FUNCTIONAL SELECTIVITY DOWNSTREAM of Gαi/O-COUPLED RECEPTORS Tarsis Brust Fernandes Purdue University

Total Page:16

File Type:pdf, Size:1020Kb

FUNCTIONAL SELECTIVITY DOWNSTREAM of Gαi/O-COUPLED RECEPTORS Tarsis Brust Fernandes Purdue University Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations January 2015 FUNCTIONAL SELECTIVITY DOWNSTREAM OF Gαi/o-COUPLED RECEPTORS Tarsis Brust Fernandes Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Recommended Citation Brust Fernandes, Tarsis, "FUNCTIONAL SELECTIVITY DOWNSTREAM OF Gαi/o-COUPLED RECEPTORS" (2015). Open Access Dissertations. 1448. https://docs.lib.purdue.edu/open_access_dissertations/1448 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated 1/15/2015 PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Tarsis Brust Fernandes Entitled FUNCTIONAL SELECTIVITY DOWNSTREAM OF Gαi/o-COUPLED RECEPTORS For the degree of Doctor of Philosophy Is approved by the final examining committee: Val J. Watts Chair Jean-Christophe Rochet Gregory H. Hockerman Donald F. Ready To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Val J. Watts Approved by Major Professor(s): Jean-Christophe Rochet 7/13/15 Approved by: Head of the Departmental Graduate Program Date FUNCTIONAL SELECTIVITY DOWNSTREAM OF Gαi/o-COUPLED RECEPTORS A Dissertation Submitted to the Faculty of Purdue University by Tarsis Brust Fernandes In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2015 Purdue University West Lafayette, Indiana ! ii I dedicate this dissertation to my lovely wife, Isabelle Verona Brust, who has been near me helping and supporting me throughout my graduate studies. I also dedicate this dissertation to my parents, Juares and Ariadne Fernandes, who have always loved me and from whom I still learn extensively about the values of life. Finally, I dedicate this dissertation to my sister, Larissa Brust Fernandes, for her friendship and care. ! iii ACKNOWLEDGEMENTS I wish to thank my mentor, Dr. Val J. Watts, for his sustained support and effort to help me becoming a better scientist and a better person. I will proudly carry his name with me for the rest of my scientific career and his lessons for the rest of my life. I would also like to thank the members of my thesis advisory committee, Dr. Jean-Christophe Rochet, Dr. Gregory Hockerman, and Dr. Donald Ready. I would like to thank the past and current members of the Watts laboratory, Dr. Jason Conley, Elisabeth Garland-Kuntz, Dr. John McCorvy, Dr. Karin Ejendal, Monica Velasquez, and Trevor Doyle, for their friendship, conversations, and help with scientific projects. I would also like to thank the people who collaborated with us in the various scientific projects that I participated during graduate school, especially Dr. David Roman, Michael Hayes, Dr. Kevin Burris, Dr. Richard van Rijn, Doungkamol Alongkronrusmee, Dr. Catherine Hill, Dr. Mingji Dai, and Dr. Yoon Yeo. I would also like to thank my past research advisors, Dr. Fabio Alves, Dr. David William Provance Jr., and Dr. Octavio Fernandes, for their patience and lessons in the beginning of my scientific career. I would also like to thank my many friends who supported me and provided numerous entertaining activities in my free time. In particular, I would like to thank all my soccer friends and also the members of the Purdue Brazilian Jiu Jitsu club, the Purdue Muay Thai club, and Central Presbyterian Church. ! iv Finally, I wish to thank God for everything and my lovely wife Isabelle Verona Brust for her sustained love, care, and support during graduate school. I would also like to thank her for designing the schematic figures in this dissertation. ! v TABLE OF CONTENTS Page ABSTRACT ....................................................................................................................... xi LIST OF PUBLICATIONS ............................................................................................. xiii! CHAPTER 1. INTRODUCTION ........................................................................................1 1.1 G protein-coupled receptors (GPCRs) ...................................................................1 1.1.1 Therapeutic relevance .....................................................................................1 1.1.2 Families of GPCRs .........................................................................................2 1.1.3 Structure of GPCRs ........................................................................................4 1.1.4 Signaling properties of GPCRs .......................................................................6 1.1.4.1 Signaling cycle ................................................................................6 1.1.4.2 Gα subunits ......................................................................................8 1.1.4.3 Gβγ subunits ....................................................................................9 1.1.4.4 β-arrestins ......................................................................................11 1.1.5 Adenylyl cyclases .........................................................................................13 1.1.5.1 Physiological functions of adenylyl cyclases ................................15 1.1.6 Complex signaling pathways ........................................................................19 1.1.6.1 ERK phosphorylation .....................................................................19 1.1.6.2 Heterologous sensitization .............................................................22 ! vi Page 1.1.6.3 Dynamic mass redistribution .........................................................24 1.2 Functional selectivity ...........................................................................................25 1.2.1 History and definition ...................................................................................25 1.2.2 Clinical relevance and examples ...................................................................27 1.2.3 Quantification of functional selectivity ........................................................30 1.2.3.1 Equimolar comparison ...................................................................31 1.2.3.2 Equiactive comparison ...................................................................31 1.2.3.3 The Black and Leff operational model ..........................................32 1.2.3.4 Transduction coefficient ................................................................34 1.2.3.5 Sigma comparison ..........................................................................35 1.3 Dopamine receptors ..............................................................................................36 1.3.1 Dopamine: neuroanatomy and function ........................................................36 1.3.2 Signaling properties and expression patterns of dopamine receptors ...........38 1.3.3 Dysfunctions in the dopaminergic system ....................................................41 1.4 Opioid receptors ...................................................................................................45 1.4.1 Neuroanatomy and function of opioid receptors ..........................................45 1.4.2 Ligands of the µ-opioid receptor as analgesics .............................................48 1.4.2.1 Ligand-directed functional selectivity at the µ-opioid receptor and type 1 adenylyl cyclase ..............................................................................49 CHAPTER 2. NEW FUNCTIONAL ACTIVITY OF ARIPIPRAZOLE REVEALED: ROBUST ANTAGONISM OF D2 DOPAMINE RECEPTOR-STIMULATED Gβγ SIGNALING ......................................................................................................................53 ! vii Page 2.1 Introduction ..........................................................................................................53 2.2 Methods ................................................................................................................55 2.2.1 Compounds used ...........................................................................................55 2.2.2 Cell culture ....................................................................................................56 2.2.3 Gαi/o assay ....................................................................................................56 2.2.4 Gβγ assay ......................................................................................................57 2.2.5 Heterologous sensitization ............................................................................58 2.2.6 Dynamic mass redistribution ........................................................................58 2.2.7 Data collection and analysis ..........................................................................60 2.3 Results ..................................................................................................................60 2.3.1 Aripiprazole is a partial agonist for Gα activation through the DRD2 ........60 2.3.2 Aripiprazole is an antagonist of Gβγ signaling through the DRD2 ..............63 2.3.3 Aripiprazole’s effects on heterologous sensitization ....................................65 2.3.4 Aripiprazole’s
Recommended publications
  • Mir-338-3P Is Regulated by Estrogens Through GPER in Breast Cancer Cells and Cancer-Associated Fibroblasts (Cafs)
    cells Article miR-338-3p Is Regulated by Estrogens through GPER in Breast Cancer Cells and Cancer-Associated Fibroblasts (CAFs) Adele Vivacqua 1,*, Anna Sebastiani 1, Anna Maria Miglietta 2, Damiano Cosimo Rigiracciolo 1, Francesca Cirillo 1, Giulia Raffaella Galli 1, Marianna Talia 1, Maria Francesca Santolla 1, Rosamaria Lappano 1, Francesca Giordano 1, Maria Luisa Panno 1 and Marcello Maggiolini 1,* 1 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; [email protected] (A.S.); [email protected] (D.C.R.); [email protected] (F.C.); [email protected] (G.R.G.); [email protected] (M.T.); [email protected] (M.F.S.); [email protected] (R.L.); [email protected] (F.G.); [email protected] (M.L.P.) 2 Regional HospitalCosenza, 87100 Cosenza, Italy; [email protected] * Correspondence: [email protected] (A.V.); [email protected] (M.M.); Tel.: +39-0984-493-048 (A.V.); +39-0984-493-076 (M.M.) Received: 12 October 2018; Accepted: 7 November 2018; Published: 9 November 2018 Abstract: Estrogens acting through the classic estrogen receptors (ERs) and the G protein estrogen receptor (GPER) regulate the expression of diverse miRNAs, small sequences of non-coding RNA involved in several pathophysiological conditions, including breast cancer. In order to provide novel insights on miRNAs regulation by estrogens in breast tumor, we evaluated the expression of 754 miRNAs by TaqMan Array in ER-negative and GPER-positive SkBr3 breast cancer cells and cancer-associated fibroblasts (CAFs) upon 17β-estradiol (E2) treatment. Various miRNAs were regulated by E2 in a peculiar manner in SkBr3 cancer cells and CAFs, while miR-338-3p displayed a similar regulation in both cell types.
    [Show full text]
  • Profiling G Protein-Coupled Receptors of Fasciola Hepatica Identifies Orphan Rhodopsins Unique to Phylum Platyhelminthes
    bioRxiv preprint doi: https://doi.org/10.1101/207316; this version posted October 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Profiling G protein-coupled receptors of Fasciola hepatica 2 identifies orphan rhodopsins unique to phylum 3 Platyhelminthes 4 5 Short title: Profiling G protein-coupled receptors (GPCRs) in Fasciola hepatica 6 7 Paul McVeigh1*, Erin McCammick1, Paul McCusker1, Duncan Wells1, Jane 8 Hodgkinson2, Steve Paterson3, Angela Mousley1, Nikki J. Marks1, Aaron G. Maule1 9 10 11 1Parasitology & Pathogen Biology, The Institute for Global Food Security, School of 12 Biological Sciences, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn 13 Road, Belfast, BT9 7BL, UK 14 15 2 Institute of Infection and Global Health, University of Liverpool, Liverpool, UK 16 17 3 Institute of Integrative Biology, University of Liverpool, Liverpool, UK 18 19 * Corresponding author 20 Email: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/207316; this version posted October 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 Abstract 23 G protein-coupled receptors (GPCRs) are established drug targets. Despite their 24 considerable appeal as targets for next-generation anthelmintics, poor understanding 25 of their diversity and function in parasitic helminths has thwarted progress towards 26 GPCR-targeted anti-parasite drugs.
    [Show full text]
  • Function-Related Dynamics in Multi-Spanning Helical Membrane Proteins Revealed by Solution NMR
    membranes Review Function-Related Dynamics in Multi-Spanning Helical Membrane Proteins Revealed by Solution NMR Koh Takeuchi 1,* , Yutaka Kofuku 2, Shunsuke Imai 3, Takumi Ueda 2, Yuji Tokunaga 1, Yuki Toyama 2 , Yutaro Shiraishi 3 and Ichio Shimada 2,3,* 1 Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Aomi, Koto, Tokyo 135-0064, Japan; [email protected] 2 Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan; [email protected] (Y.K.); [email protected] (T.U.); [email protected] (Y.T.) 3 Center for Biosystems Dynamics Research, RIKEN, Suehiro, Tsurumi, Yokohama 230-0045, Japan; [email protected] (S.I.); [email protected] (Y.S.) * Correspondence: [email protected] (K.T.); [email protected] (I.S.) Abstract: A primary biological function of multi-spanning membrane proteins is to transfer informa- tion and/or materials through a membrane by changing their conformations. Therefore, particular dynamics of the membrane proteins are tightly associated with their function. The semi-atomic resolution dynamics information revealed by NMR is able to discriminate function-related dynamics from random fluctuations. This review will discuss several studies in which quantitative dynamics information by solution NMR has contributed to revealing the structural basis of the function of multi-spanning membrane proteins, such as ion channels, GPCRs, and transporters. Citation: Takeuchi, K.; Kofuku, Y.; Keywords: membrane protein; NMR; ion channel; GPCR; transporter; dynamics Imai, S.; Ueda, T.; Tokunaga, Y.; Toyama, Y.; Shiraishi, Y.; Shimada, I.
    [Show full text]
  • From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia J
    REVIEW The Neuropsychopharmacology of Phencyclidine: From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia J. David Jentsch, Ph.D., and Robert H. Roth, Ph.D. Administration of noncompetitive NMDA/glutamate effects of these drugs are discussed, especially with regard to receptor antagonists, such as phencyclidine (PCP) and differing profiles following single-dose and long-term ketamine, to humans induces a broad range of exposure. The neurochemical effects of NMDA receptor schizophrenic-like symptomatology, findings that have antagonist administration are argued to support a contributed to a hypoglutamatergic hypothesis of neurobiological hypothesis of schizophrenia, which includes schizophrenia. Moreover, a history of experimental pathophysiology within several neurotransmitter systems, investigations of the effects of these drugs in animals manifested in behavioral pathology. Future directions for suggests that NMDA receptor antagonists may model some the application of NMDA receptor antagonist models of behavioral symptoms of schizophrenia in nonhuman schizophrenia to preclinical and pathophysiological research subjects. In this review, the usefulness of PCP are offered. [Neuropsychopharmacology 20:201–225, administration as a potential animal model of schizophrenia 1999] © 1999 American College of is considered. To support the contention that NMDA Neuropsychopharmacology. Published by Elsevier receptor antagonist administration represents a viable Science Inc. model of schizophrenia, the behavioral and neurobiological KEY WORDS: Ketamine; Phencyclidine; Psychotomimetic; widely from the administration of purportedly psychot- Memory; Catecholamine; Schizophrenia; Prefrontal cortex; omimetic drugs (Snyder 1988; Javitt and Zukin 1991; Cognition; Dopamine; Glutamate Jentsch et al. 1998a), to perinatal insults (Lipska et al. Biological psychiatric research has seen the develop- 1993; El-Khodor and Boksa 1997; Moore and Grace ment of many putative animal models of schizophrenia.
    [Show full text]
  • Smoothened Variants Explain the Majority of Drug Resistance in Basal Cell Carcinoma
    Article Smoothened Variants Explain the Majority of Drug Resistance in Basal Cell Carcinoma Graphical Abstract Authors Scott X. Atwood, Kavita Y. Sarin, ..., Anthony E. Oro, Jean Y. Tang Correspondence [email protected] (A.E.O.), [email protected] (J.Y.T.) In Brief Atwood et al. identify key SMO mutations that confer resistance to SMO inhibitors in basal cell carcinomas (BCC) and show that these mutants respond to aPKC-i/l or GLI2 inhibitors, providing potential approaches for treating BCCs resistant to SMO inhibitors. Highlights Accession Numbers d Functional SMO mutations are detected in the majority of GSE58377 SMO inhibitor-resistant BCCs d Resistance occurs by suppressing drug responsiveness and SMO autoinhibition d SMO mutants explain both intrinsic and acquired tumor resistance d Inhibition of aPKC-i/l or GLI2 bypasses SMO variants to suppress Hedgehog signaling Atwood et al., 2015, Cancer Cell 27, 342–353 March 9, 2015 ª2015 Elsevier Inc. http://dx.doi.org/10.1016/j.ccell.2015.02.002 Cancer Cell Article Smoothened Variants Explain the Majority of Drug Resistance in Basal Cell Carcinoma Scott X. Atwood,1,2 Kavita Y. Sarin,1,2 Ramon J. Whitson,1 Jiang R. Li,1 Geurim Kim,1 Melika Rezaee,1 Mina S. Ally,1 Jinah Kim,1 Catherine Yao,1 Anne Lynn S. Chang,1,3 Anthony E. Oro,1,3,* and Jean Y. Tang1,3,* 1Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA 2Co-first author 3Co-senior author *Correspondence: [email protected] (A.E.O.), [email protected] (J.Y.T.) http://dx.doi.org/10.1016/j.ccell.2015.02.002 SUMMARY Advanced basal cell carcinomas (BCCs) frequently acquire resistance to Smoothened (SMO) inhibitors through unknown mechanisms.
    [Show full text]
  • Gs- Versus Golf-Dependent Functional Selectivity Mediated by the Dopamine D1 Receptor
    ARTICLE DOI: 10.1038/s41467-017-02606-w OPEN Gs- versus Golf-dependent functional selectivity mediated by the dopamine D1 receptor Hideaki Yano1, Ning-Sheng Cai1, Min Xu1, Ravi Kumar Verma1, William Rea1, Alexander F. Hoffman1, Lei Shi1, Jonathan A. Javitch2,3, Antonello Bonci1 & Sergi Ferré1 The two highly homologous subtypes of stimulatory G proteins Gαs (Gs) and Gαolf (Golf) display contrasting expression patterns in the brain. Golf is predominant in the striatum, while 1234567890():,; Gs is predominant in the cortex. Yet, little is known about their functional distinctions. The dopamine D1 receptor (D1R) couples to Gs/olf and is highly expressed in cortical and striatal areas, making it an important therapeutic target for neuropsychiatric disorders. Using novel drug screening methods that allow analysis of specific G-protein subtype coupling, we found that, relative to dopamine, dihydrexidine and N-propyl-apomorphine behave as full D1R agonists when coupled to Gs, but as partial D1R agonists when coupled to Golf. The Gs/Golf- dependent biased agonism by dihydrexidine was consistently observed at the levels of cel- lular signaling, neuronal function, and behavior. Our findings of Gs/Golf-dependent functional selectivity in D1R ligands open a new avenue for the treatment of cortex-specific or striatum- specific neuropsychiatric dysfunction. 1 National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA. 2 Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA. 3 Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA. Correspondence and requests for materials should be addressed to H.Y.
    [Show full text]
  • Making Sense of Pharmacology: Inverse Agonism and Functional Selectivity Kelly A
    International Journal of Neuropsychopharmacology (2018) 21(10): 962–977 doi:10.1093/ijnp/pyy071 Advance Access Publication: August 6, 2018 Review review Making Sense of Pharmacology: Inverse Agonism and Functional Selectivity Kelly A. Berg and William P. Clarke Department of Pharmacology, University of Texas Health, San Antonio, Texas. Correspondence: William P. Clarke, PhD, Department of Pharmacology, Mail Stop 7764, UT Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 ([email protected]). Abstract Constitutive receptor activity/inverse agonism and functional selectivity/biased agonism are 2 concepts in contemporary pharmacology that have major implications for the use of drugs in medicine and research as well as for the processes of new drug development. Traditional receptor theory postulated that receptors in a population are quiescent unless activated by a ligand. Within this framework ligands could act as agonists with various degrees of intrinsic efficacy, or as antagonists with zero intrinsic efficacy. We now know that receptors can be active without an activating ligand and thus display “constitutive” activity. As a result, a new class of ligand was discovered that can reduce the constitutive activity of a receptor. These ligands produce the opposite effect of an agonist and are called inverse agonists. The second topic discussed is functional selectivity, also commonly referred to as biased agonism. Traditional receptor theory also posited that intrinsic efficacy is a single drug property independent of the system in which the drug acts. However, we now know that a drug, acting at a single receptor subtype, can have multiple intrinsic efficacies that differ depending on which of the multiple responses coupled to a receptor is measured.
    [Show full text]
  • System, Method and Software for Calculation of a Cannabis Drug Efficiency Index for the Reduction of Inflammation
    International Journal of Molecular Sciences Article System, Method and Software for Calculation of a Cannabis Drug Efficiency Index for the Reduction of Inflammation Nicolas Borisov 1,† , Yaroslav Ilnytskyy 2,3,†, Boseon Byeon 2,3,4,†, Olga Kovalchuk 2,3 and Igor Kovalchuk 2,3,* 1 Moscow Institute of Physics and Technology, 9 Institutsky lane, Dolgoprudny, Moscow Region 141701, Russia; [email protected] 2 Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; [email protected] (Y.I.); [email protected] (B.B.); [email protected] (O.K.) 3 Pathway Rx., 16 Sandstone Rd. S., Lethbridge, AB T1K 7X8, Canada 4 Biomedical and Health Informatics, Computer Science Department, State University of New York, 2 S Clinton St, Syracuse, NY 13202, USA * Correspondence: [email protected] † First three authors contributed equally to this research. Abstract: There are many varieties of Cannabis sativa that differ from each other by composition of cannabinoids, terpenes and other molecules. The medicinal properties of these cultivars are often very different, with some being more efficient than others. This report describes the development of a method and software for the analysis of the efficiency of various cannabis extracts to detect the anti-inflammatory properties of the various cannabis extracts. The method uses high-throughput gene expression profiling data but can potentially use other omics data as well. According to the signaling pathway topology, the gene expression profiles are convoluted into the signaling pathway activities using a signaling pathway impact analysis (SPIA) method. The method was tested by inducing inflammation in human 3D epithelial tissues, including intestine, oral and skin, and then exposing these tissues to various extracts and then performing transcriptome analysis.
    [Show full text]
  • Tamoxifen Resistance: Emerging Molecular Targets
    International Journal of Molecular Sciences Review Tamoxifen Resistance: Emerging Molecular Targets Milena Rondón-Lagos 1,*,†, Victoria E. Villegas 2,3,*,†, Nelson Rangel 1,2,3, Magda Carolina Sánchez 2 and Peter G. Zaphiropoulos 4 1 Department of Medical Sciences, University of Turin, Turin 10126, Italy; [email protected] 2 Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá 11001000, Colombia; [email protected] 3 Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá 11001000, Colombia 4 Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14183, Sweden; [email protected] * Correspondence: [email protected] (M.R.-L.); [email protected] (V.E.V.); Tel.: +39-01-1633-4127 (ext. 4388) (M.R.-L.); +57-1-297-0200 (ext. 4029) (V.E.V.); Fax: +39-01-1663-5267 (M.R.-L.); +57-1-297-0200 (V.E.V.) † These authors contributed equally to this work. Academic Editor: William Chi-shing Cho Received: 5 July 2016; Accepted: 16 August 2016; Published: 19 August 2016 Abstract: 17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells.
    [Show full text]
  • Neuroenhancement in Healthy Adults, Part I: Pharmaceutical
    l Rese ca arc ni h li & C f B o i o l e Journal of a t h n Fond et al., J Clinic Res Bioeth 2015, 6:2 r i c u s o J DOI: 10.4172/2155-9627.1000213 ISSN: 2155-9627 Clinical Research & Bioethics Review Article Open Access Neuroenhancement in Healthy Adults, Part I: Pharmaceutical Cognitive Enhancement: A Systematic Review Fond G1,2*, Micoulaud-Franchi JA3, Macgregor A2, Richieri R3,4, Miot S5,6, Lopez R2, Abbar M7, Lancon C3 and Repantis D8 1Université Paris Est-Créteil, Psychiatry and Addiction Pole University Hospitals Henri Mondor, Inserm U955, Eq 15 Psychiatric Genetics, DHU Pe-psy, FondaMental Foundation, Scientific Cooperation Foundation Mental Health, National Network of Schizophrenia Expert Centers, F-94000, France 2Inserm 1061, University Psychiatry Service, University of Montpellier 1, CHU Montpellier F-34000, France 3POLE Academic Psychiatry, CHU Sainte-Marguerite, F-13274 Marseille, Cedex 09, France 4 Public Health Laboratory, Faculty of Medicine, EA 3279, F-13385 Marseille, Cedex 05, France 5Inserm U1061, Idiopathic Hypersomnia Narcolepsy National Reference Centre, Unit of sleep disorders, University of Montpellier 1, CHU Montpellier F-34000, Paris, France 6Inserm U952, CNRS UMR 7224, Pierre and Marie Curie University, F-75000, Paris, France 7CHU Carémeau, University of Nîmes, Nîmes, F-31000, France 8Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Eschenallee 3, 14050 Berlin, Germany *Corresponding author: Dr. Guillaume Fond, Pole de Psychiatrie, Hôpital A. Chenevier, 40 rue de Mesly, Créteil F-94010, France, Tel: (33)178682372; Fax: (33)178682381; E-mail: [email protected] Received date: January 06, 2015, Accepted date: February 23, 2015, Published date: February 28, 2015 Copyright: © 2015 Fond G, et al.
    [Show full text]
  • When Simple Agonism Is Not Enough: Emerging Modalities of GPCR Ligands Nicola J
    When simple agonism is not enough: emerging modalities of GPCR ligands Nicola J. Smith, Kirstie A. Bennett, Graeme Milligan To cite this version: Nicola J. Smith, Kirstie A. Bennett, Graeme Milligan. When simple agonism is not enough: emerging modalities of GPCR ligands. Molecular and Cellular Endocrinology, Elsevier, 2010, 331 (2), pp.241. 10.1016/j.mce.2010.07.009. hal-00654484 HAL Id: hal-00654484 https://hal.archives-ouvertes.fr/hal-00654484 Submitted on 22 Dec 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: When simple agonism is not enough: emerging modalities of GPCR ligands Authors: Nicola J. Smith, Kirstie A. Bennett, Graeme Milligan PII: S0303-7207(10)00370-9 DOI: doi:10.1016/j.mce.2010.07.009 Reference: MCE 7596 To appear in: Molecular and Cellular Endocrinology Received date: 15-1-2010 Revised date: 15-6-2010 Accepted date: 13-7-2010 Please cite this article as: Smith, N.J., Bennett, K.A., Milligan, G., When simple agonism is not enough: emerging modalities of GPCR ligands, Molecular and Cellular Endocrinology (2010), doi:10.1016/j.mce.2010.07.009 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Adrenoceptor (1) Antibiotic (2) Cyclic Nucleotide (4) Dopamine (5) Hormone (6) Serotonin (8) Other (9) Phosphorylation (7) Ca2+
    Supplementary Fig. 1 Lifespan-extending compounds can show structural similarity or have common substructures. Cl NO2 H doxycycline (2) N N NH 2 O H O H O O H O O O O O H O NH NH Cl O O 2 N N guanfacine (1) O H N N H H H nitrendipine (3) S Cl N H promethazine (9) NO2 F N NH2 F N demeclocycline (2) O H O O H O O F N NH O O H O O Cl S N NH N guanabenz (1) O O 2 fluphenthixol (5) Br CN O H N H N nicardipine (3) S N H Cl O H N N propionylpromazine (5) O O H O H O O H O O O H Cl N S Br LFM−A13 (7) NH2 S S O H H H chlorprothixene (5) thioridazine (5) N N O H minocycline (2) HO S O β-estradiol (6) O H H N H N H O H O danazol (6) N N cyproterone (6) H N H O H O methylergonovine (5) HO H pergolide (5) O N O O O N O HN O O H O N N H 3C H H O O H Cl H O H C H 3 O H N N H N H N H H O metergoline (8) dihydroergocristine (5) Cortexolone (5) HO O N (R,R)−cis−Diethyltetrahydro−2,8−chrysenediol (6) O H O H N O vincristine (9) N H N HN H O H H N H O N N N N O N H O O O N N dihydroergotamine (8) H O Cl O H O H O nortriptyline (1) S O mianserin (8) octoclothepin (5) loratadine (9) H N N Cl N N N cinnarizine (3) O N N N H Cl N Cl N N N O O N loxapine (5) N amoxapine (1) oxatomide (9) O O Adrenoceptor (1) Antibiotic (2) Ca2+ Channel (3) Cyclic Nucleotide (4) Dopamine (5) Hormone (6) Phosphorylation (7) Serotonin (8) Other (9) Supplementary Fig.
    [Show full text]