WO 2018/183396 Al 04 October 2018 (04.10.2018) W !P O PCT

Total Page:16

File Type:pdf, Size:1020Kb

WO 2018/183396 Al 04 October 2018 (04.10.2018) W !P O PCT (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/183396 Al 04 October 2018 (04.10.2018) W !P O PCT (51) International Patent Classification: (US). CHRISTIANSEN, Daniel, Thomas; 1263 Califor B29C 64/321 (2017.01) B29C 64/209 (2017.01) nia Street, Mountain View, CA 94041 (US). ROMANO, B29C 64/393 (2017.01) B33Y 50/02 (2015.01) Richard, Joseph; 525 Felix Way, San Jose, CA 95 125 B29C 64/357 (20 17.0 1) B33Y 40/00 (20 15.0 1) (US). VITANOV, Anatolii; 4755 El Rey Avenue, Fre B29C 64/264 (2017.01) mont, CA 94536 (US). LAPPEN, Alan, Rick; 394 Avenida Abetos, San Jose, CA 95 123 (US). (21) International Application Number: PCT/US20 18/024667 (74) Agent: LYFORD, Nicholas et al; Velo3D, Inc., 511 Divi sion Street, Campbell, CA 95008 (US). (22) International Filing Date: 27 March 2018 (27.03.2018) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (30) Priority Data: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 62/477,848 28 March 2017 (28.03.2017) US KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (71) Applicant: VEL03D, INC. [US/US]; 511 Division Street, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, Campbell, CA 95008 (US). OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (72) Inventors: FRECHMAN, James; 5 14 Robertsville Court, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. San Jose, CA 951 18 (US). BREZOCZKY, Thomas, Blasius; 16460 Lucky Road, Los Gatos, CA 95030 (84) Designated States (unless otherwise indicated, for every (US). BIRTWHISTLE, Darin, Shaun; 275 Valdez Ave, kind of regional protection available): ARIPO (BW, GH, San Francisco, CA 94127 (US). BULLER, Benyamin; GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, 22191 Mcclelian Road, Cupertino, CA 95014 (US). EL- UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, GAR, Yacov; 15 19 Oriole Avenue, Sunnyvale, CA 94087 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (54) Title: MATERIAL MANIPULATION IN THREE-DIMENSIONAL PRINTING (57) Abstract: The present disclosure provides three-dimensional (3D) printing systems, apparatuses, software, and methods for the produc tion of at least one requested 3D object. The 3D printer includes a m a terial conveyance system, filtering system, and unpacking station. The material conveyance system may transport pre-transformed material against gravity. The 3D printing described herein comprises facilitat ing non-interrupted material dispensing through a component of the 3D printer, such as a layer dispenser. [Continued on nextpage] WO 2018/183396 Al llll II II 11III II I I II III II 11II III II I II EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: MATERIAL MANIPULATION IN THREE-DIMENSIONAL PRINTING CROSS REFERENCE TO RELATED APPLICATIONS [0001] This application claims benefit of prior-filed U.S. Provisional Patent Application Serial No. 62/477,848, filed on March 28, 2017, titled "MATERIAL CONVEYANCE IN THREE- DIMENSIONAL PRINTERS," which is entirely incorporated herein by reference. BACKGROUND [0002] Three-dimensional (3D) printing (e.g., additive manufacturing) is a process for making a three-dimensional object of any shape from a design. The design may be in the form of a data source such as an electronic data source, or may be in the form of a hard copy. The hard copy may be a two-dimensional representation of a 3D object. The data source may be an electronic 3D model. 3D printing may be accomplished through an additive process in which successive layers of material are laid down one on top of another. This process may be controlled (e.g., computer controlled, manually controlled, or both). A 3D printer can be an industrial robot. [0003] 3D printing can generate custom parts. A variety of materials can be used in a 3D printing process including elemental metal, metal alloy, ceramic, elemental carbon, or polymeric material. In some 3D printing processes (e.g., additive manufacturing), a first layer of hardened material is formed (e.g., by welding powder), and thereafter successive layers of hardened material are added one by one, wherein each new layer of hardened material is added on a pre formed layer of hardened material, until the entire designed three-dimensional structure (3D object) is layer-wise materialized. [0004] 3D models may be created with a computer aided design package, via 3D scanner, or manually. The manual modeling process of preparing geometric data for 3D computer graphics may be similar to plastic arts, such as sculpting or animating. 3D scanning is a process of analyzing and collecting digital data on the shape and appearance of a real object (e.g., real-life object). Based on this data, 3D models of the scanned object can be produced. [0005] A number of 3D printing processes are currently available. They may differ in the manner layers are deposited to create the materialized 3D structure (e.g., hardened 3D structure). They may vary in the material or materials that are used to materialize the designed 3D object. Some methods melt, sinter, or soften material to produce the layers that form the 3D object. Examples for 3D printing methods include selective laser melting (SLM), selective laser sintering (SLS), direct metal laser sintering (DMLS) or fused deposition modeling (FDM). Other methods cure liquid materials using different technologies such as stereo lithography (SLA). In the method of laminated object manufacturing (LOM), thin layers (made inter alia of paper, polymer, or metal) are cut to shape and joined together. [0006] At times, during the process of dispensing pre-transformed (e.g., particulate) material as part of the 3D printing, the pre-transformed material may be dispensed in a discontinuous manner, or cease to be dispensed. For examples, there may be one or more intermissions in the conveyance of the pre-transformed material during the 3D printing. The intermissions(s) may be undesired. For example, the material dispenser may run out of pre-transformed material. For example, the material dispensing process may pause (e.g., stop) to refill the material dispenser. In some situations, it may be desired to diminish the number of (e.g., undesired) interruptions to the material dispensing process. At times, it may be desirable to facilitate a continuous movement (e.g., flow) of the pre-transformed material (e.g., to allow non- interrupted and/or smooth deposition). At times, it may be desirable to convey an excess amount of pre-transformed material (e.g., as a result of leveling, vacuuming, or unused material) to the material dispenser. At times, there may be an excess of material that is not used during the 3D printing. The excess of material may be recycled and/or reused during the 3D printing. In some embodiments, there may be a need for a conveyance system of the excess material to the material dispenser. [0007] In some embodiments, material is supplied in bulk qualities. There may be a need for a conveyance system that conveys material to the material dispenser. The conveyance system may facilitate uninterrupted function of the material dispenser. The conveyance system may facilitate continuous flow of pre-transformed material to the material dispenser. [0008] In some examples, it may be beneficial to transport pre-transformed material against gravity (e.g., in an upwards direction). For example, it may be beneficial to transport the pre- transformed material from a reservoir containing a large amount of pre-transformed material, against gravity to a reservoir containing a smaller amount of pre-transformed material. For example, it may be beneficial to keep large quantities of the pre-transformed material in a large reservoir disposed at a low elevation (e.g., relative to a position of the material dispenser) for ease of operation (e.g., handling), and/or safety consideration. SUMMARY [0009] In an aspect, the present disclosure comprises a transporting of pre-transformed material from a reservoir during a portion of the 3D printing process. The transporting may be against gravity. [0010] In another aspect, a system for three-dimensional printing of at least one three- dimensional object comprises: a material dispenser that dispenses a pre-transformed material towards a platform; a first pressure container that is configured to contain the pre-transformed material, which first pressure container is operatively coupled to the material dispenser; a gas conveyor channel that is operatively coupled to the first pressure container; a material conveyor channel that is operatively coupled to the first pressure container, the gas conveyor channel, and the material dispenser; and at least one controller that is operatively coupled to the material dispenser, the first pressure container, the gas conveyor channel, and the material conveyor channel, which at least one controller is programmed to direct performance of the following operations: operation (i) direct insertion of at least one gas into the first pressure container, through the gas conveyor channel, to elevate the pressure in the pressure container, operation (ii) direct conveying of the pre-transformed material from the pressure container to the material dispenser through the material conveyor channel, as a result of an elevated pressure in the pressure container, operation (iii) direct dispensing of conveyed pre-transformed material towards the platform, and operation (iv) direct printing, during dispensing or after dispensing, of at least a portion of the at least one three-dimensional object, from the pre-transformed material.
Recommended publications
  • The Relationship Between Microstructure and Magnetic Properties of Alnico Alloys
    The relationship between microstructure and magnetic properties of alnico alloys Citation for published version (APA): Vos, de, K. J. (1966). The relationship between microstructure and magnetic properties of alnico alloys. Technische Hogeschool Eindhoven. https://doi.org/10.6100/IR287613 DOI: 10.6100/IR287613 Document status and date: Published: 01/01/1966 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Characteristics of Al-Si Alloys with High Melting Point Elements for High Pressure Die Casting
    materials Article Characteristics of Al-Si Alloys with High Melting Point Elements for High Pressure Die Casting Tomasz Szymczak 1,* , Grzegorz Gumienny 1,* , Leszek Klimek 2 , Marcin Goły 3 , Jan Szymszal 4 and Tadeusz Pacyniak 1 1 Department of Materials Engineering and Production Systems, Lodz University of Technology, 90-924 Lodz, Poland; [email protected] 2 Institute of Materials Science and Engineering, Lodz University of Technology, 90-924 Lodz, Poland; [email protected] 3 Department of Physical & Powder Metallurgy, AGH University of Science and Technology, 30-059 Krakow, Poland; [email protected] 4 Department of Technical Sciences and Management, University of Occupational Safety Management in Katowice, 40-007 Katowice, Poland; [email protected] * Correspondence: [email protected] (T.S.); [email protected] (G.G.); Tel.: +48-426312276 (T.S.); +48-426312264 (G.G.) Received: 9 October 2020; Accepted: 29 October 2020; Published: 29 October 2020 Abstract: This paper is devoted to the possibility of increasing the mechanical properties (tensile strength, yield strength, elongation and hardness) of high pressure die casting (HPDC) hypoeutectic Al-Si alloys by high melting point elements: chromium, molybdenum, vanadium and tungsten. EN AC-46000 alloy was used as a base alloy. The paper presents the effect of Cr, Mo, V and W on the crystallization process and the microstructure of HPDC aluminum alloy as well as an alloy from the shell mold. Thermal and derivative analysis was used to study the crystallization process. The possibility of increasing the mechanical properties of HPDC hypoeutectic alloy by addition of high-melting point elements has been demonstrated.
    [Show full text]
  • Aluminium Products Coil
    Helping manufacturers across the globe achieve sustainable leaner manufacturing processes Aluminium Coil, Foil, Products Sheet & Wire Commercially Pure Aluminium Alloys Series 1000 Series 2000 Series 3000 Fast Series 4000 Series 5000 Turnaround Series 6000 Processing Series 7000 Series 8000 Clad Aluminium WIDE STOCK RANGE Low Width Thickness Ratio 3:1 unique to the industry (normal minimum is 8:1) Over 75 years Experience Knight Group Visit our websites: Main: www.knight-group.co.uk Offcuts: www.ksmdirect.co.uk www.pmdirect.be Head Office Linkside, Summit Road Cranborne Industrial Estate Potters Bar, Hertfordshire EN6 3JL United Kingdom Main Office : +44(0)1707 650251 Fax: +44(0)1707 651238 [email protected] Knight Strip Metals Ltd Sales, Processing & Warehouse Saltley Business Park Cumbria Way, Saltley Birmingham B8 1BH United Kingdom Telephone: +44 (0)121 322 8400 Fax: +44 (0)121 322 8401 Sales 08456 447 977 [email protected] Precision Metals EU Industriezone Mechelen-Noord (D) Omega Business Park Wayenborgstraat 25 2800 Mechelen Belgium Telephone: +32 (0) 15 44 89 89 Fax: +32 (0) 15 44 89 90 [email protected] The information contained herein is given in good faith and is based on our present knowledge and experience. However, no liability will be accepted by the Knight Group and its subsidiaries in respect of any action taken by any third party in reliance thereon. Any advice given by the Company to any third party is given for that party’s assistance only and without any liability on the part of the Company. The contents of this brochure are subject to change and the most recent edition of all Knight Group documentation can be found on our website or by written request.
    [Show full text]
  • Catalogue Short 1..178
    Serving The Needs of Science and Industry Worldwide Au service de la Science et de l'Industrie dans le monde entier Weltweiter Lieferant fuÈ r Wissenschaft und Industrie Metals and Alloys Ceramics Polymers Composites Me taux et Alliages Ce ramiques PolymeÁ res Composites Metalle und Legierungen Keramiken Polymere Verbundwerkstoffe Ermine Business Park, Huntingdon PE29 6WR England Telephone +44 1480 424 800 : Fax +44 1480 424 900 Goodfellow Cambridge Limited Ermine Business Park HUNTINGDON PE29 6WR England Tel: +44 1480 424 800 or +44 1480 424 800 Fax: +44 1480 424 900 or +44 1480 424 900 Goodfellow Corporation 305 High Tech Drive Oakdale, PA 15071 USA Tel: 1-800-821-2870 (USA and Canada) or +1 724 695 7060 Fax: 1-800-283-2020 (USA and Canada) or +1 724 695 7063 Goodfellow SARL 229, rue Solfe rino F-59000 Lille France Tel : 0800 917 241 (nume ro vert) or +44 1480 424 813 Fax : 0800 917 313 (nume ro vert) or +44 1480 424 900 Goodfellow GmbH Postfach 13 43 D-61213 Bad Nauheim Germany Tel: 0800 1000 579 (freecall) or +44 1480 424 810 Fax: 0800 1000 580 (freecall) or +44 1480 424 900 Web : www.goodfellow.com Email: [email protected] Check out www.goodfellow.com or email [email protected] for latest prices #Goodfellow Cambridge Limited February 2009 Email: [email protected] Telephone +44 1480 424 800 : Fax +44 1480 424 900 CONTENTS Introduction 1 Product Descriptions 2 General Information 6 Order information 7 Company Details 8 Metals 9 Alloys 68 Compounds 100 Intermetallics 105 Ceramics 106 Polymers 114 Composites 136 Metal Data
    [Show full text]
  • Solidification of Immiscible Alloys Under High Magnetic Field
    metals Review Solidification of Immiscible Alloys under High Magnetic Field: A Review Chen Wei 1, Jun Wang 1,*, Yixuan He 1, Jinshan Li 1,* and Eric Beaugnon 2 1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China; [email protected] (C.W.); [email protected] (Y.H.) 2 INSA Toulouse, University Grenoble Alpes, University Toulouse Paul Sabatier, EMFL, CNRS, LNCMI, 38000 Grenoble, France; [email protected] * Correspondence: [email protected] (J.W.); [email protected] (J.L.) Abstract: Immiscible alloy is a kind of functional metal material with broad application prospects in industry and electronic fields, which has aroused extensive attention in recent decades. In the solidification process of metallic material processing, various attractive phenomena can be realized by applying a high magnetic field (HMF), including the nucleation and growth of alloys and mi- crostructure evolution, etc. The selectivity provided by Lorentz force, thermoelectric magnetic force, and magnetic force or a combination of magnetic field effects can effectively control the solidification process of the melt. Recent advances in the understanding of the development of immiscible alloys in the solidification microstructure induced by HMF are reviewed. In this review, the immiscible alloy systems are introduced and inspected, with the main focus on the relationship between the migration behavior of the phase and evolution of the solidification microstructure under HMF. Special attention is paid to the mechanism of microstructure evolution caused by the magnetic field and its influence on performance. The ability of HMF to overcome microstructural heterogeneity in the solidification Citation: Wei, C.; Wang, J.; He, Y.; Li, process provides freedom to design and modify new functional immiscible materials with desired J.; Beaugnon, E.
    [Show full text]
  • Exploration of Alnico Permanent Magnet Microstructure And
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Exploration of Alnico permanent magnet microstructure and processing for near final shape magnets with solid-state grain alignment for improved properties Aaron Gregory Kassen Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Materials Science and Engineering Commons, and the Mechanics of Materials Commons Recommended Citation Kassen, Aaron Gregory, "Exploration of Alnico permanent magnet microstructure and processing for near final shape magnets with solid-state grain alignment for improved properties" (2018). Graduate Theses and Dissertations. 16390. https://lib.dr.iastate.edu/etd/16390 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Exploration of Alnico permanent magnet microstructure and processing for near final shape magnets with solid-state grain alignment for improved properties by Aaron Gregory Kassen A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Materials Science & Engineering Program of Study Committee: Iver E. Anderson, Major Professor Scott Chumbley David C. Jiles Matthew J. Kramer Alan M. Russell The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred.
    [Show full text]
  • Development of Radically Enhanced Alnico Magnets (Dream) for Traction Drive Motors Iver E
    Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive Motors Iver E. Anderson (PI) Matthew J. Kramer (Co-PI) Ames Laboratory (USDOE) June 19, 2018 Project ID # ELT015 This presentation does not contain any proprietary, confidential, or otherwise restricted information Overview Barriers & Targets* . High energy density permanent magnets (PM) needed for compact, and power Timeline density >50 kW/L). Reduced cost (<$3.3/kW): Efficient (>94%) • Start – October 2014 motors require aligned magnets with net- shape and simplified mass production. • Finish - September 2018 . RE Minerals: Rising prices of rare earth 85% Complete (RE) elements, price instability, and looming shortage, especially Dy. Performance & Lifetime: High temperature Budget tolerance (180-200˚C) and long life (15 yrs.) needed for magnets in PM motors. • Total funding - DOE share 100% • FY 17 Funding - $1400K Partners • Baldor, Carpenter, U. Wisconsin, • FY 18 (plan) Funding - $700K NREL, Ford, GM, UQM, (collaborators) • ORNL, U. Nebraska, Arnold Magnetic Tech. (DREaM subcontractors) • Project lead: Ames Lab *2025 VT Targets 2 Project Relevance/Objectives To meet 2025 goals for enhanced specific power, power density, and reduced (stable) cost with mass production capability for advanced electric drive motors, improved alloys and processing of permanent magnets (PM) must be developed. Likely rising RE cost trend and unpredictable import quotas (by China) for RE supplies (particularly Dy) motivates this research effort to improve (Fe-Co)-based alnico permanent magnet alloys (with reduced Co) and processing methods to achieve high magnetic strength (especially coercivity) for high torque drive motors. Objectives for the fully developed PM material: Provide competitive performance in advanced drive motors, compared to IPM motors with RE-PM.
    [Show full text]
  • Metallurgical Abstracts (General and Non-Ferrous)
    METALLURGICAL ABSTRACTS (GENERAL AND NON-FERROUS) Volume 2 1935 Part 13 I —PROPERTIES OF METALS (Continued from pp. 553-568.) Refined Aluminium. Robert GaDeau (Metallurgist (Suppt. to Engineer), 1936, 11, 94-96).—Summary of a paper presenteD to the Congrès Inter­ nationale Des Mines, De la Métallurgie, et De la Géologie Appliquée, Paris. See Met. Abs., this vol., pp. 365 anD 497.—R. G. _ On the Softening and Recrystallization of Pure Aluminium. ------ (A lu­ minium, 1935, 17, 575-576).—A review of recent work of Calvet anD his collaborators ; see Met. Abs., this vol., pp. 453, 454. A. R. P. *Some Optical Observations on the Protective Films on Aluminium in Nitric, Chromic, and Sulphuric Acids. L. TronstaD anD T. HbverstaD (Trans. Faraday Soc., 1934, 30, 362-366).—The optical properties of natural films on aluminium were measureD in various solutions anD their change with time of immersion observeD. Little change occurs in such films in chromic aciD solutions with or without chloriDe ; the films are not protective in concentrateD sulphuric aciD, anD in concentrateD nitric aciD the protective films are alternately DissolveD anD re-formeD. The mean thickness of natural films on aluminium is 100 p. or more than 10 times as thick as those on iron.—A. R. P. *Light from [Burning] Aluminium and Aluminium-Magnésium [Alloy], J. A. M. van Liempt anD J. A. De VrienD (Bee. trav. chim., 1935, 54, 239-244). „ . —S. G. ’"Investigations Relating to Electrophotophoresis Exhibited by Antimony Gisela Isser anD AlfreD Lustig (Z . Physik, 1935, 94, 760-769).—UnchargeD submicroscopic particles subjecteD to an electric fielD in an intense beam of light are founD to move either in the Direction of, or against, the fielD.
    [Show full text]
  • Machining of Aluminum and Aluminum Alloys / 763
    ASM Handbook, Volume 16: Machining Copyright © 1989 ASM International® ASM Handbook Committee, p 761-804 All rights reserved. DOI: 10.1361/asmhba0002184 www.asminternational.org MachJning of Aluminum and AlumJnum Alloys ALUMINUM ALLOYS can be ma- -r.. _ . lul Tools with small rake angles can normally chined rapidly and economically. Because be used with little danger of burring the part ," ,' ,,'7.,','_ ' , '~: £,~ " ~ ! f / "' " of their complex metallurgical structure, or of developing buildup on the cutting their machining characteristics are superior ,, A edges of tools. Alloys having silicon as the to those of pure aluminum. major alloying element require tools with The microconstituents present in alumi- larger rake angles, and they are more eco- num alloys have important effects on ma- nomically machined at lower speeds and chining characteristics. Nonabrasive con- feeds. stituents have a beneficial effect, and ,o IIR Wrought Alloys. Most wrought alumi- insoluble abrasive constituents exert a det- num alloys have excellent machining char- rimental effect on tool life and surface qual- acteristics; several are well suited to multi- ity. Constituents that are insoluble but soft B pie-operation machining. A thorough and nonabrasive are beneficial because they e,,{' , understanding of tool designs and machin- assist in chip breakage; such constituents s,~ ,.t ing practices is essential for full utilization are purposely added in formulating high- of the free-machining qualities of aluminum strength free-cutting alloys for processing in alloys. high-speed automatic bar and chucking ma- Strain-hardenable alloys (including chines. " ~ ~p /"~ commercially pure aluminum) contain no In general, the softer ailoys~and, to a alloying elements that would render them lesser extent, some of the harder al- c • o c hardenable by solution heat treatment and ,p loys--are likely to form a built-up edge on precipitation, but they can be strengthened the cutting lip of the tool.
    [Show full text]
  • WO 2016/193753 A2 8 December 2016 (08.12.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2016/193753 A2 8 December 2016 (08.12.2016) P O P C T (51) International Patent Classification: (74) Agent: BOULT WADE TENNANT; Verulam Gardens, A61B 90/00 (2016.01) 70 Gray's Inn Road, London WC1X 8BT (GB). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/GB20 16/05 1649 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 3 June 2016 (03.06.2016) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (30) Priority Data: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 62/170,768 4 June 2015 (04.06.2015) US SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant: ENDOMAGNETICS LTD. [GB/GB]; Jef freys Building, St John's Innovation Park, Cowley Road, (84) Designated States (unless otherwise indicated, for every Cambridge, Cambridgeshire CB4 0WS (GB).
    [Show full text]
  • International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys
    International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys 1525 Wilson Boulevard, Arlington, VA 22209 www.aluminum.org With Support for On-line Access From: Aluminum Extruders Council Australian Aluminium Council Ltd. European Aluminium Association Japan Aluminium Association Alro S.A, R omania Revised: January 2015 Supersedes: February 2009 © Copyright 2015, The Aluminum Association, Inc. Unauthorized reproduction and sale by photocopy or any other method is illegal . Use of the Information The Aluminum Association has used its best efforts in compiling the information contained in this publication. Although the Association believes that its compilation procedures are reliable, it does not warrant, either expressly or impliedly, the accuracy or completeness of this information. The Aluminum Association assumes no responsibility or liability for the use of the information herein. All Aluminum Association published standards, data, specifications and other material are reviewed at least every five years and revised, reaffirmed or withdrawn. Users are advised to contact The Aluminum Association to ascertain whether the information in this publication has been superseded in the interim between publication and proposed use. CONTENTS Page FOREWORD ........................................................................................................... i SIGNATORIES TO THE DECLARATION OF ACCORD ..................................... ii-iii REGISTERED DESIGNATIONS AND CHEMICAL COMPOSITION
    [Show full text]
  • Liquid Penetrant and Magnetic Particle Testing at Level 2
    XA0054311 Liquid Penetrant and Magnetic , 1 Particle Testing at Level 2 Manual for the Syllabi Contained in IAEA-TECDOC-628, ' "-ft "Training Guidelines in Non-destructive Testing Techniques" 3 1-16 •\ TRAINING COURSE SERIES TRAINING COURSE SERIES No. 11 Liquid Penetrant and Magnetic Particle Testing at Level 2 Manual for the Syllabi Contained in IAEA-TECDOC-628, "Training Guidelines in Non-destructive Testing Techniques" INTERNATIONAL ATOMIC ENERGY AGENCY, 2000 The originating Section of this publication in the IAEA was: Industrial Applications and Chemistry Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria LIQUID PENETRANT AND MAGNETIC PARTICLE TESTING AT LEVEL 2 IAEA, VIENNA, 2000 IAEA-TCS-11 © IAEA, 2000 Printed by the IAEA in Austria February 2000 FOREWORD The International Atomic Energy Agency (IAEA) has been active in the promotion of non- destructive testing (NDT) technology in the world for many decades. The prime reason for this interest has been the need for stringent standards for quality control for safe operation of industrial as well a nuclear installations. It has successfully executed a number of programmes and regional projects of which NDT was an important part. Through these programmes a large number of persons have been trained in the member states and a state of self sufficiency in this area of technology has been achieved in many of them. All along there has been a realization of the need to have well established training guidelines and related books in order, firstly, to guide the IAEA experts who were involved in this training programme and, secondly, to achieve some level of international uniformity and harmonization of training materials and consequent competence of personnel.
    [Show full text]