Making Sense of Pharmacology: Inverse Agonism and Functional Selectivity Kelly A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From Inverse Agonism to 'Paradoxical Pharmacology' Richard A
International Congress Series 1249 (2003) 27-37 From inverse agonism to 'Paradoxical Pharmacology' Richard A. Bond*, Kenda L.J. Evans, Zsirzsanna Callaerts-Vegh Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 521 Science and Research Bldg 2, 4800 Caltioun, Houston, TX 77204-5037, USA Received 16 April 2003; accepted 16 April 2003 Abstract The constitutive or spontaneous activity of G protein-coupled receptors (GPCRs) and compounds acting as inverse agonists is a recent but well-established phenomenon. Dozens of receptor subtypes for numerous neurotransmitters and hormones have been shown to posses this property. However, do to the apparently low percentage of receptors in the spontaneously active state, the physiologic relevance of these findings remains questionable. The possibility that the reciprocal nature of the effects of agonists and inverse agonists may extend to cellular signaling is discussed, and that this may account for the beneficial effects of certain p-adrenoceptor inverse agonists in the treatment of heart failure. © 2003 Elsevier Science B.V. All rights reserved. Keywords. Inverse agonism; GPCR; Paradoxical pharmacology 1. Brief history of inverse agonism at G protein-coupled receptors For approximately three-quarters of a century, ligands that interacted with G protein- coupled receptors (GPCRs) were classified either as agonists or antagonists. Receptors were thought to exist in a single quiescent state that could only induce cellular signaling upon agonist binding to the receptor to produce an activated state of the receptor. In this model, antagonists had no cellular signaling ability on their own, but did bind to the receptor and prevented agonists from being able to bind and activate the receptor. -
Function-Related Dynamics in Multi-Spanning Helical Membrane Proteins Revealed by Solution NMR
membranes Review Function-Related Dynamics in Multi-Spanning Helical Membrane Proteins Revealed by Solution NMR Koh Takeuchi 1,* , Yutaka Kofuku 2, Shunsuke Imai 3, Takumi Ueda 2, Yuji Tokunaga 1, Yuki Toyama 2 , Yutaro Shiraishi 3 and Ichio Shimada 2,3,* 1 Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Aomi, Koto, Tokyo 135-0064, Japan; [email protected] 2 Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan; [email protected] (Y.K.); [email protected] (T.U.); [email protected] (Y.T.) 3 Center for Biosystems Dynamics Research, RIKEN, Suehiro, Tsurumi, Yokohama 230-0045, Japan; [email protected] (S.I.); [email protected] (Y.S.) * Correspondence: [email protected] (K.T.); [email protected] (I.S.) Abstract: A primary biological function of multi-spanning membrane proteins is to transfer informa- tion and/or materials through a membrane by changing their conformations. Therefore, particular dynamics of the membrane proteins are tightly associated with their function. The semi-atomic resolution dynamics information revealed by NMR is able to discriminate function-related dynamics from random fluctuations. This review will discuss several studies in which quantitative dynamics information by solution NMR has contributed to revealing the structural basis of the function of multi-spanning membrane proteins, such as ion channels, GPCRs, and transporters. Citation: Takeuchi, K.; Kofuku, Y.; Keywords: membrane protein; NMR; ion channel; GPCR; transporter; dynamics Imai, S.; Ueda, T.; Tokunaga, Y.; Toyama, Y.; Shiraishi, Y.; Shimada, I. -
Principle of Pharmacodynamics
Principle of pharmacodynamics Dr. M. Emamghoreishi Full Professor Department of Pharmacology Medical School Shiraz University of Medical Sciences Email:[email protected] Reference: Basic & Clinical Pharmacology: Bertrum G. Katzung and Anthony J. Treveror, 13th edition, 2015, chapter 20, p. 336-351 Learning Objectives: At the end of sessions, students should be able to: 1. Define pharmacology and explain its importance for a clinician. 2. Define ―drug receptor‖. 3. Explain the nature of drug receptors. 4. Describe other sites of drug actions. 5. Explain the drug-receptor interaction. 6. Define the terms ―affinity‖, ―intrinsic activity‖ and ―Kd‖. 7. Explain the terms ―agonist‖ and ―antagonist‖ and their different types. 8. Explain chemical and physiological antagonists. 9. Explain the differences in drug responsiveness. 10. Explain tolerance, tachyphylaxis, and overshoot. 11. Define different dose-response curves. 12. Explain the information that can be obtained from a graded dose-response curve. 13. Describe the potency and efficacy of drugs. 14. Explain shift of dose-response curves in the presence of competitive and irreversible antagonists and its importance in clinical application of antagonists. 15. Explain the information that can be obtained from a quantal dose-response curve. 16. Define the terms ED50, TD50, LD50, therapeutic index and certain safety factor. What is Pharmacology?It is defined as the study of drugs (substances used to prevent, diagnose, and treat disease). Pharmacology is the science that deals with the interactions betweena drug and the bodyor living systems. The interactions between a drug and the body are conveniently divided into two classes. The actions of the drug on the body are termed pharmacodynamicprocesses.These properties determine the group in which the drug is classified, and they play the major role in deciding whether that group is appropriate therapy for a particular symptom or disease. -
Gs- Versus Golf-Dependent Functional Selectivity Mediated by the Dopamine D1 Receptor
ARTICLE DOI: 10.1038/s41467-017-02606-w OPEN Gs- versus Golf-dependent functional selectivity mediated by the dopamine D1 receptor Hideaki Yano1, Ning-Sheng Cai1, Min Xu1, Ravi Kumar Verma1, William Rea1, Alexander F. Hoffman1, Lei Shi1, Jonathan A. Javitch2,3, Antonello Bonci1 & Sergi Ferré1 The two highly homologous subtypes of stimulatory G proteins Gαs (Gs) and Gαolf (Golf) display contrasting expression patterns in the brain. Golf is predominant in the striatum, while 1234567890():,; Gs is predominant in the cortex. Yet, little is known about their functional distinctions. The dopamine D1 receptor (D1R) couples to Gs/olf and is highly expressed in cortical and striatal areas, making it an important therapeutic target for neuropsychiatric disorders. Using novel drug screening methods that allow analysis of specific G-protein subtype coupling, we found that, relative to dopamine, dihydrexidine and N-propyl-apomorphine behave as full D1R agonists when coupled to Gs, but as partial D1R agonists when coupled to Golf. The Gs/Golf- dependent biased agonism by dihydrexidine was consistently observed at the levels of cel- lular signaling, neuronal function, and behavior. Our findings of Gs/Golf-dependent functional selectivity in D1R ligands open a new avenue for the treatment of cortex-specific or striatum- specific neuropsychiatric dysfunction. 1 National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA. 2 Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA. 3 Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA. Correspondence and requests for materials should be addressed to H.Y. -
Biopharmacy Practice
University of Szeged Biopharmacy practice Editor: Árpád Márki, Ph.D. Authors: Árpád Márki, Ph.D. Adrienn Seres, Ph.D. Anita Sztojkov-Ivanov, Ph.D. Reviewed by: Szilárd Pál, Ph.D. Szeged, 2015. This work is supported by the European Union, co-financed by the European Social Fund, within the framework of "Coordinated, practice-oriented, student-friendly modernization of biomedical education in three Hungarian universities (Pécs, Debrecen, Szeged), with focus on the strengthening of international competitiveness" TÁMOP-4.1.1.C-13/1/KONV-2014-0001 project. The curriculum cannot be sold in any form! Contents Contents ...................................................................................................................................... 2 1. Definitions, routes of drug administration ............................................................................. 6 1.1. Definitions ....................................................................................................................... 6 1.2. Routes of drug administration ......................................................................................... 7 1.3. Questions ....................................................................................................................... 10 2. Receptors .............................................................................................................................. 11 2.1. Definitions .................................................................................................................... -
When Simple Agonism Is Not Enough: Emerging Modalities of GPCR Ligands Nicola J
When simple agonism is not enough: emerging modalities of GPCR ligands Nicola J. Smith, Kirstie A. Bennett, Graeme Milligan To cite this version: Nicola J. Smith, Kirstie A. Bennett, Graeme Milligan. When simple agonism is not enough: emerging modalities of GPCR ligands. Molecular and Cellular Endocrinology, Elsevier, 2010, 331 (2), pp.241. 10.1016/j.mce.2010.07.009. hal-00654484 HAL Id: hal-00654484 https://hal.archives-ouvertes.fr/hal-00654484 Submitted on 22 Dec 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: When simple agonism is not enough: emerging modalities of GPCR ligands Authors: Nicola J. Smith, Kirstie A. Bennett, Graeme Milligan PII: S0303-7207(10)00370-9 DOI: doi:10.1016/j.mce.2010.07.009 Reference: MCE 7596 To appear in: Molecular and Cellular Endocrinology Received date: 15-1-2010 Revised date: 15-6-2010 Accepted date: 13-7-2010 Please cite this article as: Smith, N.J., Bennett, K.A., Milligan, G., When simple agonism is not enough: emerging modalities of GPCR ligands, Molecular and Cellular Endocrinology (2010), doi:10.1016/j.mce.2010.07.009 This is a PDF file of an unedited manuscript that has been accepted for publication. -
Cannabinoid-1 Receptor Inverse Agonists: Current Understanding of Mechanism of Action and Unanswered Questions
International Journal of Obesity (2009) 33, 947–955 & 2009 Macmillan Publishers Limited All rights reserved 0307-0565/09 $32.00 www.nature.com/ijo REVIEW Cannabinoid-1 receptor inverse agonists: current understanding of mechanism of action and unanswered questions TM Fong1 and SB Heymsfield2 1Merck Research Laboratories, Department of Metabolic Disorders, Rahway, NJ, USA and 2Merck Research Laboratories, Global Center of Scientific Affairs, Rahway, NJ, USA Rimonabant and taranabant are two extensively studied cannabinoid-1 receptor (CB1R) inverse agonists. Their effects on in vivo peripheral tissue metabolism are generally well replicated. The central nervous system site of action of taranabant or rimonabant is firmly established based on brain receptor occupancy studies. At the whole-body level, the mechanism of action of CB1R inverse agonists includes a reduction in food intake and an increase in energy expenditure. At the tissue level, fat mass reduction, liver lipid reduction and improved insulin sensitivity have been shown. These effects on tissue metabolism are readily explained by CB1R inverse agonist acting on brain CB1R and indirectly influencing the tissue metabolism through the autonomic nervous system. It has also been hypothesized that rimonabant acts directly on adipocytes, hepatocytes, pancreatic islets or skeletal muscle in addition to acting on brain CB1R, although strong support for the contribution of peripherally located CB1R to in vivo efficacy is still lacking. This review will carefully examine the published literature -
Drug Action-Receptor Theory
Drug action-Receptor Theory Molecules (eg, drugs, hormones, neurotransmitters) that bind to a receptor are called ligands. The binding can be specific and reversible. A ligand may activate or inactivate a receptor; activation may increase or decrease a particular cell function. Each ligand may interact with multiple receptor subtypes. Few if any drugs are absolutely specific for one receptor or subtype, but most have relative selectivity. Selectivity is the degree to which a drug acts on a given site relative to other sites; selectivity relates largely to physicochemical binding of the drug to cellular receptors. A drug’s ability to affect a given receptor is related to the drug’s affinity (probability of the drug occupying a receptor at any given instant) and intrinsic efficacy (intrinsic activity—degree to which a ligand activates receptors and leads to cellular response). A drug’s affinity and activity are determined by its chemical structure. The pharmacologic effect is also determined by the duration of time that the drug-receptor complex persists (residence time). The lifetime of the drug-receptor complex is affected by dynamic processes (conformation changes) that control the rate of drug association and dissociation from the target. A longer residence time explains a prolonged pharmacologic effect. Drugs with long residence times include finasteride and darunavir. A longer residence time can be a potential disadvantage when it prolongs a drug's toxicity. For some receptors, transient drug occupancy produces the desired pharmacologic effect, whereas prolonged occupancy causes toxicity. Ability to bind to a receptor is influenced by external factors as well as by intracellular regulatory mechanisms. -
Membrane Selectivity by W-Tagging of Antimicrobial Peptides
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1808 (2011) 1081–1091 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Membrane selectivity by W-tagging of antimicrobial peptides Artur Schmidtchen a, Lovisa Ringstad b, Gopinath Kasetty a, Hiroyasu Mizuno c, Mark W. Rutland c, Martin Malmsten b,⁎ a Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden b Department of Pharmacy, Uppsala University, SE-75123, Uppsala, Sweden c Division of Surface and Corrosion Science, Royal Institute of Technology, SE-10044 Stockholm, Sweden article info abstract Article history: A pronounced membrane selectivity is demonstrated for short, hydrophilic, and highly charged antimicrobial Received 8 October 2010 peptides, end-tagged with aromatic amino acid stretches. The mechanisms underlying this were investigated Received in revised form 16 December 2010 by a method combination of fluorescence and CD spectroscopy, ellipsometry, and Langmuir balance Accepted 20 December 2010 measurements, as well as with functional assays on cell toxicity and antimicrobial effects. End-tagging with Available online 28 December 2010 oligotryptophan promotes peptide-induced lysis of phospholipid liposomes, as well as membrane rupture Keywords: and killing of bacteria and fungi. This antimicrobial potency is accompanied by limited toxicity for human AMP epithelial cells and low hemolysis. The functional selectivity displayed correlates to a pronounced selectivity Antimicrobial peptide of such peptides for anionic lipid membranes, combined with a markedly reduced membrane activity in the Ellipsometry presence of cholesterol. -
Different Inverse Agonist Activities of P»-Adrenergic Receptor Antagonists—Pharmacological Characterization and Therapeutical
International Congress Series 1249 (2003) 39-53 Different inverse agonist activities of p»-adrenergic receptor antagonists—pharmacological characterization and therapeutical implications in the treatment of chronic heart failure Christoph Maack*, Michael Bòhm Medizinische Klinik und Poliklinik fiir Innere Medizin III, Universitat des Saarlandes, 66421 Homburg/Saai; Germany Received 16 April 2003; accepted 16 April 2003 Abstract The treatment of chronic heart failure with most p-adrenergic receptor (p-AR) antagonists leads to an improvement of symptoms and left ventricular function. However, only metoprolol, bisoprolol and carvedilol have been shown to reduce mortality in these patients. Bucindolol did not reduce mortality and xamoterol even increased it. These differences may be related to different inverse agonist or partial agonist activity of p-AR antagonists. This review focusses on the determination of different intrinsic activity of the mentioned p-AR antagonists in the human myocardium. Furthermore, the clinical impact of these differences is examined. In this regard, the effect of the different p-AR antagonists on p-AR regulation, minimum heart rate and exercise tolerance, as well as prognosis, is highlighted. It is concluded that the degree of inverse agonism of a p-AR antagonist determines the degree of p-AR resensitization, reduction of minimum heart rate, improvement of exercise tolerance and possibly also improvement of prognosis of patients with chronic heart failure. © 2003 Elsevier Science B.V. All rights reserved. Key\vords: Inverse agonism; p-adrenergic receptors; p-blockers, Heart faitee * Corresponding author. Current address: The Johns Hopkins University, Institute of Molecular Cardio- biology, Division of Cardiology, 720 Rutland Ave., 844 Ross Bldg., Baltimore, MD 21205-2195, USA. -
Biased Receptor Functionality Versus Biased Agonism in G-Protein-Coupled Receptors Journal Xyz 2017; 1 (2): 122–135
BioMol Concepts 2018; 9: 143–154 Review Open Access Rafael Franco*, David Aguinaga, Jasmina Jiménez, Jaume Lillo, Eva Martínez-Pinilla*#, Gemma Navarro# Biased receptor functionality versus biased agonism in G-protein-coupled receptors Journal xyz 2017; 1 (2): 122–135 https://doi.org/10.1515/bmc-2018-0013 b-arrestins or calcium sensors are also provided. Each of receivedThe FirstJuly 19, Decade 2018; accepted (1964-1972) November 2, 2018. the functional GPCR units (which are finite in number) has Abstract:Research Functional Article selectivity is a property of G-protein- a specific conformation. Binding of agonist to a specific coupled receptors (GPCRs) by which activation by conformation, i.e. GPCR activation, is sensitive to the differentMax Musterman, agonists leads Paul to differentPlaceholder signal transduction kinetics of the agonist-receptor interactions. All these mechanisms. This phenomenon is also known as biased players are involved in the contrasting outputs obtained agonismWhat and Is has So attracted Different the interest Aboutof drug discovery when different agonists are assayed. programsNeuroenhancement? in both academy and industry. This relatively recent concept has raised concerns as to the validity and Keywords: conformational landscape; GPCR heteromer; realWas translational ist so value anders of the results am showing Neuroenhancement? bias; firstly cytocrin; effectors; dimer; oligomer; structure. biased agonism may vary significantly depending on the cellPharmacological type and the experimental and Mental constraints, -
International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification
0031-6997/03/5504-597–606$7.00 PHARMACOLOGICAL REVIEWS Vol. 55, No. 4 Copyright © 2003 by The American Society for Pharmacology and Experimental Therapeutics 30404/1114803 Pharmacol Rev 55:597–606, 2003 Printed in U.S.A International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on Terms and Symbols in Quantitative Pharmacology RICHARD R. NEUBIG, MICHAEL SPEDDING, TERRY KENAKIN, AND ARTHUR CHRISTOPOULOS Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (R.R.N.); Institute de Recherches Internationales Servier, Neuilly sur Seine, France (M.S.); Systems Research, GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina (T.K.); and Department of Pharmacology, University of Melbourne, Parkville, Australia (A.C.) Abstract ............................................................................... 597 I. Introduction............................................................................ 597 II. Working definition of a receptor .......................................................... 598 III. Use of drugs in definition of receptors or of signaling pathways ............................. 598 A. The expression of amount of drug: concentration and dose ............................... 598 1. Concentration..................................................................... 598 2. Dose. ............................................................................ 598 B. General terms used to describe drug action ...........................................