The Role of Molecular Scaffolds at the Active Zone in Synaptic Vesicle Distribution and Release Probability
Total Page:16
File Type:pdf, Size:1020Kb
The Role of Molecular Scaffolds at the Active Zone in Synaptic Vesicle Distribution and Release Probability DISSERTATION To obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry and Pharmacy Freie Universität Berlin Berlin, 2016 by Christina Beis (née Hollmann) This thesis was completed under the supervision of Prof. Dr. Stephan Sigrist from February 2011 to June 2016 at the Institute for Biology/ Genetics of Freie Universität Berlin, Germany. 1st reviewer: Prof. Dr. Stephan Sigrist 2nd reviewer: Prof. Dr. Hans-Joachim Pflüger Date of Defense: 21.11.2016 Statement of Authorship I hereby declare that the work presented in this thesis has been written independently and without inappropriate support. All sources of information are referenced. I hereby declare that this thesis has not been submitted, either in the same or in a different form, to this or any other university for a degree. ____________________________ Christina Beis Contents 1. Summary / Zusammenfassung .................................................................................................. 1 Summary....................................................................................................................................... 1 Zusammenfassung ........................................................................................................................ 3 2. Introduction ..................................................................................................................................... 5 2.1. The Chemical Synapse ...................................................................................................... 5 2.2. The Synaptic Vesicle Cycle ................................................................................................ 8 2.2.1. Synaptic Vesicle Fusion ............................................................................................. 9 2.2.2. Synaptic Vesicle Endocytosis .................................................................................. 11 2.3. Short-Term Plasticity (STP), SV Release Probability (Pr and Pves) and Synaptic Strength12 2.4. Synaptic Transmission Modes: Synchronous, Asynchronous and Spontaneous Release; Tight and Loose Coupling ........................................................................................................... 13 2.5. Synaptic Vesicle Pools .................................................................................................... 16 2.6. (M)Unc13 ........................................................................................................................ 19 2.7. Scope of This Thesis ........................................................................................................ 20 2.8. The Aim - in a Nutshell ................................................................................................... 22 3. Materials and Methods ............................................................................................................... 23 3.1. The Drosophila Neuromuscular Junction as a Model Synapse ...................................... 23 3.2. Larval Dissection for Electrophysiological Recordings, Immunohistochemistry and Ca2+ Imaging ....................................................................................................................................... 25 3.3. Screening Tools ............................................................................................................... 26 3.3.1. Wide-field Microscopy Image Acquisition .............................................................. 26 3.3.2. Confocal Laser Scanning Microscopy ..................................................................... 26 3.3.3. Electroretinography (ERG) ...................................................................................... 26 3.4. Antibodies and Light Microscopy ................................................................................... 27 3.4.1. In the Spinophilin Project ....................................................................................... 27 3.4.2. In the Unc13 Project .............................................................................................. 27 3.5. Immunostaining ............................................................................................................. 28 3.6. Confocal Microscopy: Image Acquisition, Processing and Analysis ............................... 29 3.7. STED Microscopy ............................................................................................................ 30 3.8. Electrophysiology ........................................................................................................... 30 3.8.1. Recording of Synaptic Recovery ............................................................................. 31 3.8.2. Ca2+- Buffering with EGTA-AM and Bapta-AM (TEVC) ........................................... 31 3.8.3. Ca2+ Titration Experiment ....................................................................................... 32 3.9. Electron Microscopy ...................................................................................................... 33 3.9.1. Conventional Embedding at Room Temperature .................................................. 33 3.9.2. High Pressure Freeze / Freeze Substitution Embedding, with Optional Light Stimulation ............................................................................................................................. 34 3.9.3. Data Analysis .......................................................................................................... 35 3.10. Calcium Imaging in vivo .............................................................................................. 36 3.10.1. GCaMP5 Imaging .................................................................................................... 36 3.10.2. Data Acquisition and Analysis ................................................................................ 36 3.11. Genetics and Fly Lines ................................................................................................ 38 3.11.1. Generation of unc13ANull by Chemical Mutagenesis .............................................. 39 3.11.2. Generation of unc13BNull and ctrl ........................................................................... 39 3.12. Statistics ..................................................................................................................... 40 4. Results ............................................................................................................................................. 41 4.1. Two Unc13 Isoforms Are Located at the Larval Neuromuscular Junction ..................... 42 4.1.1. Distinct Sub-Active Zone Localization of Unc13A and Unc13B .............................. 45 4.1.2. Unc13B is Not Relevant for Synaptic Transmission ............................................... 47 4.1.3. SV Distribution Follows the Distinct Localization of Unc13 Isoforms .................... 50 4.1.4. Unc13A is Critical for Synaptic Transmission ......................................................... 53 4.1.5. Readily Releasable Pool and Forward Priming Rate Reduced in unc13ANull. ......... 56 4.1.6. Loss of Unc13A Reduces The Release Probability Pves ........................................... 60 4.1.7. Unc13A Organizes Nanodomain Coupling at NMJ Terminals ................................ 61 4.2. Loss of the Unc13 N-term Mobilizes and Delocalizes Unc13 ......................................... 64 4.2.1. Loss of the Unc13 N-term Affects Efficacy of Transmitter Release ........................ 67 4.2.2. Altered Synaptic Vesicle Distribution at Unc13 ΔN-term Driven Synapses ............ 68 4.2.3. Unc13AΔN-term GFP has a Strong Asynchronous Component of Release .................... 71 4.2.4. The N-term Of Unc13 Determines The Site of Synaptic Vesicle Fusion ................. 76 4.3. In brpnude the Synaptic Vesicle Refilling is Reduced, but Neither the Recovery Rate nor the Readily Releasable Pool is Altered ....................................................................................... 78 4.4. Towards the Ultrastructural Identification of SV Fusion Sites and Recycling Activity at Individual AZs ............................................................................................................................. 82 4.5. Identification of Novel Synaptic Proteins at the Active Zone ......................................... 85 4.5.1. The Role of Phosphatidylinositol-4 Kinase IIIα at the Synapse .............................. 86 4.5.2. The Role of Rabconnectin-3B at the Synapse ......................................................... 88 4.6. Spinophilin Regulates Active Zone Number, Size, and Function .................................... 90 4.7. The Main Findings in a Nutshell ..................................................................................... 94 5. Discussion ....................................................................................................................................... 96 5.1. The Spatial Arrangement of Synaptic Vesicles at the Synapse ...................................... 96 5.1.1. Unc13 Isoforms Specifically Influence Synaptic Vesicle Docking Sites and thus Synaptic Vesicle Release Probability ...................................................................................... 96 5.1.2. Parallel Release Pathways via the Two Unc13 Isoforms