GENERAL AGREEMENT ONTBT/Notif.87.12024 August 1987 TARIFFS and TRADE Special Distribution

Total Page:16

File Type:pdf, Size:1020Kb

GENERAL AGREEMENT ONTBT/Notif.87.12024 August 1987 TARIFFS and TRADE Special Distribution RESTRICTED GENERAL AGREEMENT ONTBT/Notif.87.12024 August 1987 TARIFFS AND TRADE Special Distribution Committee on Technical Barriers to Trade NOTIFICATION The following notification is being circulated in accordance with Article 10.4. 1. Party to Agreement notifying: CANADA 2. Agency responsible: Department of Transport 3. Notified under Article 2.5.2 X, 2.6.1 ,7.3.2 ,7.4.1 , Other: 4. Products covered (CCCN where applicable, otherwise national tariff heading): Dangerous goods 5. Title: Proposed Amendment to the Trarsportation of Dangerous Goods Regulations 6. Description of content: The current Part VT of the Transportation of Dangerous Goods Regulations is being amended to include safety standards for the manufacturing, testing, requalification and application of safety marks (specification marks and certification marks) for packaging, cylinders and tubes, 7. Objective and rationale: Public safety 8. Relevant documents: Canada Gazette, Part I, 8 August 1987, pages 2682-2692 9. Proposed dates of adoption and entry into force: Not stated 10. Final date for comments: 6 December 1987 11. Texts available from: National enquiry point X or address of other body: 87-1271 - i - PROBLEMS OF TRADE IN CERTAIN NATURAL RESOURCE PRODUCTS Background Study on Aluminium and Aluminium Products Any enquiries should be addressed to Mrs. Alena Sindelar, Development Division, GATT secretariat, who was responsible for this study. Published by the General Agreement on Tariffs and Trade June 1987 87-1277 - iii - Table of Contents Page INTRODUCTION 1 SUMMARY 2 SECTION I: MAIN FEATURES OF THE ALUMINIUM INDUSTRY 5 Properties of aluminium 5 World bauxite reserves 5 Processing 7 Bauxite processing 7 Alumina refining 7 Aluminium smelting 8 Re-cycling 9 Industrial applications of aluminium and alumina 11 Substitution 13 Structure of the industry 14 SECTION II: PRODUCTION, CONSUMPTION AND PRICES 21 Bauxite production 21 Alumina production 27 Primary aluminium production 29 Secondary aluminium production 31 World production of semi-manufactures and castings 32 Consumption of primary aluminium 32 Prices and stocks 43 Bauxite 45 Alumina 46 Aluminium 49 Stocks 50 Demand and supply elasticities 54 SECTION III: INTERNATIONAL TRADE 60 Trade in bauxite 60 Trade in alumina 64 Trade in aluminium metal 65 Direction of trade 70 - iv - Page SECTION IV: COMMERCIAL POLICY SITUATION 75 Tokyo Round negotiations: tariff assessment 75 Trade in aluminium and aluminium products under different tariff treatment and according to stages of processing 78 Developed countries 78 Individual developed-country profiles 80 Developing countries 110 Individual developing-country profiles 111 Tariff escalation and effective tariff protection 136 Non-tariff measures 137 SECTION V: ACTIVITIES IN OTHER INTERNATIONAL ORGANIZATIONS 150 The International Bauxite Association (IBA) 150 The Integrated Programme for Commodites in UNCTAD 151 The European Aluminium Association 151 The International Primary Aluminium Institute 151 Other Associations 152 OBSERVATIONS 153 Annex I: Summary of pre-Tokyo and post-Tokyo 155-169 Round tariff situation affecting aluminium and aluminium products Annex II: The Harmonized System of Commodity 170-176 description and classification of aluminium and aluminium products - v - List of Tables Page 1. WORLD ALUMINIUM RESERVES, 1985 ESTIMATES 6 2. WORLD PRODUCTION OF ALUMINIUM, 1960-1984 (IN THOUSANDS OF METRIC TONS) 23 3. WORLD PRODUCTION OF ALUMINIUM, 1960-1984 (AS A PERCENTAGE OF WORLD PRODUCTION) 24 4. ALUMINIUM SCRAP RECOVERY, 1960-1984 33 5. RELATIONSHIP OF ALUMINIUM RECOVERY AND TOTAL ALUMINIUM CONSUMPTION FOR SELECTED COUNTRIES, 1960-1984 34 6. WORLD PRODUCTION OF SEMI-MANUFACTURES AND CASTINGS, 1970-1984 35 7. WORLD CONSUMPTION OF PRIMARY ALUMINIUM, 1960-1984 38 8. WORLD CONSUMPTION OF PRIMARY ALUMINIUM BY USE, 1984 41 9. BAUXITE PRICES, 1950-1985 47 10. ALUMINIUM PRICES, 1950-1985 51 11. WORLD STOCKS OF PRIMARY ALUMINIUM, 1960-1985 53 12. BAUXITE/ALUMINIUM ELASTICITIES 55 13. TRENDS IN INCOME ELASTICITY 55 14. WORLD EXPORTS OF BAUXITE AND ALUMINA, 1960-1984 61 15. WORLD IMPORTS OF BAUXITE AND ALUMINA, 1960-1984 63 16. WORLD EXPORTS OF PRIMARY ALUMINIUM, 1960-1984 67 17. WORLD IMPORTS OF PRIMARY ALUMINIUM, 1960-1984 68-69 18. DIRECTION OF TRADE BY MAIN EXPORTERS OF BAUXITE, ALUMINA AND ALUMINIUM, 1984 71 19. DIRECTION OF TRADE BY MAIN IMPORTERS OF BAUXITE, ALUMINA AND ALUMINIUM, 1984 73 - vi - Page 20. PRE-TOKYO ROUND AND POST-TOKYO ROUND TARIFFS IN NINE DEVELOPED-COUNTRY MARKETS 76 21. SUMMARY OF TRADE IN ALUMINIUM AND ALUMINIUM PRODUCTS UNDER DIFFERENT TARIFF TREATMENTS 79 22. AUSTRALIA 81 23. AUSTRIA 84 24. CANADA 86 25. EEC 88 26. FINLAND 91 27. HUNGARY 92 28. ICELAND 94 29. JAPAN 96 30. NEW ZEALAND 97 31. NORWAY 99 32. PORTUGAL 101 33. SOUTH AFRICA 103 34. SPAIN 104 35. SWEDEN 107 36. SWITZERLAND 108 37. UNITED STATES 109 38. ARGENTINA 112 39. BRAZIL 114 40. COLOMBIA 116 41. HONG KONG 117 42. INDIA 119 - vii - Page 43. INDONESIA 120 44. ISRAEL 122 45. KOREA, REP. OF 124 46. MALAYSIA 125 47. MOROCCO 127 48. PHILIPPINES 128 49. SINGAPORE 130 50. THAILAND 131 51. TURKEY 133 52. YUGOSLAVIA 134 53. ALUMINIUM AND ALUMINIUM PRODUCTS M.F.N. TARIFF TREATMENT ACCORDING TO DIFFERENT STAGES OF PROCESSING IN THE FOLLOWING COUNTRIES: CAMEROON, CHILE, CZECHOSLOVAKIA, EGYPT, GHANA, JAMAICA, NIGERIA, PERU, POLAND, ROMANIA, TANZANIA, TUNISIA, URUGUAY, ZAIRE 135 54. NON-TARIFF MEASURES AFFECTING ALUMINIUM AND ALUMINIUM PRODUCTS 138-144 - viii - List of Charts Page CHART I: PRIMARY AND SECONDARY ALUMINIUM PRODUCTION FLOWS 10 CHART II: RAW MATERIALS AND PROCESSES REQUIRED TO PRODUCE ONE TON OF ALUMINIUM 12 CHART III: WORLD PRODUCTION OF BAUXITE, 1960 AND 1984 25 CHART IV: WORLD PRODUCTION OF ALUMINA, 1960 AND 1984 25 CHART V: WORLD PRODUCTION OF PRIMARY ALUMINIUM, 1960 AND 1984 25 CHART VI: WORLD CONSUMPTION OF PRIMARY ALUMINIUM BY COUNTRY, 1960 AND 1984 37 CHART VII: CONSUMPTION OF PRIMARY ALUMINIUM BY USE, 1984 37 CHART VIII: WORLD PRODUCTION AND CONSUMPTION OF ALUMINIUM, 1960-1984 44 CHART IX: BAUXITE PRICES, 1.950-1984 48 CHART X: ALUMINIUM PRICES, 1950-1984 52 - 1 - INTRODUCTION The present study on aluminium forms a part of the series of factual background papers prepared by the GATT secretariat on non-ferrous metals. These studies were undertaken in accordance with the Decision taken by Ministers at the Thirty-Eighth Session of the CONTRACTING PARTIES in November 1982 in relation to Problems of Trade in Certain Natural Resource Products. The Decision called for the examination of problems relating to trade in certain natural resource products including in their semi- processed and processed forms, falling under the competence of the General Agreement relating to tariffs, non-tariff measures and other factors affecting trade with a view to recommending possible solutions. This study provides information on aluminium and aluminium products, covering the following CCCN positions: ex 26.01, ex 26.03, 28.20, ex 28.29, ex 28.30, ex 28.38, ex 28.47, ex 73.02, ex 85.23 and positions included in Chapter 76. Section I gives some background information on the salient features of the aluminium industry. Section II briefly reviews developments with regard to world aluminium production, consumption and prices since 1960. Section ITI presents information on trade flows in bauxite, alumina and aluminium. Section IV provides detailed information on trade flows on a tariff line basis, together with tariff treatment in developed-country markets as well as some developing countries. It also provides information on non-tariff measures affecting aluminium and aluminium products. Section V describes the activities in other international organizations related to aluminium. - 2 - SUMMARY 1. The special properties of aluminium and its alloys, the relatively stable prices, together with a vigorous research and marketing effort by the major aluminium companies, enabled aluminium to replace many competing materials and encouraged its use across diverse industries. This resulted in the strong growth of aluminium production and consumption over the past several decades and aluminium has become the most widely used metal after iron and steel. 2. Most of the world's reserves of bauxite, the principal raw material for aluminium, are located in developing countries and Australia. First, bauxite is processed into alumina at refineries, and the latter product is converted into aluminium in electrolytic smelters. In addition, there are also smelters that process new and used aluminium scrap into secondary aluminium. Minor amounts of bauxite and alumina are consumed by the refractory, abrasive and chemical industries. 3. Though the structure of the aluminium industry has changed since the last decade, six transnational corporations - Alcoa, Alcan, Kaiser, Reynolds, Pechiney and Alusuisse - still have the leading position in the industry. They have been associated with many new projects because of their trade links, the proprietory technology, and their ability to provide for the large investment requirements and reap the economies of scale. However, the formation of independent companies integrating backwards and forwards, the desire on the part of developing countries to control their resources, and the increase in State ownership in the industry, have had important consequences for its structure. The energy crisis in 1973-74 and the subsequent increase in costs has been another factor contributing to this change. 4. Until 1950, the entire production cycle of aluminium remained concentrated principally
Recommended publications
  • Characteristics of Al-Si Alloys with High Melting Point Elements for High Pressure Die Casting
    materials Article Characteristics of Al-Si Alloys with High Melting Point Elements for High Pressure Die Casting Tomasz Szymczak 1,* , Grzegorz Gumienny 1,* , Leszek Klimek 2 , Marcin Goły 3 , Jan Szymszal 4 and Tadeusz Pacyniak 1 1 Department of Materials Engineering and Production Systems, Lodz University of Technology, 90-924 Lodz, Poland; [email protected] 2 Institute of Materials Science and Engineering, Lodz University of Technology, 90-924 Lodz, Poland; [email protected] 3 Department of Physical & Powder Metallurgy, AGH University of Science and Technology, 30-059 Krakow, Poland; [email protected] 4 Department of Technical Sciences and Management, University of Occupational Safety Management in Katowice, 40-007 Katowice, Poland; [email protected] * Correspondence: [email protected] (T.S.); [email protected] (G.G.); Tel.: +48-426312276 (T.S.); +48-426312264 (G.G.) Received: 9 October 2020; Accepted: 29 October 2020; Published: 29 October 2020 Abstract: This paper is devoted to the possibility of increasing the mechanical properties (tensile strength, yield strength, elongation and hardness) of high pressure die casting (HPDC) hypoeutectic Al-Si alloys by high melting point elements: chromium, molybdenum, vanadium and tungsten. EN AC-46000 alloy was used as a base alloy. The paper presents the effect of Cr, Mo, V and W on the crystallization process and the microstructure of HPDC aluminum alloy as well as an alloy from the shell mold. Thermal and derivative analysis was used to study the crystallization process. The possibility of increasing the mechanical properties of HPDC hypoeutectic alloy by addition of high-melting point elements has been demonstrated.
    [Show full text]
  • Metallurgical Abstracts (General and Non-Ferrous)
    METALLURGICAL ABSTRACTS (GENERAL AND NON-FERROUS) Volume 2 1935 Part 13 I —PROPERTIES OF METALS (Continued from pp. 553-568.) Refined Aluminium. Robert GaDeau (Metallurgist (Suppt. to Engineer), 1936, 11, 94-96).—Summary of a paper presenteD to the Congrès Inter­ nationale Des Mines, De la Métallurgie, et De la Géologie Appliquée, Paris. See Met. Abs., this vol., pp. 365 anD 497.—R. G. _ On the Softening and Recrystallization of Pure Aluminium. ------ (A lu­ minium, 1935, 17, 575-576).—A review of recent work of Calvet anD his collaborators ; see Met. Abs., this vol., pp. 453, 454. A. R. P. *Some Optical Observations on the Protective Films on Aluminium in Nitric, Chromic, and Sulphuric Acids. L. TronstaD anD T. HbverstaD (Trans. Faraday Soc., 1934, 30, 362-366).—The optical properties of natural films on aluminium were measureD in various solutions anD their change with time of immersion observeD. Little change occurs in such films in chromic aciD solutions with or without chloriDe ; the films are not protective in concentrateD sulphuric aciD, anD in concentrateD nitric aciD the protective films are alternately DissolveD anD re-formeD. The mean thickness of natural films on aluminium is 100 p. or more than 10 times as thick as those on iron.—A. R. P. *Light from [Burning] Aluminium and Aluminium-Magnésium [Alloy], J. A. M. van Liempt anD J. A. De VrienD (Bee. trav. chim., 1935, 54, 239-244). „ . —S. G. ’"Investigations Relating to Electrophotophoresis Exhibited by Antimony Gisela Isser anD AlfreD Lustig (Z . Physik, 1935, 94, 760-769).—UnchargeD submicroscopic particles subjecteD to an electric fielD in an intense beam of light are founD to move either in the Direction of, or against, the fielD.
    [Show full text]
  • Machining of Aluminum and Aluminum Alloys / 763
    ASM Handbook, Volume 16: Machining Copyright © 1989 ASM International® ASM Handbook Committee, p 761-804 All rights reserved. DOI: 10.1361/asmhba0002184 www.asminternational.org MachJning of Aluminum and AlumJnum Alloys ALUMINUM ALLOYS can be ma- -r.. _ . lul Tools with small rake angles can normally chined rapidly and economically. Because be used with little danger of burring the part ," ,' ,,'7.,','_ ' , '~: £,~ " ~ ! f / "' " of their complex metallurgical structure, or of developing buildup on the cutting their machining characteristics are superior ,, A edges of tools. Alloys having silicon as the to those of pure aluminum. major alloying element require tools with The microconstituents present in alumi- larger rake angles, and they are more eco- num alloys have important effects on ma- nomically machined at lower speeds and chining characteristics. Nonabrasive con- feeds. stituents have a beneficial effect, and ,o IIR Wrought Alloys. Most wrought alumi- insoluble abrasive constituents exert a det- num alloys have excellent machining char- rimental effect on tool life and surface qual- acteristics; several are well suited to multi- ity. Constituents that are insoluble but soft B pie-operation machining. A thorough and nonabrasive are beneficial because they e,,{' , understanding of tool designs and machin- assist in chip breakage; such constituents s,~ ,.t ing practices is essential for full utilization are purposely added in formulating high- of the free-machining qualities of aluminum strength free-cutting alloys for processing in alloys. high-speed automatic bar and chucking ma- Strain-hardenable alloys (including chines. " ~ ~p /"~ commercially pure aluminum) contain no In general, the softer ailoys~and, to a alloying elements that would render them lesser extent, some of the harder al- c • o c hardenable by solution heat treatment and ,p loys--are likely to form a built-up edge on precipitation, but they can be strengthened the cutting lip of the tool.
    [Show full text]
  • International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys
    International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys 1525 Wilson Boulevard, Arlington, VA 22209 www.aluminum.org With Support for On-line Access From: Aluminum Extruders Council Australian Aluminium Council Ltd. European Aluminium Association Japan Aluminium Association Alro S.A, R omania Revised: January 2015 Supersedes: February 2009 © Copyright 2015, The Aluminum Association, Inc. Unauthorized reproduction and sale by photocopy or any other method is illegal . Use of the Information The Aluminum Association has used its best efforts in compiling the information contained in this publication. Although the Association believes that its compilation procedures are reliable, it does not warrant, either expressly or impliedly, the accuracy or completeness of this information. The Aluminum Association assumes no responsibility or liability for the use of the information herein. All Aluminum Association published standards, data, specifications and other material are reviewed at least every five years and revised, reaffirmed or withdrawn. Users are advised to contact The Aluminum Association to ascertain whether the information in this publication has been superseded in the interim between publication and proposed use. CONTENTS Page FOREWORD ........................................................................................................... i SIGNATORIES TO THE DECLARATION OF ACCORD ..................................... ii-iii REGISTERED DESIGNATIONS AND CHEMICAL COMPOSITION
    [Show full text]
  • Alloys for Aeronautic Applications: State of the Art and Perspectives
    metals Review Alloys for Aeronautic Applications: State of the Art and Perspectives Antonio Gloria 1, Roberto Montanari 2,*, Maria Richetta 2 and Alessandra Varone 2 1 Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; [email protected] 2 Department of Industrial Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy; [email protected] (M.R.); [email protected] (A.V.) * Correspondence: [email protected]; Tel.: +39-06-7259-7182 Received: 16 May 2019; Accepted: 4 June 2019; Published: 6 June 2019 Abstract: In recent years, a great effort has been devoted to developing a new generation of materials for aeronautic applications. The driving force behind this effort is the reduction of costs, by extending the service life of aircraft parts (structural and engine components) and increasing fuel efficiency, load capacity and flight range. The present paper examines the most important classes of metallic materials including Al alloys, Ti alloys, Mg alloys, steels, Ni superalloys and metal matrix composites (MMC), with the scope to provide an overview of recent advancements and to highlight current problems and perspectives related to metals for aeronautics. Keywords: alloys; aeronautic applications; mechanical properties; corrosion resistance 1. Introduction The strong competition in the industrial aeronautic sector pushes towards the production of aircrafts with reduced operating costs, namely, extended service life, better fuel efficiency, increased payload and flight range. From this perspective, the development of new materials and/or materials with improved characteristics is one of the key factors; the principal targets are weight reduction and service life extension of aircraft components and structures [1].
    [Show full text]
  • Adams Catalog 6.20 W.Pdf
    Magnetic products for engineering performance, innovation and design. Magnetic products for engineering performance, innovation and design. Founded in 1950, Adams Magnetic Products is a custom manufacturer, fabricator and distributor of all types of permanent magnets, magnetic assemblies and devices. Our technical experts are ready to answer your questions Military and Defense Materials and address your magnetic needs. Whether it’s selecting Adams Magnetic Products has the knowledge, understanding a magnet to fit an application, choosing the most cost and systems in place to fully comply with the Arms Export effective material or reviewing options from what is Control Act (AECA) and International Traffic in Arms available in the market, we are here to help with: Regulations (ITAR). We are your partner in fabricating magnets and magnetic products for the defense and • Application and Design Engineering Assistance military industries. As an ITAR registered supplier, you can • Testing/Analysis of Magnetic Materials rest assured your data and confidential information is safe • Magnetic Circuit Analysis/FEA with us. We are also your source for Defense Acquisition • Value Analysis/Value Engineering Support Regulations System (DFARS) compliant materials. Let our technical staff assist you in obtaining the right materials • Inventory Management Programs for your DoD needs. A Commitment to Value We define value as having the right products available at the right time and delivering them as promised, defect-free, at competitive prices. Adams is committed to delivering outstanding value to customers at every opportunity. Certified Quality Management Adams maintains ISO 9001:2015 certification, reinforcing our strong operational processes and commitment to continual improvement. We have a standard of zero defects in everything we do.
    [Show full text]
  • 2000 TMS Annual Meeting Program
    TECHNICAL PROGRAM 12 9 thTMS ANNUAL MEETING & The 129th TMS Annual Meeting & Exhibition EXHIBITION Opryland Convention Center ❈ ❈ ❈ Nashville, Tennessee USA ❈ ❈ ❈ March 12 - March 16, 2000 MONDAY AM the cost of these increasingly complex materials. This paper will re- AIME/TMS KEYNOTE ADDRESS view some of the work currently being undertaken both at engine "FutureView...A Look Ahead" manufacturers, and at component suppliers in consortia such as the AM MONDAY Daniel Burrus Engine Supplier Base Initiatives and the Metals Affordability Initia- 11:30am-1:00pm tive. The creation of such consortia to reduce component cost has Convention Center, Presidential Ballroom made significant progress possible in focusing the entire supply chain ✦✦✦ and the customer on this critical issue of affordability Tutorial Luncheon Lecture 8:55 AM Invited "Advanced Rechargeable Batteries: A Materials Science Perspective" Application of Lean Concepts to the Aerospace Forging Value Donald R. Sadoway Stream: Dan Krueger1; Rod Boyer2; David Furrer3; Mary Lee 12:00noon-1:30pm Gambone4; Beth Lewis5; 1GE Aircraft Engines, One Neumann Way, Convention Center, Lincoln C MD H85, Cincinnati, OH 45215 USA; 2Boeing Company, Commercial ✦✦✦ Airplanes Grp., Seattle, WA 98124 USA; 3Ladish Company, Inc., 5481 AIME & TMS Banquet & Awards Presentation S. Packard Ave., Cudahy, WI 53110 USA; 4Rolls-Royce Allison, P.O. 6:00pm Reception Box 420, Indianapolis, IN 46206-0420 USA; 5Wyman Gordon Com- 7:00pm Dinner pany, 244 Worcester St., Grafton, MA 01563 USA Convention Center, Presidential Ballroom Forged components comprise approximately one-third the cost of a propulsion system, and are major cost drivers for airframe systems. +Indicates Student Traditionally, cost reduction efforts have focused on improving indi- vidual operations or steps in the value stream.
    [Show full text]
  • Metal Matrix Composites: History, Status
    METAL MATRIX COMPOSITES: HISTORY, STATUS, FACTORS AND FUTURE By AJITH JAMES CYRIAC Bachelor of Technology in Mechanical Engineering Cochin University of Science and Technology Cochin, Kerala, INDIA 2005 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July 2011 METAL MATRIX COMPOSITES: HISTORY, STATUS, FACTORS AND FUTURE Thesis Approved: Dr. Jay C. Hanan Thesis Adviser Dr. Sandip P. Harimkar Dr. Ranji Vaidyanathan Dr. Mark E. Payton Dean of the Graduate College ii ACKNOWLEDGMENT As I sit down to write this page, I am filled with a great feeling of gratitude towards so many individuals who have made this endeavor possible. Above all, I would like to thank my thesis and academic advisor Dr. Jay C. Hanan for accepting me to his team and helping me with his kindness and patience throughout the project. Initially I was reluctant to take the task of doing a thesis, but his confidence in my abilities and the motivation from him and motivated me to take on such a great endeavor. I wish to thank Dr. Ranji Vaidyanathan and Dr. Sandip Harimkar for being part of my committee. I would like to thank our graduate coordinator Dr.Afshin Ghajar and his assistant Shelli Stapleton for supporting me throughout the program. I specially need to acknowledge help I received from the Kevin Drees of Edmon Low Library and Dona Donldson of O.S.U Tulsa Library for their assistance. I do not have any qualms in admitting that I would not be able to finish this project without their help.
    [Show full text]
  • Microstructure, Mechanical Properties, and Corrosion
    materials Article Microstructure, Mechanical Properties, and Corrosion Behavior of Boron Carbide Reinforced Aluminum Alloy (Al-Fe-Si-Zn-Cu) Matrix Composites Produced via Powder Metallurgy Route M. Meignanamoorthy 1, Manickam Ravichandran 1,*, Vinayagam Mohanavel 2, Asif Afzal 3,* , T. Sathish 4, Sagr Alamri 5,6, Sher Afghan Khan 7 and C. Ahamed Saleel 5 1 Department of Mechanical Engineering, K. Ramakrishnan College of Engineering, Trichy 621112, India; [email protected] 2 Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600126, India; [email protected] 3 P. A. College of Engineering, Visvesvaraya Technological University, Belagavi, Mangaluru 574153, India 4 Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; [email protected] 5 Department of Mechanical Engineering, College of Engineering, King Khalid University, P.O. Box 394, Abha 61421, Saudi Arabia; [email protected] (S.A.); [email protected] (C.A.S.) 6 Department of Mechanical Engineering, The University of Akron, Akron, OH 44325, USA Citation: Meignanamoorthy, M.; 7 Department of Mechanical Engineering, Faculty of Engineering, International Islamic University, Ravichandran, M.; Mohanavel, V.; Kuala Lumpur 53100, Malaysia; [email protected] Afzal, A.; Sathish, T.; Alamri, S.; * Correspondence: [email protected] (M.R.); [email protected] (A.A.) Khan, S.A.; Saleel, C.A. Microstructure, Mechanical Abstract: In this paper, Al-Fe-Si-Zn-Cu (AA8079) matrix composites with several weight percentages Properties, and Corrosion Behavior of of B4C (0, 5, 10, and 15) were synthesized by powder metallurgy (PM). The essential amount of Boron Carbide Reinforced Aluminum powders was milled to yield different compositions such as AA8079, AA8079-5 wt.%B4C, AA8079-10 Alloy (Al-Fe-Si-Zn-Cu) Matrix wt.%B C, and AA8079-15 wt.%B C.
    [Show full text]
  • MDF/W/61 TARIFFS and TRADE 11 April 1986 Special Distribution
    RESTRICTED GENERAL AGREEMENT ON MDF/W/61 TARIFFS AND TRADE 11 April 1986 Special Distribution PROBLEMS OF TRADE IN CERTAIN NATURAL RESOURCE PRODUCTS Background Study on Aluminium and Aluminium Products Prepared by the Secretariat Table of Contents Page INTRODUCTION 6 SECTION I: Main features of the aluminium industry 6 Properties of aluminium 6 World bauxite reserves 7 Processing 7 Bauxite processing 7 Alumina refining 9 Aluminium smelting 10 Re-cycling il Industrial applications of aluminium and alumina 12 Substitution 15 Structure of the industry 15 SECTION II: Production, consumption and prices 19 Bauxite production 20 Alumina production 26 Primarv aluminium production 27 Secondary aluminium production 30 World production of semi-manufactures and castings 30 Consumption of primary aluminium 33 Prices and stocks 42 Bauxite 43 Alumina 44 Aluminium 47 Stocks 51 Demand and supply elasticities 51 SECTION III: International trade 53 Trade in bauxite 55 Trade in alumina 58 Trade in aluminium metal 59 Direction of trade 64 86-0470 MDF/W/61 Page 2 SECTION IV: Commercial policy situation Tokyo Round negotiations: tariff assessment 68 Trade in aluminium and aluminium products under different tariff treatment and according to stages of processing 7i Developed countries 7;. Individual developed-country profiles 74 Developing countries 103 Individual developing-country profiles 103 Tariff escalation and effective tariff protection 127 Non-tariff measures 128 SECTION V: Activities in other international organizations 136 The International Bauxite
    [Show full text]
  • Thermal Component Reference Guide
    W A T L O W Table of Contents Introduction Electric Heaters Resistance Temperature Detectors (RTDs). 49 This Application Guide is to assist you Thermistors . 52 in understanding the principles of electric thermal systems and compo- Non-Contact Temperature nents as they apply to various heating Sensor Basics . 54 tasks. Its purpose is to give you Defining an Application and theory, general calculations and Determining a Solution . 60 engineering data along with examples Reference Data . 61 for solving heating problems. This Thermocouple and Resistance Application Guide is not a how-to Wire RTD Initial Calibration manual or a substitute for specific Tolerances . 61 information related to complex RTD Resistance vs. Temperature and/or critical applications. Watlow Tables (Standard Thermistors) . 63 engineers are available to provide you detailed information on engineering RTD Resistance vs. Temperature Tables (DIN Platinum RTDs). 70 approaches not included in this guide. When designing any thermal system, caution must always be exercised to Temperature Controllers comply with safety requirements, local Product Overview . 7 and/or national electrical codes, Power Calculations . 15 agency standards, considerations for Power Evaluation. 19 use in toxic or explosive environments Review of Heater and sound engineering practices. Application Factors. 20 Integrity and suitability of any Select Heater . 22 thermal system design/specification is ultimately the responsibility of those Reference Data . 24 selecting and approving system Heat Loss Factors and Graphs . 26 components. Quick Estimates of This Application Guide is organized Wattage Requirements . 30 into sections dealing with the basic facets of an electric thermal system: Temperature Sensors the electric heaters, temperature sensors and temperature and power controllers.
    [Show full text]
  • Mechanical Behavior and Fractography of Al2218-Nano B4C Metal Composites Vidyadhar Pujar, Srinivas H K, Madeva Nagaral, V Auradi
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-9 Issue-4, April, 2020 Mechanical Behavior and Fractography of Al2218-Nano B4C Metal Composites Vidyadhar Pujar, Srinivas H K, Madeva Nagaral, V Auradi stiffness, wear opposition, erosion obstruction, weariness Abstract : In the present examination, the mechanical properties obstruction and high temperature resistance. Among these of Al2218-nano B4C composites displayed. The composites fortifications, B4C is artificially perfect with aluminum (Al) containing 4 to 8 wt. % of nano boron carbide in ventures of 4 and structures an enough bond with the grid [4]. Wear rate of wt.% were readied utilizing liquid metallurgy method through stir casting. For every composite, fortification particles were aluminum lattice composites fortified with B4C and SiC preheated to a temperature of 400˚C and afterward added in particles created through a similar course (weight less ventures of two into the vortex of liquid Al2218 compound to infiltration strategy) were dissected; the wear rate and contact improve the wettability and dispersion. Microstructural coefficient of Al– B4C was observed to be lower than those of examination was carried out by SEM and elemental investigation Al– SiC under similar conditions. was finished by EDS. XRD Analysis used to recognize the B4C phases in the Al grid. Density, tensile, compression and hardness The point of the present examination is to assess the tests were done to distinguish various properties of composites. microstructure and mechanical conduct of Al2218 compound The aftereffects of this investigation uncovered that as the weight strengthened with nano B4C particles. The stir technique is % level of nano B4C particles were expanded, there was picked for the processing of AMCs.
    [Show full text]