Insights Into the Immune Mechanisms Leading to Lupus-Like Autoimmunity in New Zealand Black Mice

Total Page:16

File Type:pdf, Size:1020Kb

Insights Into the Immune Mechanisms Leading to Lupus-Like Autoimmunity in New Zealand Black Mice Insights into the immune mechanisms leading to lupus-like autoimmunity in New Zealand Black mice by Evelyn Yin-Wah Pau A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Immunology University of Toronto © Copyright by Evelyn Yin-Wah Pau 2013 Insights into the immune mechanisms leading to lupus-like autoimmunity in New Zealand Black mice Doctor of Philosophy Degree, 2013 Evelyn Yin-Wah Pau Department of Immunology University of Toronto Abstract Systemic lupus erythematosus (SLE) is a chronic, multi-organ autoimmune disease characterized by the production of antibodies against self nuclear antigens. Genetics play a dominant role in disease pathogenesis and functional examination of spontaneously-arising lupus-prone animal models has provided key insights into understanding the genetic complexity of the disease. The overarching goal of the work presented here is to identify the underlying immunologic abnormalities, together with lupus susceptibility loci that produce them, that promote the development of autoimmunity in the lupus-prone New Zealand Black (NZB) background. Chapter 2 identifies the critical role of CD40-CD40L interactions in the pathogenesis of disease in NZB mice. We showed that this interaction is required for the production of class-switched IgG autoantibodies and development of hemolytic anemia and kidney disease. Polyclonal B cell activation, expansion of plasmacytoid dendritic cells (pDC), and elevated gene expression of baff were maintained in CD40L-deficient NZB mice, despite the lack of IgG immune complexes. Chapter 3 utilizes bicongenic mice carrying both NZB chromosomes 1 and 13 to investigate the genetic complexity in disease pathogenesis. In addition to identifying new phenotypes, examination of bicongenic mice showed that chronic stimulation of pDC due to the persistence of nuclear antigens leads to a refractory state with a failure to produce more IFN-α upon subsequent stimulation. Chapter 4 ii identifies a novel lupus susceptibility locus on NZB chromosome 13 associated with impaired clearance of apoptotic debris, a key initiating step in the development of autoimmunity. Using subcongenic mice, this locus was localized and examined its impact on immune function. Work from this thesis will contribute to understanding the complex immunogenetic mechanisms that lead to development of SLE. iii Acknowledgments There are many people who have contributed in different ways to this thesis: My supervisor Dr. Joan Wither, for her wisdom and continuous support. Thank you for being the best supervisor and bringing me into the world of immunology. Dr. Nan-Hua Chang, for shaping me into the researcher I am today and allowing me to coin the term “Nan is always right.” Dr. Christina Loh, for introducing me to the Wither lab, teaching me to do research, and being the best colleague and friend in the lab. I couldn’t have done this without you. Dr. Yui-Ho Cheung, for being a pioneer in the Wither lab and leading me into the world of TAing. Dr. Carolina Landolt-Marticorena, for her humour and wit. We will always celebrate Candlemas. Nafiseh Talaei, for the warmth and kindness she brings to the lab. Yuriy Baglaenko, for supporting me with his sanity. Kimberley Lifeso, for keeping Yuriy in check and being a sassy deskmate. Kieran Manion, for her musical entertainment in the lab when she thinks nobody notices. Gillian Minty, for taking over my c13 project and answering all the remaining questions. Allie Rasiuk, for all her laughter and genotyping help. Babak Noamani, for his constant source of gossip at TWH. Connor Moffatt, our honourary Wither lab member, for the excitement he brings to the lab. Past members of the lab: Julie Kim, Charmaine Ferguson, Gabriel Bonventi, and Yong-Chun Cai. My supervisory committee Dr. Eleanor Fish and Dr. Jennifer Gommerman, for their thoughts, feedback, and expertise. My family, for letting me pursue science, and Timothy Li, for his love and patience. I am grateful for having you all in my life and in my graduate career. Thank you from the bottom of my heart. Research conducted in this thesis was supported by grants from the Canadian Institutes of Health Research and The Arthritis Society. Studentship awards were supported by the Edward Dunlop Foundation Ontario Graduate Scholarships in Science and Technology (2007-2011), and the University of Toronto Doctoral Completion Award (2011-2012). iv Table of Contents Abstract ...................................................................................................................................................... ii Acknowledgments.................................................................................................................................................. iv Table of Contents .................................................................................................................................................... v List of Figures and Tables ..................................................................................................................................... ix List of Publications ................................................................................................................................................ xi List of Abbreviations ........................................................................................................................................... xii Chapter 1 Introduction ................................................................................................................................ 1 1.1 Systemic lupus erythematosus ................................................................................................... 2 1.1.1 Genetic factors in SLE ................................................................................................................. 2 1.1.2 Environmental factors in SLE .................................................................................................... 3 1.2 Mouse models of lupus ............................................................................................................... 3 1.2.1 Spontaneous lupus models ......................................................................................................... 4 1.2.2 Congenic mouse models of lupus .............................................................................................. 6 1.3 Mechanisms of lupus pathogenesis ........................................................................................... 9 1.3.1 Impaired clearance and aberrant response to apoptotic debris ........................................... 10 1.3.2 Aberrant lymphocyte signalling .............................................................................................. 21 1.3.3 Defects that promote survival of autoreactive lymphocytes................................................. 25 1.3.4 Defects that promote end organ damage ................................................................................ 27 1.4 Bridging mouse studies to human SLE .................................................................................. 28 1.5 Thesis objectives ....................................................................................................................... 32 Chapter 2 Abrogation of pathogenic IgG autoantibody production in CD40L gene-deleted lupus-prone New Zealand Black mice .................................................................................... 34 2.1 Abstract ..................................................................................................................................... 35 v 2.2 Introduction ............................................................................................................................. 35 2.3 Materials and Methods ............................................................................................................ 38 2.3.1 Mice ............................................................................................................................................ 38 2.3.2 Flow cytometry staining and analysis ..................................................................................... 39 2.3.3 Measurement of antibody production .................................................................................... 39 2.3.4 Detection of anti-RBC antibodies ........................................................................................... 40 2.3.5 Grading of kidney sections ....................................................................................................... 41 2.3.6 Quantitative real-time PCR analysis ....................................................................................... 41 2.3.7 In vitro cell proliferation and Ig class-switching ................................................................... 42 2.3.8 Statistical analysis ...................................................................................................................... 43 2.4 Results ....................................................................................................................................... 43 2.4.1 Abrogated IgG autoAb and attenuated kidney disease in NZB.CD40L-/- mice. ................. 43 2.4.2 Variable effects of CD40L on the cellular phenotypic abnormalities seen in NZB mice. ........................................................................................................................................... 46 2.4.3
Recommended publications
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • Diverse Gene Expression and DNA Methylation Profiles Correlate with Differential Adaptation of Breast Cancer Cells to the Antiestrogens Tamoxifen and Fulvestrant
    Research Article Diverse Gene Expression and DNA Methylation Profiles Correlate with Differential Adaptation of Breast Cancer Cells to the Antiestrogens Tamoxifen and Fulvestrant Meiyun Fan,1 Pearlly S. Yan,2 Cori Hartman-Frey,1 Lei Chen,1 Henry Paik,1 Samuel L. Oyer,1 Jonathan D. Salisbury,1 Alfred S.L. Cheng,2 Lang Li,3 Phillip H. Abbosh,1 Tim H-M. Huang,2 and Kenneth P. Nephew1,4,5 1Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana; 2Division of Human Cancer Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio; 3Division of Biostatistics, Department of Medicine and 4Department of Cellular and Integrative Physiology, Indiana University School of Medicine; and 5Indiana University Cancer Center, Indianapolis, Indiana Abstract Introduction The development of targeted therapies for antiestrogen- The steroid hormone estrogen is strongly implicated in the resistant breast cancer requires a detailed understanding development and progression of breast cancer (1). The primary of its molecular characteristics. To further elucidate the mediator of estrogen action in breast cancer cells is estrogen molecular events underlying acquired resistance to the receptor a (ERa), a ligand-activated transcription factor (1). antiestrogens tamoxifen and fulvestrant, we established Consequently, the leading drugs used for endocrine therapy of drug-resistant sublines from a single colony of hormone- breast cancer all block ERa activity, including antiestrogens (i.e., dependent breast cancer MCF7 cells. These model systems tamoxifen and fulvestrant) and aromatase inhibitors (2). Despite allowed us to examine the cellular and molecular changes the efficacy and favorable safety profile of these agents, the use of induced by antiestrogens in the context of a uniform clonal endocrine therapy is limited by the onset of drug resistance, in background.
    [Show full text]
  • Cytogenetic and Molecular Characterization of the Macro- And
    University of Ulm Department of Human Genetics Prof. Dr. med. Walther Vogel Cytogenetic and Molecular Characterization of the Macro- and Micro-inversions, which Distinguish the Human and the Chimpanzee Karyotypes - from Speciation to Polymorphism Thesis Applying for the Degree of Doctor of Human Biology (Dr. hum. biol.) Faculty of Medicine University of Ulm Presented by Justyna Monika Szamalek from Wrze śnia in Poland 2006 Amtierender Dekan: Prof. Dr. Klaus-Michael Debatin 1. Berichterstatter: Prof. Dr. med. Horst Hameister 2. Berichterstatter: Prof. Dr. med. Konstanze Döhner Tag der Promotion: 28.07.2006 Content Content 1. Introduction ...................................................................................................................7 1.1. Primate phylogeny........................................................................................................7 1.2. Africa as the place of human origin and the living area of the present-day chimpanzee populations .................................................................9 1.3. Cytogenetic and molecular differences between human and chimpanzee genomes.............................................................................................10 1.4. Cytogenetic and molecular differences between common chimpanzee and bonobo genomes................................................................................17 1.5. Theory of speciation .....................................................................................................18 1.6. Theory of selection
    [Show full text]
  • Identification of IFN-Induced Transmembrane Protein 1 With
    ORIGINAL RESEARCH published: 22 March 2021 doi: 10.3389/fonc.2021.626883 Identification of IFN-Induced Transmembrane Protein 1 With Prognostic Value in Pancreatic Cancer Using Network Module-Based Analysis Lingyun Wu 1†, Xinli Zhu 1†, Danfang Yan 1, Mengmeng Tang 2, Chiyuan Ma 3*† and Senxiang Yan 1*† 1 Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 2 Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 3 Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China Despite improvements reported in diagnosis and treatments in recent decades, Edited by: pancreatic cancer is still characterized by poor prognosis and low survival rate among Xiangqian Guo, Henan University, China solid tumors. Intensive interests have grown in exploring novel predictive biomarkers, Reviewed by: aiming to enhance the efficiency in early detection and treatment prognosis. In this Jiateng Zhong, study, we identified the differentially expressed genes (DEGs) in pancreatic cancer by Xinxiang Medical University, China Liang Chen, analyzing five gene expression profiles and established the functional modules according Wuhan University, China to the functional interaction (FI) network between the DEGs. A significant upregulation Guosen Zhang, of the selected DEG, interferon (IFN)-induced transmembrane protein 1 (IFITM1), was Henan University, China *Correspondence: evaluated in several bioinformatics online tools and verified with immunohistochemistry Senxiang Yan staining from samples of 90 patients with pancreatic cancer. Prognostic data showed [email protected] that high expression of IFITM1 associated with poor survival, and multivariate Cox Chiyuan Ma [email protected] regression analysis showed IFITM1 was one of the independent prognostic factors for overall survival.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • 393LN V 393P 344SQ V 393P Probe Set Entrez Gene
    393LN v 393P 344SQ v 393P Entrez fold fold probe set Gene Gene Symbol Gene cluster Gene Title p-value change p-value change chemokine (C-C motif) ligand 21b /// chemokine (C-C motif) ligand 21a /// chemokine (C-C motif) ligand 21c 1419426_s_at 18829 /// Ccl21b /// Ccl2 1 - up 393 LN only (leucine) 0.0047 9.199837 0.45212 6.847887 nuclear factor of activated T-cells, cytoplasmic, calcineurin- 1447085_s_at 18018 Nfatc1 1 - up 393 LN only dependent 1 0.009048 12.065 0.13718 4.81 RIKEN cDNA 1453647_at 78668 9530059J11Rik1 - up 393 LN only 9530059J11 gene 0.002208 5.482897 0.27642 3.45171 transient receptor potential cation channel, subfamily 1457164_at 277328 Trpa1 1 - up 393 LN only A, member 1 0.000111 9.180344 0.01771 3.048114 regulating synaptic membrane 1422809_at 116838 Rims2 1 - up 393 LN only exocytosis 2 0.001891 8.560424 0.13159 2.980501 glial cell line derived neurotrophic factor family receptor alpha 1433716_x_at 14586 Gfra2 1 - up 393 LN only 2 0.006868 30.88736 0.01066 2.811211 1446936_at --- --- 1 - up 393 LN only --- 0.007695 6.373955 0.11733 2.480287 zinc finger protein 1438742_at 320683 Zfp629 1 - up 393 LN only 629 0.002644 5.231855 0.38124 2.377016 phospholipase A2, 1426019_at 18786 Plaa 1 - up 393 LN only activating protein 0.008657 6.2364 0.12336 2.262117 1445314_at 14009 Etv1 1 - up 393 LN only ets variant gene 1 0.007224 3.643646 0.36434 2.01989 ciliary rootlet coiled- 1427338_at 230872 Crocc 1 - up 393 LN only coil, rootletin 0.002482 7.783242 0.49977 1.794171 expressed sequence 1436585_at 99463 BB182297 1 - up 393
    [Show full text]
  • Integrated Functional Genomic Analysis Enables Annotation of Kidney Genome-Wide Association Study Loci
    BASIC RESEARCH www.jasn.org Integrated Functional Genomic Analysis Enables Annotation of Kidney Genome-Wide Association Study Loci Karsten B. Sieber,1 Anna Batorsky,2 Kyle Siebenthall,2 Kelly L. Hudkins,3 Jeff D. Vierstra,2 Shawn Sullivan,4 Aakash Sur,4,5 Michelle McNulty,6 Richard Sandstrom,2 Alex Reynolds,2 Daniel Bates,2 Morgan Diegel,2 Douglass Dunn,2 Jemma Nelson,2 Michael Buckley,2 Rajinder Kaul,2 Matthew G. Sampson,6 Jonathan Himmelfarb,7,8 Charles E. Alpers,3,8 Dawn Waterworth,1 and Shreeram Akilesh3,8 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Linking genetic risk loci identified by genome-wide association studies (GWAS) to their causal genes remains a major challenge. Disease-associated genetic variants are concentrated in regions con- taining regulatory DNA elements, such as promoters and enhancers. Although researchers have previ- ously published DNA maps of these regulatory regions for kidney tubule cells and glomerular endothelial cells, maps for podocytes and mesangial cells have not been available. Methods We generated regulatory DNA maps (DNase-seq) and paired gene expression profiles (RNA-seq) from primary outgrowth cultures of human glomeruli that were composed mainly of podo- cytes and mesangial cells. We generated similar datasets from renal cortex cultures, to compare with those of the glomerular cultures. Because regulatory DNA elements can act on target genes across large genomic distances, we also generated a chromatin conformation map from freshly isolated human glomeruli. Results We identified thousands of unique regulatory DNA elements, many located close to transcription factor genes, which the glomerular and cortex samples expressed at different levels.
    [Show full text]
  • Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands That Promote Axonal Growth
    Research Article: New Research Development Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth Jeremy S. Toma,1 Konstantina Karamboulas,1,ª Matthew J. Carr,1,2,ª Adelaida Kolaj,1,3 Scott A. Yuzwa,1 Neemat Mahmud,1,3 Mekayla A. Storer,1 David R. Kaplan,1,2,4 and Freda D. Miller1,2,3,4 https://doi.org/10.1523/ENEURO.0066-20.2020 1Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada, 2Institute of Medical Sciences University of Toronto, Toronto, Ontario M5G 1A8, Canada, 3Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada, and 4Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada Abstract Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are es- sential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons. These analyses show that peripheral nerves make many ligands predicted to act on peripheral and CNS neurons, in- cluding known and previously uncharacterized ligands. While Schwann cells are an important ligand source within injured nerves, more than half of the predicted ligands are made by nerve-resident mesenchymal cells, including the endoneurial cells most closely associated with peripheral axons. At least three of these mesen- chymal ligands, ANGPT1, CCL11, and VEGFC, promote growth when locally applied on sympathetic axons.
    [Show full text]
  • 1 Transcriptomic Responses to Hypoxia in Endometrial and Decidual Stromal Cells 2 3 Kalle T
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.21.885657; this version posted December 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Transcriptomic responses to hypoxia in endometrial and decidual stromal cells 2 3 Kalle T. Rytkönen 1,2,3,4, Taija Heinosalo 1, Mehrad Mahmoudian 2,5, Xinghong Ma 3,4, Antti 4 Perheentupa 1,6, Laura L. Elo 2, Matti Poutanen 1 and Günter P. Wagner 3,4,7,8 5 6 1 Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, 7 University of Turku, Kiinamyllynkatu 10, 20014, Finland 8 2 Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 9 20520, Turku, Finland 10 3 Yale Systems Biology Institute, West Haven, Connecticut 06516, USA 11 4 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, 12 USA 13 5 Department of Future Technologies, University of Turku, FI-20014 Turku, Finland 14 6 Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4-8, 15 20521, Turku, Finland. 16 7 Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, New 17 Haven 06510, USA 18 8 Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI- 48201, USA 19 20 Correspondence should be addresses to K T Rytkönen; Email: [email protected]. Address: Institute 21 of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of 22 Turku, Kiinamyllynkatu 10, 20014, Finland / Turku Bioscience Centre, University of Turku and 23 Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland.
    [Show full text]
  • The Tsk2/+ Mouse Fibrotic Phenotype Is Due to a Gain-Of-Function Mutation in the PIIINP Segment of the Col3a1 Gene
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ORIGINAL ARTICLE The Tsk2/ þ Mouse Fibrotic Phenotype Is Due to a Gain-of-Function Mutation in the PIIINP Segment of the Col3a1 Gene Kristen B. Long1, Zhenghui Li2, Chelsea M. Burgwin1, Susanna G. Choe2, Viktor Martyanov2, Sihem Sassi-Gaha1, Josh P. Earl3, Rory A. Eutsey3,AzadAhmed3, Garth D. Ehrlich3, Carol M. Artlett1, Michael L. Whitfield2 and Elizabeth P. Blankenhorn1 Systemic sclerosis (SSc) is a polygenic, autoimmune disorder of unknown etiology, characterized by the excessive accumulation of extracellular matrix (ECM) proteins, vascular alterations, and autoantibodies. The tight skin (Tsk)2/ þ mouse model of SSc demonstrates signs similar to SSc including tight skin and excessive deposition of dermal ECM proteins. By linkage analysis, we mapped the Tsk2 gene mutation to o3 megabases on chromosome 1. We performed both RNA sequencing of skin transcripts and genome capture DNA sequencing of the region spanning this interval in Tsk2/ þ and wild-type littermates. A missense point mutation in the procollagen III amino terminal propeptide segment (PIIINP) of collagen, type III, alpha 1 (Col3a1) was found to be the best candidate for Tsk2; hence, both in vivo and in vitro genetic complementation tests were used to prove that this Col3a1 mutation is the Tsk2 gene. All previously documented mutations in the human Col3a1 gene are associated with the Ehlers–Danlos syndrome, a connective tissue disorder that leads to a defect in type III collagen synthesis. To our knowledge, the Tsk2 point mutation is the first documented gain-of-function mutation associated with Col3a1, which leads instead to fibrosis.
    [Show full text]
  • Peripheral Nerve Single Cell Analysis Identifies Mesenchymal Ligands That Promote Axonal Growth
    Research Article: New Research | Development Peripheral Nerve Single Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth https://doi.org/10.1523/ENEURO.0066-20.2020 Cite as: eNeuro 2020; 10.1523/ENEURO.0066-20.2020 Received: 24 February 2020 Revised: 20 April 2020 Accepted: 23 April 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 Toma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. 1 Peripheral Nerve Single Cell Analysis Identifies Mesenchymal Ligands that Promote 2 Axonal Growth 3 4 Jeremy S. Toma1, Konstantina Karamboulas1*, Matthew J. Carr 1,2*, Adelaida Kolaj1,3, Scott A. 5 Yuzwa1, Neemat Mahmud 1,3, Mekayla A. Storer1, David R. Kaplan1,2,4 and Freda D. Miller1-4 6 7 Program in Neurosciences and Mental Health1, Hospital for Sick Children, Toronto, Canada 8 M5G 1L7, Institute of Medical Sciences2, Departments of Physiology3 and Molecular Genetics4, 9 University of Toronto, Toronto, Canada M5G 1A8. 10 11 *These authors contributed equally. 12 13 Abbreviated Title: scRNA-seq identifies nerve ligands 14 Author Contributions: JST, DRK and FDM designed research; JST, MJC, AK, and NM 15 performed research; JST, KK, SAY, NM, MAS and FDM analyzed data; and JST, DRK and 16 FDM wrote the paper.
    [Show full text]