Supporting Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mir-338-3P Is Regulated by Estrogens Through GPER in Breast Cancer Cells and Cancer-Associated Fibroblasts (Cafs)
cells Article miR-338-3p Is Regulated by Estrogens through GPER in Breast Cancer Cells and Cancer-Associated Fibroblasts (CAFs) Adele Vivacqua 1,*, Anna Sebastiani 1, Anna Maria Miglietta 2, Damiano Cosimo Rigiracciolo 1, Francesca Cirillo 1, Giulia Raffaella Galli 1, Marianna Talia 1, Maria Francesca Santolla 1, Rosamaria Lappano 1, Francesca Giordano 1, Maria Luisa Panno 1 and Marcello Maggiolini 1,* 1 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; [email protected] (A.S.); [email protected] (D.C.R.); [email protected] (F.C.); [email protected] (G.R.G.); [email protected] (M.T.); [email protected] (M.F.S.); [email protected] (R.L.); [email protected] (F.G.); [email protected] (M.L.P.) 2 Regional HospitalCosenza, 87100 Cosenza, Italy; [email protected] * Correspondence: [email protected] (A.V.); [email protected] (M.M.); Tel.: +39-0984-493-048 (A.V.); +39-0984-493-076 (M.M.) Received: 12 October 2018; Accepted: 7 November 2018; Published: 9 November 2018 Abstract: Estrogens acting through the classic estrogen receptors (ERs) and the G protein estrogen receptor (GPER) regulate the expression of diverse miRNAs, small sequences of non-coding RNA involved in several pathophysiological conditions, including breast cancer. In order to provide novel insights on miRNAs regulation by estrogens in breast tumor, we evaluated the expression of 754 miRNAs by TaqMan Array in ER-negative and GPER-positive SkBr3 breast cancer cells and cancer-associated fibroblasts (CAFs) upon 17β-estradiol (E2) treatment. Various miRNAs were regulated by E2 in a peculiar manner in SkBr3 cancer cells and CAFs, while miR-338-3p displayed a similar regulation in both cell types. -
A 3' UTR SNP Rs885863, a Cis-Eqtl for the Circadian Gene VIPR2 and Lincrna 689, Is Associated with Opioid Addiction
RESEARCH ARTICLE A 3' UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction 1 1 2 3 4 Orna LevranID *, Matthew Randesi , John Rotrosen , Jurg Ott , Miriam Adelson , Mary Jeanne Kreek1 1 The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York, United States of America, 2 NYU School of Medicine, New York, New York, United States of America, 3 The Laboratory of Statistical Genetics, The Rockefeller University, New York, New York, United States of a1111111111 America, 4 Dr. Miriam and Sheldon G. Adelson Clinic for Drug Abuse Treatment and Research, Las Vegas, a1111111111 Nevada, United States of America a1111111111 a1111111111 * [email protected] a1111111111 Abstract There is a reciprocal relationship between the circadian and the reward systems. Polymor- OPEN ACCESS phisms in several circadian rhythm-related (clock) genes were associated with drug addic- Citation: Levran O, Randesi M, Rotrosen J, Ott J, tion. This study aims to search for associations between 895 variants in 39 circadian Adelson M, Kreek MJ (2019) A 3' UTR SNP rhythm-related genes and opioid addiction (OUD). Genotyping was performed with the rs885863, a cis-eQTL for the circadian gene VIPR2 ® and lincRNA 689, is associated with opioid Smokescreen array. Ancestry was verified by principal/MDS component analysis and the addiction. PLoS ONE 14(11): e0224399. https:// sample was limited to European Americans (EA) (OUD; n = 435, controls; n = 138). Nomi- doi.org/10.1371/journal.pone.0224399 nally significant associations (p < 0.01) were detected for several variants in genes encoding Editor: Huiping Zhang, Boston University, UNITED vasoactive intestinal peptide receptor 2 (VIPR2), period circadian regulator 2 (PER2), STATES casein kinase 1 epsilon (CSNK1E), and activator of transcription and developmental regula- Received: August 22, 2019 tor (AUTS2), but no signal survived correction for multiple testing. -
The Role of the Mtor Pathway in Developmental Reprogramming Of
THE ROLE OF THE MTOR PATHWAY IN DEVELOPMENTAL REPROGRAMMING OF HEPATIC LIPID METABOLISM AND THE HEPATIC TRANSCRIPTOME AFTER EXPOSURE TO 2,2',4,4'- TETRABROMODIPHENYL ETHER (BDE-47) An Honors Thesis Presented By JOSEPH PAUL MCGAUNN Approved as to style and content by: ________________________________________________________** Alexander Suvorov 05/18/20 10:40 ** Chair ________________________________________________________** Laura V Danai 05/18/20 10:51 ** Committee Member ________________________________________________________** Scott C Garman 05/18/20 10:57 ** Honors Program Director ABSTRACT An emerging hypothesis links the epidemic of metabolic diseases, such as non-alcoholic fatty liver disease (NAFLD) and diabetes with chemical exposures during development. Evidence from our lab and others suggests that developmental exposure to environmentally prevalent flame-retardant BDE47 may permanently reprogram hepatic lipid metabolism, resulting in an NAFLD-like phenotype. Additionally, we have demonstrated that BDE-47 alters the activity of both mTOR complexes (mTORC1 and 2) in hepatocytes. The mTOR pathway integrates environmental information from different signaling pathways, and regulates key cellular functions such as lipid metabolism, innate immunity, and ribosome biogenesis. Thus, we hypothesized that the developmental effects of BDE-47 on liver lipid metabolism are mTOR-dependent. To assess this, we generated mice with liver-specific deletions of mTORC1 or mTORC2 and exposed these mice and their respective controls perinatally to -
Melatonin-The Hormone of Darkness - O
PHYSIOLOGY AND MAINTENANCE – Vol. III - Melatonin-The Hormone of Darkness - O. Vakkuri MELATONIN―THE HORMONE OF DARKNESS O. Vakkuri Department of Physiology, University of Oulu, Finland. Keywords: Pineal gland, retina, suprachiasmatic nuclei, circadian and circannual rhythms. Contents 1. Introduction 2. Melatonin as Pineal Hormone of Darkness 3. Melatonin in Other Tissues 4. Circadian Secretion Pattern of Melatonin 5. Seasonal Secretion of Melatonin 6. Metabolism of Melatonin 7. Melatonin Receptors 8. Biological Action Profile of Melatonin 8.1. Melatonin and Sleep 8.2. Melatonin as Antioxidant and Cancer 8.3. Melatonin, Mental Health and Aging 9. Future Perspectives 10. Conclusions Glossary Bibliography Biographical Sketch Summary Melatonin, the pineal hormone of darkness, was originally found and chemically characterized to N-acetyl-5-methoxytryptamine in bovine pineal extracts in the late 1950s. Since then melatonin has been studied more and more intensively and not only in humans and several animal species but lately also in plants. After its first-described biological effect, i.e. skin-lightening effect in lower vertebrates, melatonin was shortly known as a rhythm marker due to its circadian biosynthesis and secretion pattern in the pineal gland: melatonin is synthesized and secreted during the night, i.e. the dark period of the day.UNESCO This circadian rhythm is endoge – nouslyEOLSS regulated by the biological clock in the suprachiasmatic nuclei of the hypothalamus. Environmental light has a clear inhibiting effectSAMPLE on melatonin biosynthesis, CHAPTERS continuously entraining the melatonin rhythm so that endogenous and exogenous rhythms are maintained in the same phase. The entraining light information is transmitting via the eyes and the retinohypothalamic tract to the suprachiasmatic nuclei and then via the paraventricular nuclei to superior cervical ganglia from which along the sympathetic tract finally to the pineal gland. -
Profiling G Protein-Coupled Receptors of Fasciola Hepatica Identifies Orphan Rhodopsins Unique to Phylum Platyhelminthes
bioRxiv preprint doi: https://doi.org/10.1101/207316; this version posted October 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Profiling G protein-coupled receptors of Fasciola hepatica 2 identifies orphan rhodopsins unique to phylum 3 Platyhelminthes 4 5 Short title: Profiling G protein-coupled receptors (GPCRs) in Fasciola hepatica 6 7 Paul McVeigh1*, Erin McCammick1, Paul McCusker1, Duncan Wells1, Jane 8 Hodgkinson2, Steve Paterson3, Angela Mousley1, Nikki J. Marks1, Aaron G. Maule1 9 10 11 1Parasitology & Pathogen Biology, The Institute for Global Food Security, School of 12 Biological Sciences, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn 13 Road, Belfast, BT9 7BL, UK 14 15 2 Institute of Infection and Global Health, University of Liverpool, Liverpool, UK 16 17 3 Institute of Integrative Biology, University of Liverpool, Liverpool, UK 18 19 * Corresponding author 20 Email: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/207316; this version posted October 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 Abstract 23 G protein-coupled receptors (GPCRs) are established drug targets. Despite their 24 considerable appeal as targets for next-generation anthelmintics, poor understanding 25 of their diversity and function in parasitic helminths has thwarted progress towards 26 GPCR-targeted anti-parasite drugs. -
Smoothened Variants Explain the Majority of Drug Resistance in Basal Cell Carcinoma
Article Smoothened Variants Explain the Majority of Drug Resistance in Basal Cell Carcinoma Graphical Abstract Authors Scott X. Atwood, Kavita Y. Sarin, ..., Anthony E. Oro, Jean Y. Tang Correspondence [email protected] (A.E.O.), [email protected] (J.Y.T.) In Brief Atwood et al. identify key SMO mutations that confer resistance to SMO inhibitors in basal cell carcinomas (BCC) and show that these mutants respond to aPKC-i/l or GLI2 inhibitors, providing potential approaches for treating BCCs resistant to SMO inhibitors. Highlights Accession Numbers d Functional SMO mutations are detected in the majority of GSE58377 SMO inhibitor-resistant BCCs d Resistance occurs by suppressing drug responsiveness and SMO autoinhibition d SMO mutants explain both intrinsic and acquired tumor resistance d Inhibition of aPKC-i/l or GLI2 bypasses SMO variants to suppress Hedgehog signaling Atwood et al., 2015, Cancer Cell 27, 342–353 March 9, 2015 ª2015 Elsevier Inc. http://dx.doi.org/10.1016/j.ccell.2015.02.002 Cancer Cell Article Smoothened Variants Explain the Majority of Drug Resistance in Basal Cell Carcinoma Scott X. Atwood,1,2 Kavita Y. Sarin,1,2 Ramon J. Whitson,1 Jiang R. Li,1 Geurim Kim,1 Melika Rezaee,1 Mina S. Ally,1 Jinah Kim,1 Catherine Yao,1 Anne Lynn S. Chang,1,3 Anthony E. Oro,1,3,* and Jean Y. Tang1,3,* 1Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA 2Co-first author 3Co-senior author *Correspondence: [email protected] (A.E.O.), [email protected] (J.Y.T.) http://dx.doi.org/10.1016/j.ccell.2015.02.002 SUMMARY Advanced basal cell carcinomas (BCCs) frequently acquire resistance to Smoothened (SMO) inhibitors through unknown mechanisms. -
System, Method and Software for Calculation of a Cannabis Drug Efficiency Index for the Reduction of Inflammation
International Journal of Molecular Sciences Article System, Method and Software for Calculation of a Cannabis Drug Efficiency Index for the Reduction of Inflammation Nicolas Borisov 1,† , Yaroslav Ilnytskyy 2,3,†, Boseon Byeon 2,3,4,†, Olga Kovalchuk 2,3 and Igor Kovalchuk 2,3,* 1 Moscow Institute of Physics and Technology, 9 Institutsky lane, Dolgoprudny, Moscow Region 141701, Russia; [email protected] 2 Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; [email protected] (Y.I.); [email protected] (B.B.); [email protected] (O.K.) 3 Pathway Rx., 16 Sandstone Rd. S., Lethbridge, AB T1K 7X8, Canada 4 Biomedical and Health Informatics, Computer Science Department, State University of New York, 2 S Clinton St, Syracuse, NY 13202, USA * Correspondence: [email protected] † First three authors contributed equally to this research. Abstract: There are many varieties of Cannabis sativa that differ from each other by composition of cannabinoids, terpenes and other molecules. The medicinal properties of these cultivars are often very different, with some being more efficient than others. This report describes the development of a method and software for the analysis of the efficiency of various cannabis extracts to detect the anti-inflammatory properties of the various cannabis extracts. The method uses high-throughput gene expression profiling data but can potentially use other omics data as well. According to the signaling pathway topology, the gene expression profiles are convoluted into the signaling pathway activities using a signaling pathway impact analysis (SPIA) method. The method was tested by inducing inflammation in human 3D epithelial tissues, including intestine, oral and skin, and then exposing these tissues to various extracts and then performing transcriptome analysis. -
Tamoxifen Resistance: Emerging Molecular Targets
International Journal of Molecular Sciences Review Tamoxifen Resistance: Emerging Molecular Targets Milena Rondón-Lagos 1,*,†, Victoria E. Villegas 2,3,*,†, Nelson Rangel 1,2,3, Magda Carolina Sánchez 2 and Peter G. Zaphiropoulos 4 1 Department of Medical Sciences, University of Turin, Turin 10126, Italy; [email protected] 2 Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá 11001000, Colombia; [email protected] 3 Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá 11001000, Colombia 4 Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14183, Sweden; [email protected] * Correspondence: [email protected] (M.R.-L.); [email protected] (V.E.V.); Tel.: +39-01-1633-4127 (ext. 4388) (M.R.-L.); +57-1-297-0200 (ext. 4029) (V.E.V.); Fax: +39-01-1663-5267 (M.R.-L.); +57-1-297-0200 (V.E.V.) † These authors contributed equally to this work. Academic Editor: William Chi-shing Cho Received: 5 July 2016; Accepted: 16 August 2016; Published: 19 August 2016 Abstract: 17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. -
Hormonal Regulation of Oligodendrogenesis I: Effects Across the Lifespan
biomolecules Review Hormonal Regulation of Oligodendrogenesis I: Effects across the Lifespan Kimberly L. P. Long 1,*,†,‡ , Jocelyn M. Breton 1,‡,§ , Matthew K. Barraza 2 , Olga S. Perloff 3 and Daniela Kaufer 1,4,5 1 Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; [email protected] (J.M.B.); [email protected] (D.K.) 2 Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA; [email protected] 3 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA; [email protected] 4 Department of Integrative Biology, University of California, Berkeley, CA 94720, USA 5 Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada * Correspondence: [email protected] † Current address: Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA. ‡ These authors contributed equally to this work. § Current address: Department of Psychiatry, Columbia University, New York, NY 10027, USA. Abstract: The brain’s capacity to respond to changing environments via hormonal signaling is critical to fine-tuned function. An emerging body of literature highlights a role for myelin plasticity as a prominent type of experience-dependent plasticity in the adult brain. Myelin plasticity is driven by oligodendrocytes (OLs) and their precursor cells (OPCs). OPC differentiation regulates the trajectory of myelin production throughout development, and importantly, OPCs maintain the ability to proliferate and generate new OLs throughout adulthood. The process of oligodendrogenesis, Citation: Long, K.L.P.; Breton, J.M.; the‘creation of new OLs, can be dramatically influenced during early development and in adulthood Barraza, M.K.; Perloff, O.S.; Kaufer, D. -
Emerging Role of Tumor Cell Plasticity in Modifying Therapeutic Response
Signal Transduction and Targeted Therapy www.nature.com/sigtrans REVIEW ARTICLE OPEN Emerging role of tumor cell plasticity in modifying therapeutic response Siyuan Qin1, Jingwen Jiang1,YiLu 2,3, Edouard C. Nice4, Canhua Huang1,5, Jian Zhang2,3 and Weifeng He6,7 Resistance to cancer therapy is a major barrier to cancer management. Conventional views have proposed that acquisition of resistance may result from genetic mutations. However, accumulating evidence implicates a key role of non-mutational resistance mechanisms underlying drug tolerance, the latter of which is the focus that will be discussed here. Such non-mutational processes are largely driven by tumor cell plasticity, which renders tumor cells insusceptible to the drug-targeted pathway, thereby facilitating the tumor cell survival and growth. The concept of tumor cell plasticity highlights the significance of re-activation of developmental programs that are closely correlated with epithelial–mesenchymal transition, acquisition properties of cancer stem cells, and trans- differentiation potential during drug exposure. From observations in various cancers, this concept provides an opportunity for investigating the nature of anticancer drug resistance. Over the years, our understanding of the emerging role of phenotype switching in modifying therapeutic response has considerably increased. This expanded knowledge of tumor cell plasticity contributes to developing novel therapeutic strategies or combination therapy regimens using available anticancer drugs, which are likely to -
Subcellular Localization of MC4R with ADCY3 at Neuronal Primary Cilia Underlies a Common Pathway for Genetic Predisposition to Obesity
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Genet Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 July 08. Published in final edited form as: Nat Genet. 2018 February ; 50(2): 180–185. doi:10.1038/s41588-017-0020-9. Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity Jacqueline E. Siljee1,*, Yi Wang1,*, Adelaide A. Bernard1, Baran A. Ersoy1, Sumei Zhang1, Aaron Marley2, Mark Von Zastrow2, Jeremy F. Reiter3, and Christian Vaisse1,** 1Department of Medicine and Diabetes Center, University of California, San Francisco, California, USA 2Department of Psychiatry and Cellular & Molecular Pharmacology, University of California, San Francisco, California, USA 3Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, California, USA MAIN TEXT Most monogenic cases of obesity in humans have been linked to mutations in genes of the leptin-melanocortin pathway. Specifically, mutations in the Melanocortin-4 Receptor (MC4R), account for 3–5% of all severe obesity cases in humans1–3. Recently, adenylate cyclase 3 (ADCY3) mutations have been implicated in obesity4,5. ADCY3 is expressed at the primary cilia of neurons6, organelles that function as hubs for select signaling pathways. Mutations that disrupt the functions of primary cilia cause ciliopathies, rare recessive pleiotropic diseases, of which obesity is a cardinal manifestation7. We demonstrate that MC4R co-localizes with ADCY3 at the primary cilium of a subset of hypothalamic neurons, that obesity-associated MC4R mutations can impair ciliary localization and that inhibition of adenylyl-cyclase signaling at the primary cilia of these neurons increases body weight. -
Review of the Molecular Genetics of Basal Cell Carcinoma; Inherited Susceptibility, Somatic Mutations, and Targeted Therapeutics
cancers Review Review of the Molecular Genetics of Basal Cell Carcinoma; Inherited Susceptibility, Somatic Mutations, and Targeted Therapeutics James M. Kilgour , Justin L. Jia and Kavita Y. Sarin * Department of Dermatology, Stanford University School of Medcine, Stanford, CA 94305, USA; [email protected] (J.M.K.); [email protected] (J.L.J.) * Correspondence: [email protected] Simple Summary: Basal cell carcinoma is the most common human cancer worldwide. The molec- ular basis of BCC involves an interplay of inherited genetic susceptibility and somatic mutations, commonly induced by exposure to UV radiation. In this review, we outline the currently known germline and somatic mutations implicated in the pathogenesis of BCC with particular attention paid toward affected molecular pathways. We also discuss polymorphisms and associated phenotypic traits in addition to active areas of BCC research. We finally provide a brief overview of existing non-surgical treatments and emerging targeted therapeutics for BCC such as Hedgehog pathway inhibitors, immune modulators, and histone deacetylase inhibitors. Abstract: Basal cell carcinoma (BCC) is a significant public health concern, with more than 3 million cases occurring each year in the United States, and with an increasing incidence. The molecular basis of BCC is complex, involving an interplay of inherited genetic susceptibility, including single Citation: Kilgour, J.M.; Jia, J.L.; Sarin, nucleotide polymorphisms and genetic syndromes, and sporadic somatic mutations, often induced K.Y. Review of the Molecular Genetics of Basal Cell Carcinoma; by carcinogenic exposure to UV radiation. This review outlines the currently known germline and Inherited Susceptibility, Somatic somatic mutations implicated in the pathogenesis of BCC, including the key molecular pathways Mutations, and Targeted affected by these mutations, which drive oncogenesis.