Chlorophenoxy Herbicides MCPA, MCPP, and 2,4-DP

Total Page:16

File Type:pdf, Size:1020Kb

Chlorophenoxy Herbicides MCPA, MCPP, and 2,4-DP Br J Ind Med: first published as 10.1136/oem.50.4.340 on 1 April 1993. Downloaded from 340 British Journal of Industrial Medicine 1993;50:340-348 A review of potential human carcinogenicity of the chlorophenoxy herbicides MCPA, MCPP, and 2,4-DP GG Bond, R Rossbacher Abstract Sweden that had linked use of 2,4,5-T to increased For the purpose ofassessing the human carcin- risks of soft tissue sarcoma and malignant lym- ogenic potential of the chlorophenoxy herbi- phoma.'4 cides MCPA, MCPP, and 2,4-DP, the relevant More recently, the focus on chlorophenoxy com- epidemiological and toxicological evidence is pounds has shifted to 2,4-dichlorophenoxyacetic reviewed. These compounds have not pro- acid (2,4-D) owing to findings of an association duced tumours in animal studies conducted between its frequent use and non-Hodgkin's lym- under current test guidelines, giving no reason phoma.5 A panel of experts was recently convened to predict that they would be carcinogenic to to review the extensive toxicological and humans. Epidemiological studies have been epidemiological data on 2,4-D, and concluded that conducted on three continents; greater whereas there was suggestive evidence of a link with emphasis is placed on the studies reported non-Hodgkin's lymphoma, it was far from con- from western Europe, however, as this has clusive (Harvard School of Public Health, unpub- copyright. been the area of more use. Although several of lished 1990). these studies provide suggestive evidence of By comparison, little attention has been given to associations between exposure to chloro- the other members of the chlorophenoxy family phenoxy compounds and increased risks for including 4-chloro-2-methyl phenoxyacetic acid some uncommon cancers, it is inconsistent and (MCPA), 2-(4-chloro-2 methylphenoxy) propionic far from conclusive. None of the evidence acid (MCPP), and' 2-(2,4-dichlorophenoxy) pro- http://oem.bmj.com/ specifically implicates MCPA, MCPP, or 2,4- pionic acid (2,4-DP). Yet MCPA, MCPP, and 2,4- DP as human carcinogens. DP continue to be commercially important her- bicides with widespread use, particularly in western (British Journal of Industrial Medicine 1993;50:340-348) Europe. This paper reviews the available epidemiological evidence relating to MCPA, MCPP During the past decade, the potential for chlorophen- and 2,4-DP, in context with the relevant animal oxy herbicides to cause certain forms of cancer in toxicological data, to arrive at a weight of the humans has come under increasing scrutiny. The evidence evaluation of the potential for these com- on September 30, 2021 by guest. Protected initial focus was principally directed at one member pounds to cause cancer in humans. of this family of herbicides, 2,4,5-trichloro- phenoxyacetic acid (2,4,5-T), presumably because of Patterns of use for MCPA, MCPP, and 2,4-DP its low level contamination by 2,3,7,8-tetrachloro- The chlorophenoxy compounds act as selective her- dibenzo-p-dioxin (2,3,7,8-TCDD), which had been bicides and have been used worldwide for the control shown to be an animal carcinogen.' In 1979, the US of unwanted vegetation. Their individual patterns of Environmental Protection Agency cancelled most use differ somewhat between North America and registrations for 2,4,5-T citing as partial justification, western Europe. For instance, whereas 2,4-D is the a series of case-control epidemiological studies from major herbicide used to control weeds in small grains in the United States, it has a much smaller market share in western Europe where MCPP is currently the principal product of choice for this purpose. In North The Dow Chemical Company, 1803 Building, America, 2,4-DP is used primarily on Midland, MI 48674, USA non-cropland (for forestry purposes and to clear G G Bond rights of way) whereas it is used extensively on small Department of Toxicology 470, BASF Aktiengesells- grain crops in Europe; MCPA is used in similar ways chaft, D-6700 Ludwigshafen, Germany on both continents, but has traditionally had a much R Rossbacher larger market share in Europe than in the United Br J Ind Med: first published as 10.1136/oem.50.4.340 on 1 April 1993. Downloaded from A review ofpotential human carcinogenicity of the chlorophenoxy herbicides MCPA, MCPP, and 2,4-DP 341 States. These patterns of use suggest that, among cinogen, as mechanisms other than a direct attack on studies that have not specified a principal phenoxy genetic material may be responsible for tumour product, those conducted in Europe should be given development. For these reasons, it is essential to greater attention when assessing the potential for interpret mutagenicity as only a single component of MCPP, MCPA, and 2,4-DP to cause human cancer. the weight of the evidence evaluation of potential Indeed, for this reason many ofthe studies conducted carcinogenic effects in humans. outside Europe are not relevant to this review and so have been given either little or no attention. It is also critical to recognise that, compared to the CHRONIC TOXICITY AND CARCINOGENICITY STUDIES acetic acids, the racemic propionic acid derivatives MCPA were introduced into commerce recently and 2,4-DP The herbicide MCPA was administerd to groups of and MCPP were not actively marketed until the late male and female Wistar rats at doses of 0, 20, 80, and 1950s. Consequently, there has been less than 30 320 ppm in the diet for 24 months.'0 At doses of years of latency possible with these products. 80 ppm and above evidence of toxicity was found. More recently, MCPP-P and 2,4-DP-P were in- The target organs identified were the kidneys, liver, troduced in the market. Both compounds consist of and red blood cells. No substance related changes the herbicidal active D-form whereas MCPP and were found in the 20 ppm (- 1-33 mg/kg/day) dose 2,4-DP are a mixture of the L- and D-forms with a group. There was no increase in the incidence oftotal ratio of 1:1. or specific neoplasms at any dose. By contrast, MCPA and the other chlorophenoxy Similarly, MCPA given in the diet to B6C3F1 compounds have been in use more than 40 years. It is mice at doses of 20, 100, and 500 ppm for two years apparent then, that the available epidemiological produced some toxicity to the kidneys of the animals studies can only evaluate the hypothesis that 2,4-DP in the highest dose group, but no carcinogenic and MCPP are human carcinogens which act with response." short to moderately long latency. copyright. 2,4-DP Summary of toxicology Technical grade 2,4-DP was administered in the diet Evidence from toxicological studies conducted on of Fischer 344 rats at doses of 0, 100, 300, 1000, and laboratory animals or cell cultures is often useful for 3000 ppm for two years.'2 The major target organs interpreting the biological plausibility of findings identified were the kidneys and liver. No substance obtained from observational epidemiology. Par- related toxic effects were found in the 100 ppm ticularly helpful for evaluating a carcinogenic poten- (-6-7 mg/kg/day) dose group. There was no http://oem.bmj.com/ tial are studies in which animals receive the test increase in total or specific neoplasms at any dose, compound over their life span (chronic toxicity and thus showing the lack of carcinogenic potential of carcinogenicity studies). The species routinely used 2,4-DP in rats. are mice and rats. For pesticides oral administration A carcinogenicity study in mice with 2,4-DP-P is preferred to simulate the possible uptake of (optically active D-form) will be initiated after the residues in food. For the applicator it is generally completion of a respective range finding study. A accepted that dermal exposure is most relevant, then subchronic range finding study in B6C3F1 mice inhalation exposure, whereas oral exposure is indicates that 2,4-DP is less systemically toxic than on September 30, 2021 by guest. Protected negligible. MCPA." Nevertheless, oral carcinogenicity studies can also be used for the applicator, because like 2,4-D, other compounds such as MCPA, MCPP, and 2,4-DP are MCPP also hardly metabolised79; thus after dermal adsorp- The herbicide MCPP was given in the diet of male tion no difference in systemic toxicity would be and female Wistar rats for two years at doses of0, 20, expected. 100, and 400 ppm.'4 As for 2,4-DP and MCPA the Genotoxicity assays are conducted to test a kidney was a target organ. No substance related chemical's capacity to damage cellular genetic effects were noted at 20 ppm (- 1-3 mg/kg/days). material as shown by the formation of genetic There was no increase seen in total or specific mutations. A positive result in a mutagenicity test neoplasms at any dose, thus showing the lack of suggests a greater likelihood that a chemical will be carcinogenic potential of MCPP in rats. carcinogenic in intact animals, but does not provide A carcinogenic study in mice with MCPP-P definitive evidence. Indeed, there is considerable (optically active D-form) will be initiated after the published debate about the importance of positive completion of a respective range-finding study. A results in mutagenicity studies and their potential to subchronic range finding study in B6C3F1 mice cause cancer in humans. Negative results in indicates that racemic MCPP is less systemically mutagenicity tests cannot exonerate a potential car- toxic than MCPA.'5 Br J Ind Med: first published as 10.1136/oem.50.4.340 on 1 April 1993.
Recommended publications
  • 2,4-Dichlorophenoxyacetic Acid
    2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators.
    [Show full text]
  • Exposure to Herbicides in House Dust and Risk of Childhood Acute Lymphoblastic Leukemia
    Journal of Exposure Science and Environmental Epidemiology (2013) 23, 363–370 & 2013 Nature America, Inc. All rights reserved 1559-0631/13 www.nature.com/jes ORIGINAL ARTICLE Exposure to herbicides in house dust and risk of childhood acute lymphoblastic leukemia Catherine Metayer1, Joanne S. Colt2, Patricia A. Buffler1, Helen D. Reed3, Steve Selvin1, Vonda Crouse4 and Mary H. Ward2 We examine the association between exposure to herbicides and childhood acute lymphoblastic leukemia (ALL). Dust samples were collected from homes of 269 ALL cases and 333 healthy controls (o8 years of age at diagnosis/reference date and residing in same home since diagnosis/reference date) in California, using a high-volume surface sampler or household vacuum bags. Amounts of agricultural or professional herbicides (alachlor, metolachlor, bromoxynil, bromoxynil octanoate, pebulate, butylate, prometryn, simazine, ethalfluralin, and pendimethalin) and residential herbicides (cyanazine, trifluralin, 2-methyl-4- chlorophenoxyacetic acid (MCPA), mecoprop, 2,4-dichlorophenoxyacetic acid (2,4-D), chlorthal, and dicamba) were measured. Odds ratios (OR) and 95% confidence intervals (CI) were estimated by logistic regression. Models included the herbicide of interest, age, sex, race/ethnicity, household income, year and season of dust sampling, neighborhood type, and residence type. The risk of childhood ALL was associated with dust levels of chlorthal; compared to homes with no detections, ORs for the first, second, and third tertiles were 1.49 (95% CI: 0.82–2.72), 1.49 (95% CI: 0.83–2.67), and 1.57 (95% CI: 0.90–2.73), respectively (P-value for linear trend ¼ 0.05). The magnitude of this association appeared to be higher in the presence of alachlor.
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • Corn Herbicides to Control Glyphsoate-Resistant Canola Volunteers
    AGRONOMY SCIENCES RESEARCHRESEARCH UPDAUPDATETE Corn Herbicides to Control Glyphosate-Resistant Canola Volunteers 2013 Background Table 1. Herbicide treatments. • With the rapid adoption of glyphosate-resistant corn in Western Treatment Application Rate/Acre Canada, glyphosate-resistant canola volunteers have become a major weed concern to corn producers in the region. 1 Gly Only (Check) 1 L/acre (360g ae) • The Pest Management Regulatory Agency now allows 2 Gly + Dicamba 1 L/acre + 0.243 L/acre herbicides to be tank-mixed if they have individual registrations 3 Gly + 2,4-D 1 L/acre + 0.4 L/acre (600g/L) on the crop and have a common application timing. 4 Gly + MCPA Amine 1 L/acre + 0.45L/acre • Several herbicide options are available to control glyphosate 5 Gly + Bromoxynil 1 L/acre + 0.48 L/acre tolerant canola volunteers in corn; however, some herbicides may have undesirable effects on corn. Gly / Bromoxynil 6 1 L/acre + 0.48 L/acre (Split Application*) Objectives * Glyphosate and bromoxynil applied separately at V3 stage. • Assess crop injury and yield effects of various herbicides tank- mixed with glyphosate to control glyphosate-resistant canola • Herbicide injury scores were recorded at: volunteers in glyphosate-resistant corn. • 3-5 days after treatment • 7-10 days after treatment • Identify the most suitable post-emergence strategy for • 21-24 days after treatment managing glyphosate-resistant canola volunteers in glyphosate-resistant corn. • Other recorded observations include: • Brittle snap counts Study Description • Yield (bu/acre) & moisture (%) • Test weight (lbs/bu) • The study compared the crop response of four industry leading hybrids (Pioneer® brand and competitive) with five different Results herbicide treatments (Table 1).
    [Show full text]
  • AP-42, CH 9.2.2: Pesticide Application
    9.2.2PesticideApplication 9.2.2.1General1-2 Pesticidesaresubstancesormixturesusedtocontrolplantandanimallifeforthepurposesof increasingandimprovingagriculturalproduction,protectingpublichealthfrompest-bornediseaseand discomfort,reducingpropertydamagecausedbypests,andimprovingtheaestheticqualityofoutdoor orindoorsurroundings.Pesticidesareusedwidelyinagriculture,byhomeowners,byindustry,andby governmentagencies.Thelargestusageofchemicalswithpesticidalactivity,byweightof"active ingredient"(AI),isinagriculture.Agriculturalpesticidesareusedforcost-effectivecontrolofweeds, insects,mites,fungi,nematodes,andotherthreatstotheyield,quality,orsafetyoffood.Theannual U.S.usageofpesticideAIs(i.e.,insecticides,herbicides,andfungicides)isover800millionpounds. AiremissionsfrompesticideusearisebecauseofthevolatilenatureofmanyAIs,solvents, andotheradditivesusedinformulations,andofthedustynatureofsomeformulations.Mostmodern pesticidesareorganiccompounds.EmissionscanresultdirectlyduringapplicationorastheAIor solventvolatilizesovertimefromsoilandvegetation.Thisdiscussionwillfocusonemissionfactors forvolatilization.Thereareinsufficientdataavailableonparticulateemissionstopermitemission factordevelopment. 9.2.2.2ProcessDescription3-6 ApplicationMethods- Pesticideapplicationmethodsvaryaccordingtothetargetpestandtothecroporothervalue tobeprotected.Insomecases,thepesticideisapplieddirectlytothepest,andinotherstothehost plant.Instillothers,itisusedonthesoilorinanenclosedairspace.Pesticidemanufacturershave developedvariousformulationsofAIstomeetboththepestcontrolneedsandthepreferred
    [Show full text]
  • Diquat Ecological Risk Assessment, Final Report
    Utah State University DigitalCommons@USU All U.S. Government Documents (Utah Regional U.S. Government Documents (Utah Regional Depository) Depository) 11-2005 Diquat Ecological Risk Assessment, Final Report Bureau of Land Management Follow this and additional works at: https://digitalcommons.usu.edu/govdocs Part of the Life Sciences Commons, and the Physical Sciences and Mathematics Commons Recommended Citation Bureau of Land Management, "Diquat Ecological Risk Assessment, Final Report" (2005). All U.S. Government Documents (Utah Regional Depository). Paper 107. https://digitalcommons.usu.edu/govdocs/107 This Report is brought to you for free and open access by the U.S. Government Documents (Utah Regional Depository) at DigitalCommons@USU. It has been accepted for inclusion in All U.S. Government Documents (Utah Regional Depository) by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Bureau of Land Management Reno, Nevada Diquat Ecological Risk Assessment Final Report November 2005 Bureau of Land Management Contract No. NAD010156 ENSR Document Number 09090-020-650 Executive Summary The United States Department of the Interior (USDI) Bureau of Land Management (BLM) is proposing a program to treat vegetation on up to six million acres of public lands annually in 17 western states in the continental United States (US) and Alaska. As part of this program, the BLM is proposing the use of ten herbicide active ingredients (a.i.) to control invasive plants and noxious weeds on approximately one million of the 6 million acres proposed for treatment. The BLM and its contractor, ENSR, are preparing a Vegetation Treatments Programmatic Environmental Impact Statement (EIS) to evaluate this and other proposed vegetation treatment methods and alternatives on lands managed by the BLM in the western continental US and Alaska.
    [Show full text]
  • List of Herbicide Groups
    List of herbicides Group Scientific name Trade name clodinafop (Topik®), cyhalofop (Barnstorm®), diclofop (Cheetah® Gold*, Decision®*, Hoegrass®), fenoxaprop (Cheetah® Gold* , Wildcat®), A Aryloxyphenoxypropionates fluazifop (Fusilade®, Fusion®*), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) butroxydim (Falcon®, Fusion®*), clethodim (Select®), profoxydim A Cyclohexanediones (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) A Phenylpyrazoles pinoxaden (Axial®) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, B Sulfonylureas Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron, (Logran®, Logran® B Power®*), tribenuron (Express®), trifloxysulfuron (Envoke®, Krismat®*) florasulam (Paradigm®*, Vortex®*, X-Pand®*), flumetsulam B Triazolopyrimidines (Broadstrike®), metosulam (Eclipse®), pyroxsulam (Crusader®Rexade®*) imazamox (Intervix®*, Raptor®,), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, B Imidazolinones Lightning®*, Midas®*, OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) B Pyrimidinylthiobenzoates bispyribac (Nominee®), pyrithiobac (Staple®) C Amides: propanil (Stam®) C Benzothiadiazinones: bentazone (Basagran®,
    [Show full text]
  • Herbicide Classification Chart
    HERBICIDE CLASSIFICATION Repeated use of herbicides with the same site of action can result in the development of herbicide-resistant weed populations. This chart groups herbicides by their modes of action to assist you in selecting This chart lists premix herbicides alphabetically by their trade names by MODE OF herbicides 1) to maintain greater diversity in herbicide use and 2) to rotate by PREMIX so you can identify the premix’s component herbicides and their respective ACTION among effective herbicides with different sites of action to delay the development site-of-action groups. Refer to the Site-of-Action chart on the left (effect on plant growth) of herbicide resistance. for more information. SITEOFACTION NUMBER OF RESISTANT COMPONENT COMPONENT GROUP WEED SPECIES IN U.S. SITEOFACTION SITEOFACTION GROUP GROUP CHEMICAL ACTIVE PRODUCT ACTIVE TRADE ACTIVE TRADE SITE OF ACTION FAMILY INGREDIENT EXAMPLES PREMIX ® PREMIX ® (TRADE NAME®) INGREDIENT NAME INGREDIENT NAME LIPID SYNTHESIS INHIBITORS bicyclopyrone ––––– 27 acetochlor Harness 15 HARNESS XTRA clodinafop Discover NG mesotrione Callisto 27 atrazine AAtrex 5 ACURON cyhalofop Clincher atrazine AAtrex 5 clopyralid Stinger 4 Aryloxyphenoxypropio- fenoxaprop Ricestar, Tecoma, others HORNET nate (fops) s-metolachlor Dual II Magnum 15 flumetsulam Python 2 ACCASE INHIBITORS fluazifop Fusilade DX bicyclopyrone ––––– 27 pyrasulfotole ––––– 27 1 (acetyl CoA carboxylase) 15 HUSKIE quizalofop Assure II, Targa Acuron Flexi mesotrione Callisto 27 bromoxynil Buctril 6 clethodim Select Max, others
    [Show full text]
  • US EPA-Pesticides; Pyrasulfotole
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON D.C., 20460 JUL 0 5 2007 OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES MEMORANDUM SUBJECT: Evaluation of Public Interest Documentation for the Conditional Registration of Pyrasulfotole on Wheat, Barley, Oats, and Triticale (D340011; D340014) FROM: Nicole Zinn, Biologist Biological Analysis Branch Biological and Economic Analysis Division (7503P) THRU: Arnet Jones, Chief Biological Analysis Branch Biological and Economic Analysis Division (7503P) TO: Tracy White Joanne Miller Registration Division (7505P) PEER REVIEW PANEL: June 27,2007 SUMMARY Pyrasulfotole is a 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor, which is a new mode of action for small grains. HPPD-inhibitors are currently available for use in other crops but not in small grains. BEAD has reviewed the efficacy information which indicates that pyrasulfotole will provide control of redroot pigweed, common lambsquarters, wild buckwheat and volunteer canola. To control a broader spectrum of weeds, a combination product with bromoxynil is proposed for use in the United States. BEAD reviewed the documentation submitted by the registrant to determine whether one of two criteria have been met: there is a need for the new pesticide that is not being met by currently registered pesticides or the benefits from the new pesticide are greater than those from currently registered pesticides or non-chemical control measures. Although the information submitted focused on the pyrasulfotole + bromoxynil product, BEAD focused its review on the benefits of pyrasulfotole since bromoxynil is currently registered. BEAD believes that by providing a new mode of action for control of certain weeds, pyrasulfotole meets a need that is not being met by currently registered pesticides.
    [Show full text]
  • Canadian Water Quality Guidelines for the Protection of Aquatic Life
    Canadian Water Quality CYANAZINE Guidelines for the Protection of Aquatic Life yanazine (C9H13CN6) is a selective systemic the herbicide was found in only 16 of 327 samples (4.9%). triazine herbicide that inhibits photosynthesis The average concentration in pit bottom soil was C (Tomlin 1994). It is used for general weed control approximately 40.3 µg⋅g-1 (maximum of 125 µg⋅g-1), and in dry bulb onions and corn (Agriculture and Agri-Food cyanazine was found in 3.4% of pit bottom samples Canada 1997). Cyanazine is the trade name for 2-[[4- (Kadoum and Mock 1978). chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpro- panenitrile (CAS 2175-46-2). Its common names include Cyanazine may also move into groundwater. Muir and Bladex, Fortol, and Payze. At standard temperature and Baker (1976) found cyanazine (applied at 3.36 kg⋅ha-1) in pressure, cyanazine is a white, crystalline, odourless solid. tile outlets draining a corn field in Quebec in Cyanazine has an aqueous solubility of 171 mg⋅L-1 at concentrations ranging from <0.01 to 0.68 µg⋅L-1 . A 25°C (Worthing and Walker 1987), a low vapour pressure metabolite of cyanazine, cyanazine amide, was found in (200 nPa at 20°C) (Worthing 1987), and a log octanol– similar concentrations. water partition coefficient (3.68) (Banerjee et al. 1980). In Ontario, cyanazine was found in only 2 out of Cyanazine is formulated as either a wettable powder, a 360 samples (detection limit 0.02 µg⋅L-1 ), and the liquid flowable suspension, or as wettable or soluble maximum concentration was 13 µg⋅L-1 (Roberts et al.
    [Show full text]
  • Weed Resistance
    WEED RESISTANCE Weed resistance is defined by the Weed Science Society of America (WSSA) as the inherited ability of a plant to survive and reproduce after exposure to a dose of herbicide normally lethal to the wild type. In a plant, resistance may be naturally occurring or induced by such techniques as genetic engineering or selection of variants produced by tissue culture or mutagenesis (WSSA). Repeated applications of the same herbicide or a different herbicide with a similar mode of action on the same field in consecutive years has contributed to the widespread occurrence of resistance to herbicides in several weed species around the world, in the U.S. and in Louisiana (see list below). Weed management programs must not solely depend on herbicides to be economically sustainable in the long term. A combination of the following management strategies is recommended: 1. Use residual herbicides. 2. Rotate different crops. 3. Rotate herbicides with different modes of action. 4. Tank-mix herbicides with different modes of action at full recommended rates. 5. Avoid sequential applications of the same herbicide. 6. Utilize tillage, cultivation or other cultural practices whenever and wherever feasible. 7. Clean equipment thoroughly before and after each use. 8. Control weeds on fallow ground or set aside to prevent spreading of documented or suspected resistant weeds. If you suspect resistance after a herbicide application, attempt to eradicate the escapes using mechanical methods (e.g., hand-removal, tillage). DO NOT ALLOW WEEDS TO PRODUCE SEED. If seeds are produced, collect a seed sample from suspect plants and take to your parish LSU AgCenter extension agent who will have them screened by an LSU AgCenter scientist and inform you if the population is resistant.
    [Show full text]
  • Postemergent Herbicides for Broadleaf Weed Control in Residential Lawns by James A
    Postemergent Herbicides for Broadleaf Weed Control In Residential Lawns by James A. McAfee, Ph.D. Extension Turfgrass Specialist Dallas, Texas Company Trade Name Common Name Ambrands Image imazaquin Ace Spot Weed Killer 2,4-D, MCPP, dicamba Ace Lawn Weed Killer 2,4-D, MCPP, dicamba Bayer Advanced Lawns Southern Weed 2,4-D, MCPP, dicamba Bayer Advanced Lawns All-in-One Weed Killer MSMA, 2,4-D, Mecroprop-p, dicamba Ferti-lome Weed Free Zone MCPA, MCPP, dicamba + carfentrazone Ferti-lome Weed Out Lawn Weed Killer 2,4-D, MCPP, dicamba Ferti-lome Weed Out Plus Lawn Weed Killer 2,4-D, MCPP, dicamba + MSMA Ferti-lome Triple Action Plus RTU 2,4-D, MCPP, dicamba + carfentrazone Green Light Wipe Out Broadleaf Weed Killer 2,4-D, MCPP, dicamba Hi-Yield 2,4-D Amine No. 4 2,4-D Hi-Yield Lawn Weed Killer 2,4-D, MCPP, 2,4-DP Hi-Yield Atrazine Weed Killer atrazine Ortho Weed-B-Gon Chickweed, Clover and Oxalis Killer triclopyr Ortho Weed-B-Gon MCPP, 2,4-D, dicamba Ortho Weed-B-Gon Weed Killer for Lawns RTU 2,4-D, MCPP Ortho Weed-B-Gon Weed Killer for Lawns “concentrate” MCPP, 2,4-D, dicamba Ortho Weed-B-Gon Max 2,4-D, mecroprop-p, dicamba Ortho Weed –B-Gon Poison Ivy Control triclopyr Ortho Lawn Weed Killer 2,4-D, mecroprop-p, Dichlorprop-p Spectracide Weed Stop for Lawns 2,4-D, MCPP, dicamba Scotts Lawn Weed Control 2,4-D, dicamba Southern Ag Lawn Weed Killer MCPP, 2,4-D, dicamba Southern Ag Sedge Hammer bentazon While this is not a complete list for postemergent broadleaf weed control in residential lawns, it does contain the herbicides I most commonly found in retail and garden stores.
    [Show full text]