centre Special Publication 21(2): 39-46. (167) Johnson, A.F., Gorelli, G., Jenkins, S.R., Hiddink, J.G. & Hinz, H. (2015): Effects of bottom trawling on fish foraging and feeding. Proceedings of the Royal Society B: Biological Sciences 282(1799): 20142336. (168) Wyche, C.J. & Shackley, S.E. (1986): The feeding ecology of Pleuronectes platessa L., Limanda limanda (L.) and Scophthalmus rhombus (L.) in Carmarthen Bay, South Wales, UK. Journal of Fish Biology 29(3): 303-311. (169) Beyst, B., Cattrijsse, A. & Mees, J. (1999): Feeding ecology of juvenile flatfishes of the surf zone of a sandy beach. Journal of Fish Biology 55(6): 1171-1186. (170) Braber, L. & De Groot, S.J. (1973): The Food of Five Flatfish Species (Pleuronectiformes) in the Southern North Sea. Netherlands Journal of Sea Research 6(1-2): 163-172. (171) Jones, N.S. (1952): The Bottom Fauna and the Food of Flatfish off the Cumberland Coast. The Journal of Animal Ecology 21(2): 182-205. (172) Tallqvist, M., Sandberg-Kilpi, E. & Bonsdorff, E. (1999): Juvenile flounder, Platichthys flesus (L.), under hypoxia: effects on tolerance, ventilation rate and predation efficiency. Journal of Experimental Marine Biology and Ecology 242: 75-93. (173) Skerritt, D.J. (2010): A review of the European flounder Platichthys flesus - Biology, Life History and Trends in Population. Newcastle University: 1-13. (174) Aarnio, K., Bonsdorff, E. & Rosenback, N. (1996): Food and feeding habits of juvenile flounder Platichthys flesus (L.), and turbot Scophthalmus maximus L. in the Åland archipelago, northern Baltic Sea. Journal of Sea Research 36(3/4): 311-320. (175) Nissling, A., Jacobsson, M. & Hallberg, N. (2007): Feeding ecology of juvenile turbot Scophthalmus maximus and flounder Pleuronectes flesus at Gotland, Central Baltic Sea. Journal of Fish Biology 70: 1877-1897. (176) Bergstad, O.A. & Knutsen, J.A. (2004): Marine macro- and megafaunal communities of the Grenland fjords (SE Norway), and feeding patterns of Atlantic cod, flounder, anadromous brown trout and epipelagic fishes. Havforskningsinstituttet, Flødevigen. 40 pp. (177) Elliott, M. & Marshall, S. (2000): The biology of fishes in the Humber Estuary. Coastal Zone Topics: Process, Ecology & Management 4: 85-95. (178) Mendes, C.V.R. (2011): Feeding Ecology of European Flounder, Platichthys flesus, in the Lima Estuary (NW Portugal). Dissertation, Universidade do Porto, Portugal. 95 pp. (179) Moore, J.W. & Moore, I.A. (1976): The basis of food selection in flounders, Platichthys flesus (L.), in the Severn Estuary. Journal of Fish Biology 9(2): 139-156. (180) Munroe, T.A. (2010): Platichthys flesus, European Flounder. The IUCN Red List of Threatened Species 2010: e.T135717A4191586, http://dx.doi.org/10.2305/IUCN.UK.2010- 4.RLTS.T135717A4191586.en. 16 pp. Accessed on: 24. November 2016. (181) O´Farrell, D.P. (2012): Range expansion of European Flounder Platichthys flesus to Icelandic waters. A threat to native salmonids? Master Thesis, University of Akureyri, Ísafjörður, Iceland. 81 pp. (182) Summers, R.W. (1980): The Diet and Feeding Behaviour of the Flounder Platichthys flesus (L.) in the Ythan estuary, Aberdeenshire, Scotland. Estuarine and Coastal Marine Science 11(2): 217-232. (183) Vinagre, C., Franca, S., Costa, M.J. & Cabral, H.N. (2005): Niche overlap between juvenile flatfishes, Platichthys flesus and Solea solea, in a southern European estuary and adjacent coastal waters. Journal of Applied Ichthyology 21(2): 114-120. 11 (184) Mulicki, Z. (1947): The Food and Feeding Habit of the Flounder (Pleuronectes flesus L.) in the Gulf of Gdansk. Archiwum Hydrobiologii i Rybactwa 13: 221-259. (185) De Groot, S.J. (1964): Diurnal Activity and Feeding Habits of Plaice. Rapports et Procès- Verbaux des Réunions - International Council for the Exploration of the Sea 155: 48-51. (186) Rabaut, M., Calderón, M.A., Van de Moortel, L., van Dalfsen, J., Vincx, M., Degraer, S. & Desroy, N. (2013): The role of structuring benthos for juvenile flatfish. Journal of Sea Research 84: 70-76. (187) Rijnsdorp, A.D. & Vingerhoed, B. (2001): Feeding of plaice Pleuronectes platessa L. and sole Solea solea (L.) in relation to the effects of bottom trawling. Journal of Sea Research 45(3-4): 219-229. (188) Ritchie, A. (1938): Preliminary Observations on the Food of Plaice (Pleuronectes platessa) in Scottish waters. Rapports et Procès-Verbaux des Réunions - International Council for Exploration of the Sea 107(3): 49-56. (189) Basimi, R.Á. (1978): Feeding and Growth in an Inshore Population of Plaice, Pleuronectes platessa L. Dissertation, University of Wales, Anglesey, Wales, United Kingdom. 219 pp. (190) Wetsteijn, L.P.M.J. (1982): Een onderzoek naar de voedselopname van tarbot (Scophthalmus maximus L.) en griet (Scophthalmus rhombus L.) in de zuidelijke Noordzee. Rapport Rijksinstituut voor Visserijonderzoek ZE 82-02, Rijksinstituut voor Visserijonderzoek (RIVO), Ijmuiden, the Netherlands: 1-44. (191) Vinagre, C., Silva, A., Lara, M. & Cabral, H.N. (2011): Diet and niche overlap of southern populations of brill Scophthalmus rhombus and turbot Scophthalmus maximus. Journal of Fish Biology 79(5): 1383-1391. (192) Amara, R., Mahé, K., LePape, O. & Desroy, N. (2004): Growth, feeding and distribution of the solenette Buglossidium luteum with particular reference to its habitat preference. Journal of Sea Research 51(3-4): 211-217. (193) Nottage, A.S. & Perkins, E.J. (1983): The biology of solenette, Buglossidium luteum (Risso), in the Solway Firth. Journal of Fish Biology 22(1): 21-27. (194) Steven, G.A. (1930): Bottom fauna and the food of fishes. Journal of the Marine Biological Association of the United Kingdom (New Series) 16(3): 677-707. (195) Sá, R., Bexiga, C., Vieira, L., Veiga, P. & Erzini, K. (2003): Diets of the sole Solea vulgaris Quensel, 1806 and Solea senegalensis Kaup, 1858 in the lower estuary of the Guadiana River (Algarve, southern Portugal): Preliminary results. Boletín. Instituto Español de Oceanografía 19(1/4): 505-508. (196) Cabral, H.N. (2000): Comparative feeding ecology of sympatric Solea solea and S. senegalensis, within the nursery areas of the Tagus estuary, Portugal. Journal of Fish Biology 57(6): 1550-1562. (197) Lagardère, J.P. (1987): Feeding ecology and daily food consumption of common sole, Solea vulgaris Quensel, juveniles on the French Atlantic coast. Journal of Fish Biology 30(1): 91- 104. (198) Molinero, A. & Flos, R. (1992): Influence of season on the feeding habits of the common sole Solea solea. Marine Biology 113(3): 499-507. (199) Allen, B.M., King, P.A. & Fives, J.M. (2005): Food consumed by common sole Solea solea (L.) in Galway Bay, on the west coast of Ireland. The Irish Naturalists' Journal 28(4): 162-165.

12 Section 2. Supplementary Tables S2 & S3

Table S2: Stable isotope compositions (mean δ13C and δ15N values ± SD) of organic matter (OM) sources and consumers of the Amphiura filiformis community (AFC). Code: species code, n: number of replicates, TL (SIA): stable isotope-based trophic level, TL (PA): prey-averaged trophic level (only for target species), Guild: feeding guild — DF: deposit feeder, IF: interface feeder, OS: omnivore/scavenger, PS: predator/scavenger, SF: suspension feeder; POM: particulate organic matter, n.d.: not determined. Asterisks indicate additionally analyzed (i.e. non-target) taxa of the AFC.

Species Code n δ13C (‰) δ15N (‰) TL (SIA) TL (PA) Guild Organic matter sources Sediment OM — 3 -22.9 ± 0.2 6.8 ± 1.0 — 1.0 — Suspended POM — 3 -21.0 ± 0.3 6.3 ± 0.5 — 1.0 — Phylum Nemertea Nemertea NEM 5 -17.1 ± 0.5 13.4 ± 0.9 3.0 ± 0.3 4.0 PS Phylum Annelida Class Polychaeta Aphroditidae Aphrodita aculeata APA 5 -17.0 ± 0.7 15.1 ± 0.3 3.5 ± 0.1 3.6 PS Capitellidae Notomastus latericeus NOL 2 -17.5 ± 0.0 12.3 ± 0.4 2.7 ± 0.1 2.0 DF Echiuridae Echiurus echiurus ECE 2 -17.7 ± 0.0 9.9 ± 0.2 2.0 ± 0.1 2.0 DF Nephtyidae Nephtys spp. NES 4 -16.1 ± 0.9 13.9 ± 1.1 3.2 ± 0.3 3.0 OS Oweniidae Owenia fusiformis OWF 3 -18.6 ± 0.1 13.6 ± 0.4 3.1 ± 0.1 2.0 IF Terebellidae Lanice conchilega LAC 3 -18.6 ± 0.2 10.9 ± 0.5 2.3 ± 0.1 2.0 IF Terebellidae Lysilla loveni LYL 1 -17.7 10.6 2.2 2.0 DF Phyum Mollusca Class Bivalvia Arcticidae * ARI 1 -17.6 11.6 2.5 n.d. SF Nuculidae Nucula nitidosa NUN 3 -19.0 ± 0.1 10.8 ± 0.3 2.3 ± 0.1 2.0 DF Pharidae * PHP 4 -18.3 ± 0.3 9.4 ± 0.7 1.8 ± 0.2 n.d. SF Semelidae Abra alba ABA 6 -17.9 ± 0.3 10.0 ± 0.4 2.0 ± 0.1 2.0 IF Semelidae Abra nitida ABN 3 -17.8 ± 0.2 9.9 ± 0.2 2.0 ± 0.1 2.0 IF Veneridae Chamelea gallina* CHG 3 -18.7 ± 0.1 10.4 ± 0.6 2.1 ± 0.2 n.d. SF Phylum Arthropoda Class Malacostraca Callianassidae Callianassa subterranea CAS 6 -19.5 ± 0.4 10.6 ± 0.2 2.2 ± 0.1 2.0 DF Cancridae Cancer pagurus* CAP 1 -16.7 15.8 3.7 n.d. PS Caprellidae Pariambus typicus* PAT 1 -16.8 10.9 2.3 n.d. OS Crangonidae Crangon crangon CRC 3 -16.2 ± 0.6 15.3 ± 0.6 3.6 ± 0.2 3.5 OS Crangonidae Crangon sp. CRS 1 -15.9 15.0 3.5 3.6 OS Paguridae Pagurus bernhardus PAB 5 -16.2 ± 0.1 14.7 ± 0.4 3.4 ± 0.1 3.3 OS Polybiidae Liocarcinus holsatus LIH 3 -18.0 ± 0.7 14.4 ± 0.1 3.3 ± 0.0 3.5 PS Phylum Phoronida Phoronidae Phoronis spp. PHS 5 -18.4 ± 0.5 10.3 ± 1.0 2.1 ± 0.3 2.0 SF Phylum Echinodermata Class Asteroidea Asteriidae Asterias rubens ASR 5 -15.8 ± 1.1 14.3 ± 0.5 3.3 ± 0.1 3.6 PS Astropectinidae Astropecten irregularis ASI 4 -17.6 ± 0.6 14.5 ± 1.0 3.3 ± 0.3 3.5 PS Class Echinoidea Echinocardium cordatum ECC 5 -17.6 ± 0.9 11.8 ± 0.5 2.6 ± 0.1 2.0 DF Class Ophiuroidea Amphiuridae Amphiura filiformis AMF 5 -19.3 ± 0.2 12.0 ± 0.3 2.6 ± 0.1 2.0 IF Ophiuridae Ophiura albida OPA 7a -17.8 ± 1.0 13.5 ± 1.0 3.1 ± 0.3 3.0 OS Phylum Chordata Class Actinopteri Agonidae Agonus cataphractus AGC 3 -15.9 ± 0.3 17.0 ± 0.5 4.1 ± 0.2 3.6 PS Bothidae Arnoglossus laterna ARL 3 -18.1 ± 0.5 15.7 ± 1.5 3.7 ± 0.4 3.6 PS Callionymidae Callionymus lyra CAL 3 -18.0 ± 0.6 15.4 ± 0.7 3.6 ± 0.2 3.7 PS Gadidae Merlangius merlangus MEM 6 -17.5 ± 0.7 17.6 ± 0.5 4.2 ± 0.1 4.0 PS Gobiidae Pomatoschistus minutus POMI 3 -18.3 ± 0.9 16.0 ± 0.4 3.8 ± 0.1 4.0 PS Pleuronectidae Limanda limanda LIL 3 -16.8 ± 0.2 16.2 ± 0.3 3.8 ± 0.1 3.8 PS Pleuronectidae Platichthys flesus PLF 2 -14.7 ± 1.2 17.3 ± 1.2 4.2 ± 0.3 3.7 PS Scophthalmidae Scophthalmus rhombus SCR 1 -18.2 17.3 4.2 4.0 PS Soleidae Buglossidium luteum BUL 4 -18.8 ± 0.6 15.3 ± 0.7 3.6 ± 0.2 3.6 PS Soleidae Solea solea SOS 2 -16.9 ± 1.2 16.5 ± 0.2 3.9 ± 0.1 3.8 PS Triglidae Eutrigla gurnardus EUG 3 -18.1 ± 0.5 15.8 ± 0.9 3.7 ± 0.3 4.0 PS a δ13C values only available for n-1 replicates

13 Table S3: Stable isotope compositions (mean δ13C and δ15N values ± SD) of organic matter (OM) sources and consumers of the Bathyporeia- community (BTC). Code: species code, n: number of replicates, TL (SIA): stable isotope-based trophic level, TL (PA): prey-averaged trophic level (only for target species), Guild: feeding guild — DF: deposit feeder, IF: interface feeder, OS: omnivore/scavenger, PS: predator/scavenger, SF: suspension feeder; POM: particulate organic matter, n.d.: not determined. Asterisks indicate additionally analyzed (i.e. non-target) taxa of the BTC.

Species Code n δ13C (‰) δ15N (‰) TL (SIA) TL (PA) Guild Organic matter sources Sediment OM — 3 -21.7 ± 0.2 5.8 ± 0.6 — 1.0 — Suspended POM — 5 -19.3 ± 0.7 6.4 ± 0.1 — 1.0 — Phylum Cnidaria Class Anthozoa Metridium dianthus MED 5 -18.6 ± 0.2 15.9 ± 0.4 3.9 ± 0.1 3.8 PS Sagartiidae Sagartiidae SAG 4 -18.7 ± 0.2 15.3 ± 0.3 3.7 ± 0.1 3.2 OS Phylum Nemertea Nemertea NEM 3 -17.3 ± 0.4 14.7 ± 0.3 3.5 ± 0.1 3.5 PS Phylum Annelida Class Polychaeta Goniadidae Goniada maculata GOM 2 -18.1 ± 0.1 16.6 ± 1.1 4.1 ± 0.3 3.0 PS Magelonidae Magelona johnstoni MAJ 3 -18.0 ± 0.2 11.1 ± 0.1 2.5 ± 0.0 2.0 IF Nephtyidae Nephtys assimilis NEA 2 -15.9 ± 0.6 14.7 ± 0.1 3.5 ± 0.0 3.5 PS Nephtyidae Nephtys caeca NEC 4 -15.1 ± 0.8 15.4 ± 0.8 3.7 ± 0.2 3.4 PS Nephtyidae Nephtys spp. NES 3 -16.7 ± 0.1 14.6 ± 0.4 3.5 ± 0.1 3.3 OS Spionidae Spiophanes bombyx SPB 2 -17.9 ± 0.0 11.0 ± 0.4 2.4 ± 0.1 2.0 IF Terebellidae Lanice conchilega LAC 3 -17.0 ± 0.4 10.4 ± 0.6 2.2 ± 0.2 2.0 IF Phylum Mollusca Class Bivalvia Pharidae Ensis siliqua ENSI 2 -17.4 ± 0.1 11.6 ± 0.2 2.6 ± 0.1 2.0 SF Pharidae Ensis sp. ENSP 1 -16.9 11.3 2.5 2.0 SF Pharidae Phaxas pellucidus PHP 2 -17.8 ± 0.2 9.1 ± 0.2 1.8 ± 0.1 2.0 SF Semelidae Abra alba* ABA 1 -17.1 9.6 2.0 n.d. IF Tellinidae Fabulina fabula FAF 5 -17.1 ± 0.4 9.9 ± 0.4 2.1 ± 0.1 2.0 IF Veneridae Chamelea gallina CHG 3a -18.2 ± 0.3 9.8 ± 0.6 2.1 ± 0.2 2.0 SF Phylum Arthropoda Class Malacostraca Cancridae Cancer pagurus* CAP 3 -16.5 ± 0.2 16.4 ± 0.9 4.0 ± 0.3 n.d. PS Corystidae Corystes cassivelaunus COC 5 -17.1 ± 0.2 14.2 ± 0.7 3.3 ± 0.2 3.4 PS Crangonidae Crangon crangon CRC 3 -15.9 ± 0.7 15.1 ± 0.3 3.6 ± 0.1 3.6 OS Polybiidae Liocarcinus holsatus LIH 4 -17.4 ± 0.5 13.7 ± 0.7 3.2 ± 0.2 3.7 PS Urothoidae Urothoe poseidonis URP 2 -16.7 ± 0.3 14.3 ± 0.4 3.4 ± 0.1 2.0 DF Phylum Phoronida Phoronidae Phoronis spp. PHS 8 -18.0 ± 0.2 10.9 ± 0.8 2.4 ± 0.2 2.0 SF Phylum Echinodermata Class Asteroidea Asteriidae Asterias rubens ASR 3 -16.6 ± 1.2 14.8 ± 0.9 3.5 ± 0.3 3.7 PS Astropectinidae Astropecten irregularis ASI 5a -16.6 ± 0.9 14.9 ± 1.1 3.5 ± 0.3 3.6 PS Class Echinoidea Loveniidae Echinocardium cordatum ECC 3 -16.9 ± 1.0 12.7 ± 0.4 2.9 ± 0.1 2.0 DF Phylum Chordata Class Actinopteri Agonidae Agonus cataphractus AGC 2 -16.0 ± 0.4 16.8 ± 0.1 4.1 ± 0.0 3.6 PS Ammodytidae Hyperoplus lanceolatus HYL 4 -18.2 ± 0.4 14.8 ± 0.8 3.5 ± 0.2 4.1 PS Bothidae Arnoglossus laterna ARL 5 -18.0 ± 0.5 15.1 ± 1.4 3.6 ± 0.4 3.8 PS Callionymidae Callionymus lyra CAL 6 -17.6 ± 0.8 15.3 ± 0.6 3.7 ± 0.2 3.7 PS Gadidae Merlangius merlangus MEM 3 -17.5 ± 0.5 17.7 ± 0.1 4.4 ± 0.0 4.0 PS Gobiidae Pomatoschistus minutus POMI 3 -17.0 ± 0.1 16.0 ± 0.2 3.8 ± 0.1 3.9 PS Pleuronectidae Limanda limanda LIL 4 -16.9 ± 0.4 15.6 ± 0.4 3.8 ± 0.1 3.9 PS Pleuronectidae Pleuronectes platessa PLP 3 -16.2 ± 1.0 16.2 ± 1.1 3.9 ± 0.3 3.9 PS Soleidae Buglossidium luteum BUL 4 -18.1 ± 0.8 16.0 ± 0.8 3.9 ± 0.2 3.7 PS Triglidae Eutrigla gurnardus EUG 3 -17.5 ± 0.5 17.1 ± 0.5 4.2 ± 0.1 4.2 PS a δ13C values only available for n-1 replicates

14 Section 3. Supplementary Figs. S1–S3

Fig. S1. Stable isotope compositions (δ13C vs. δ15N values in ‰, bivariate mean and 95 % confidence ellipse) of feeding guilds (target species and additional taxa) of the Amphiura filiformis community (AFC, black dots and solid black ellipses) and Bathyporeia-Tellina community (BTC, grey dots and dashed grey ellipses). DF: deposit feeders, IF: interface feeders, OS: omnivores/scavengers, PS: predators/scavengers, SF: suspension feeders.

15

Fig. S2. The benthic food web of the Amphiura filiformis community at station AF, consisting of sampled target species and their trophic links (confirmed interactions and links inferred from average predator–prey body mass ratios, see Materials and Methods section of the main article for details). Species are arranged vertically according to their prey-averaged trophic levels (numbers on the left). Cannibalistic species are marked with an asterisk. OM: organic matter, POM: particulate organic matter.

16

Fig. S3. The benthic food web of the Bathyporeia-Tellina community at station BT, consisting of sampled target species and their trophic links (confirmed interactions and links inferred from average predator–prey body mass ratios, see Materials and Methods section of the main article for details). Species are arranged vertically according to their prey-averaged trophic levels (numbers on the left). Cannibalistic species are marked with an asterisk. OM: organic matter, POM: particulate organic matter.

17