Transcriptome Profile of Human Fibroblasts in an Ex Vivo Culture

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptome Profile of Human Fibroblasts in an Ex Vivo Culture Int. J. Med. Sci. 2020, Vol. 17 125 Ivyspring International Publisher International Journal of Medical Sciences 2020; 17(1): 125-136. doi: 10.7150/ijms.35693 Research Paper Transcriptome Profile of Human Fibroblasts in an Ex Vivo Culture Bogusław Machaliński1, Dorota Rogińska1, Kamila Szumilas1, Alicja Zawiślak1, Aleksandra Wilk2, Iwona Stecewicz1, Andrzej Brodkiewicz1, Barbara Wiszniewska2 1. Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland 2. Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland Corresponding author: Bogusław Machaliński, Department of General Pathology, Pomeranian Medical University in Szczecin, Ul. Powstancow Wlkp. 72, 70-111 Szczecin, Poland. Tel: +48914661546; Fax: +48914661548; email: [email protected] © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.04.12; Accepted: 2019.08.18; Published: 2020.01.01 Abstract Implantation of autologous fibroblasts is a method used to correct age-related changes in facial skin. The aim of this study was to establish the optimal population of cultured human fibroblasts according to the organization of the extracellular matrix in the dermis. Transcriptome profile analysis of cells derived from three consecutive passages indicated that fibroblasts after the second passage were the population with the greatest number of upregulated genes encoding the critical biological processes responsible for skin regeneration, such as extracellular matrix organization, collagen fibril organization, and cell adhesion. Furthermore, genes encoding proteinases responsible for the degradation of dermal extracellular matrix proteins were noticeably downregulated at this stage of culture. Autologous fibroblasts seem to be an optimal and safe biological filler for the renewal of all skin structures. Key words: autologous fibroblasts culture, transcriptome profile, gene expression Introduction Skin aging in male and female subjects is a part disrupting the balance between synthesis and of natural human aging of different organs, tissues degradation processes [7, 8]. The decrease in collagen and cells [1]. Aging is a complex, inevitable process type I disturbs the collagen type III to collagen type I influenced by a combination of endogenous and ratio [7, 9]. Human skin is rich in elastic fibers. exogenous factors. Both types of factors induce However, the relative volume and quantity of the cumulative morphological and physiological fibers varies with age, and numerous age-related alterations and progressive changes in each layer of changes are observed [7, 10-12]. A large amount of skin as well as influence the appearance of skin [1-3]. disintegrated elastic fibers have been reported in However, the most pronounced changes occur in individuals older than 70 years [10, 13]. The elements of the dermis [2, 4], which predominantly remodeling and degradation of elastic fibers are consists of connective tissue. During the aging mostly regulated by MMPs [14, 15], and abnormal process, human skin undergoes structural and localization of elastin in the upper dermis is observed, molecular alterations, especially at the level of type I especially in photo-damaged skin [16]. In addition to collagen, which is the principle structural component collagen and elastin, glycosaminoglycans (GAGs) are of the dermis [5]. These modifications can include abundant structural components of the extracellular rearrangements and reorientation of collagen fibers matrix of human skin. Glycosaminoglycans have and increases in the density of collagen bundles. As a various structural and physiological regulatory consequence, the dermis becomes fragmented, functions in skin, including tissue water maintenance, disorganized, and less soluble [5-7]. Matrix given their high water-holding capacity. The levels metalloproteinases (MMPs) are upregulated and and localization of GAGs change during collagen synthesis is reduced during skin aging, endogenous-induced aging to some extent, especially http://www.medsci.org Int. J. Med. Sci. 2020, Vol. 17 126 during photoaging [17]. The differences in the were taken from the postauricular area, which is one location of dermal GAGs in photoaged skin as well as of the lower exposed to ultraviolet radiation areas of alterations in the size, structure and type of GAGs the head. The skin biopsies were devoted to isolation present in sun-damaged skin may affect their water and culture of dermal fibroblasts and to prepare binding properties and their ability to interact with histological slides. other components of the dermal extracellular matrix The skin specimens were transported to the [18]. Although the total content of GAGs is increased laboratory in ice-cold Ca2+/ Mg2+-free PBS containing in aged skin, they are unable to bind water. Therefore, 1:100 penicillin/streptomycin solution and 1 µg/mL poor hydration and a low turgor capacity contributes Fungizone (both from Thermo Fisher Scientific, to the dry (xerotic) appearance of skin [7, 19]. Waltham, MA, USA) and then processed During aging, fibroblasts also play a key role in immediately. The tissue sample was washed twice maintaining the homeostasis of the extracellular with cold Ca2+/ Mg2+-free PBS, cut into smaller pieces matrix and are subjected to various changes, such as and incubated in 0.6 U/mL Dispase II (Thermo Fisher reduced metabolic activity, e.g., loss of type I collagen Scientific, Waltham, MA, USA) for 1-2 h at 37˚C. The expression [20, 21]. Human fibroblasts located within epidermis was manually removed from each tissue the age-associated dermal extracellular matrix sample, and the dermis was cut into 1-mm3 pieces microenvironment express increased levels of following enzymatic disaggregation with 0.62 collagen-degrading matrix metalloproteinases Wünsch U/mL Liberase DH (Roche Applied Science, (MMPs) and decreased levels of tissue inhibitors of Penzberg, Germany) for 30-40 min at 37˚C. MMPs [14, 15, 22]. Subsequently, tissue pieces were dissociated by Due to structural and functional changes, the vortexing and then passed through a 70-µm cell skin shows obvious signs of the passing time [1]. The strainer Becton Dickinson, Franklin Lakes, NJ, USA). most important and prominent sign of aging is skin The dissociated cells were centrifuged at 1500 rpm for wrinkling [23]. Ongoing efforts for preserving a 5 minutes. The supernatant was discarded, and the youthful appearance demonstrate that youthfulness is pellet was suspended in Medium 199 (Thermo Fisher considered a prerequisite for beauty [4]. Therefore, Scientific, Waltham, MA, USA) containing 10% the maintenance and improvement of facial skin human serum isolated from the patient themselves quality have gained particular attention, and novel and 0.5% penicillin and streptomycin solution. To technologies aimed at preventing skin aging in obtain human autologous serum, 10 mL of whole women and, more recently, in men are being blood from patient was collected into plastic tubes extensively investigated in the field of aesthetic containing a serum separator gel with clot activator dermatology. One of the innovative methods used to (Becton Dickinson, Franklin Lakes, NJ, USA). Serum correct age-related skin changes, e.g., unwanted facial separation was completed after centrifugation at 2,000 wrinkles, involves the use of cultured fibroblasts rpm for 10 minutes. The cells were cultured in a T75 derived from the patient`s own skin [24]. In our tissue culture flask (Becton Dickinson, Franklin Lakes, previous studies [24], we observed a significant NJ, USA) at 37°C in 5% CO2 in a humidified increase in the diameter of collagen fiber bundles and atmosphere. The medium was changed 48-h after an improvement in the density of reticular fibers, plating and every 3-4 days thereafter. When the fibrillin-1-rich microfibrils, and elastic fibers after cultures reached 80% confluency, the cells were reinjection of autologous fibroblasts into the dermis. detached with Accutase (GE Healthcare, Chicago, IL, The aim of this study was to compare global USA), washed with PBS and divided in two equal gene expression profiles in fibroblasts from three parts. Some of the cells were used to isolate total RNA consecutive passages to estimate the optimal for microarray gene expression analysis and the population quality of the tested cells according to remaining part was reseeded in complete medium. potential secretory activity critical for skin The cell cultures were maintained until the 3rd rejuvenation. passage. The samples of skin were fixed in freshly Materials and Methods prepared 4% paraformaldehyde and embedded in paraffin. For the morphological analysis, serial slices Patients and cell culture (3-5 μm in thickness) of skin were mounted onto glass Human skin samples were obtained from slides to histochemical and immunohistochemical volunteer male donor at the age of 46, in accordance studies. with the Declaration of Helsinki and with the approval of Local Ethics Committee of Pomeranian RNA isolation Medical University. Skin biopsies (0.8 cm x 0.6 cm) Total RNA from fibroblast cell cultures was http://www.medsci.org Int. J. Med. Sci. 2020, Vol. 17 127 isolated using the MirVana Kit (Thermo Fisher fixed in methanol. For the morphological analysis of Scientific, Waltham, MA, USA), according
Recommended publications
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • Versican V2 Assembles the Extracellular Matrix Surrounding the Nodes of Ranvier in the CNS
    The Journal of Neuroscience, June 17, 2009 • 29(24):7731–7742 • 7731 Cellular/Molecular Versican V2 Assembles the Extracellular Matrix Surrounding the Nodes of Ranvier in the CNS María T. Dours-Zimmermann,1 Konrad Maurer,2 Uwe Rauch,3 Wilhelm Stoffel,4 Reinhard Fa¨ssler,5 and Dieter R. Zimmermann1 Institutes of 1Surgical Pathology and 2Anesthesiology, University Hospital Zurich, CH-8091 Zurich, Switzerland, 3Vascular Wall Biology, Department of Experimental Medical Science, University of Lund, S-221 00 Lund, Sweden, 4Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany, and 5Department of Molecular Medicine, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany The CNS-restricted versican splice-variant V2 is a large chondroitin sulfate proteoglycan incorporated in the extracellular matrix sur- rounding myelinated fibers and particularly accumulating at nodes of Ranvier. In vitro, it is a potent inhibitor of axonal growth and therefore considered to participate in the reduction of structural plasticity connected to myelination. To study the role of versican V2 during postnatal development, we designed a novel isoform-specific gene inactivation approach circumventing early embryonic lethality of the complete knock-out and preventing compensation by the remaining versican splice variants. These mice are viable and fertile; however, they display major molecular alterations at the nodes of Ranvier. While the clustering of nodal sodium channels and paranodal structures appear in versican V2-deficient mice unaffected, the formation of the extracellular matrix surrounding the nodes is largely impaired. The conjoint loss of tenascin-R and phosphacan from the perinodal matrix provide strong evidence that versican V2, possibly controlled by a nodal receptor, organizes the extracellular matrix assembly in vivo.
    [Show full text]
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • RCAN2 Isoform 2 Recombinant Protein Cat
    RCAN2 Isoform 2 Recombinant Protein Cat. No.: 95-114 RCAN2 Isoform 2 Recombinant Protein Specifications SPECIES: Mouse SOURCE SPECIES: E. coli SEQUENCE: aa 2 - 197 FUSION TAG: Fusion Partner: C-terminal His-tag TESTED APPLICATIONS: ELISA, WB APPLICATIONS: This recombinant protein can be used for WB and ELISA. For research use only. PREDICTED MOLECULAR 26 kDa (Calculated) WEIGHT: Properties PURITY: ~95% PHYSICAL STATE: Liquid 100mM sodium phosphate, 10mM Tris, 500mM NaCl, 25 mM imidazole, 2mM MgCl2, 10% BUFFER: gycerol Store in working aliquots at -70˚C. Avoid freeze/thaw cycles. When working with proteins STORAGE CONDITIONS: care should be taken to keep recombinant protein at a cool and stable temperature. September 29, 2021 1 https://www.prosci-inc.com/rcan2-isoform-2-recombinant-protein-95-114.html Additional Info OFFICIAL SYMBOL: Rcan2 RCAN2 Antibody: Csp2, MCIP2, ZAKI-4, Dscr1l1, Zaki4, Calcipressin-2, Calcineurin inhibitory ALTERNATE NAMES: protein ZAKI-4 ACCESSION NO.: AAH62141 PROTEIN GI NO.: 38328420 GENE ID: 53901 Background and References Regulator of calcineurin 2 (RCAN2), also known as ZAKI4 and DSCR1L1, is expressed as two isoforms differing at their N-terminus. The longer of the two (isoform 1) is expressed exclusively in the brain, while isoform 2 is ubiquitously expressed, with highest expression in brain, heart, and muscle (1,2). Both isoforms bind to the catalytic subunit of calcineurin, a Ca++-dependent protein phosphatase involved in several neuronal functions, though BACKGROUND: their C-terminal region and inhibit calcineurin’s activity (3). Unlike isoform 1 of RCAN2, the expression of the second isoform is not induced by the thyroid hormone T3 (3).
    [Show full text]
  • Kids First Pediatric Research Program (Kids First) Poster Session at ASHG Accelerating Pediatric Genomics Research Through Collaboration October 15Th, 2019
    The Gabriella Miller Kids First Pediatric Research Program (Kids First) Poster Session at ASHG Accelerating Pediatric Genomics Research through Collaboration October 15th, 2019 Background The Gabriella Miller Kids First Pediatric Research Program (Kids First) is a trans- NIH Common Fund program initiated in response to the 2014 Gabriella Miller Kids First Research Act. The program’s vision is to alleviate suffering from childhood cancer and structural birth defects by fostering collaborative research to uncover the etiology of these diseases and support data sharing within the pediatric research community. This is implemented through developing the Gabriella Miller Kids First Data Resource (Kids First Data Resource) and populating this resource with whole genome sequence datasets and associated clinical and phenotypic information. Both childhood cancers and structural birth defects are critical and costly conditions associated with substantial morbidity and mortality. Elucidating the underlying genetic etiology of these diseases has the potential to profoundly improve preventative measures, diagnostics, and therapeutic interventions. Purpose During this evening poster session, attendees will gain a broad understanding of the utility of the genomic data generated by Kids First, learn about the progress of Kids First X01 cohort projects, and observe demonstrations of the tools and functionalities of the recently launched Kids First Data Resource Portal. The session is an opportunity for the scientific community and public to engage with Kids First investigators, collaborators, and a growing community of researchers, patient foundations, and families. Several other NIH and external data efforts will present posters and be available to discuss collaboration opportunities as we work together to accelerate pediatric research.
    [Show full text]
  • A Gene Expression Resource Generated by Genome-Wide Lacz
    © 2015. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2015) 8, 1467-1478 doi:10.1242/dmm.021238 RESOURCE ARTICLE A gene expression resource generated by genome-wide lacZ profiling in the mouse Elizabeth Tuck1,**, Jeanne Estabel1,*,**, Anika Oellrich1, Anna Karin Maguire1, Hibret A. Adissu2, Luke Souter1, Emma Siragher1, Charlotte Lillistone1, Angela L. Green1, Hannah Wardle-Jones1, Damian M. Carragher1,‡, Natasha A. Karp1, Damian Smedley1, Niels C. Adams1,§, Sanger Institute Mouse Genetics Project1,‡‡, James N. Bussell1, David J. Adams1, Ramiro Ramırez-Soliś 1, Karen P. Steel1,¶, Antonella Galli1 and Jacqueline K. White1,§§ ABSTRACT composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Knowledge of the expression profile of a gene is a critical piece of Furthermore, there were 1207 observations of expression of a information required to build an understanding of the normal and particular gene in an anatomical structure where Bgee had no essential functions of that gene and any role it may play in the data, indicating a large amount of novelty in our data set. development or progression of disease. High-throughput, large- Examples of expression data corroborating and extending scale efforts are on-going internationally to characterise reporter- genotype-phenotype associations and supporting disease gene tagged knockout mouse lines. As part of that effort, we report an candidacy are presented to demonstrate the potential of this open access adult mouse expression resource, in which the powerful resource. expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter KEY WORDS: Gene expression, lacZ reporter, Mouse, Resource gene.
    [Show full text]
  • XIST-Induced Silencing of Flanking Genes Is Achieved by Additive Action of Repeat a Monomers in Human Somatic Cells
    Minks et al. Epigenetics & Chromatin 2013, 6:23 http://www.epigeneticsandchromatin.com/content/6/1/23 RESEARCH Open Access XIST-induced silencing of flanking genes is achieved by additive action of repeat a monomers in human somatic cells Jakub Minks, Sarah EL Baldry, Christine Yang, Allison M Cotton and Carolyn J Brown* Abstract Background: The establishment of facultative heterochromatin by X-chromosome inactivation requires the long non-coding RNA XIST/Xist. However, the molecular mechanism by which the RNA achieves chromosome-wide gene silencing remains unknown. Mouse Xist has been shown to have redundant domains for cis-localization, and requires a series of well-conserved tandem ‘A’ repeats for silencing. We previously described a human inducible XIST transgene that is capable of cis-localization and suppressing a downstream reporter gene in somatic cells, and have now leveraged these cells to dissect the sequences critical for XIST-dependent gene silencing in humans. Results: We demonstrated that expression of the inducible full-length XIST cDNA was able to suppress expression of two nearby reporter genes as well as endogenous genes up to 3 MB from the integration site. An inducible construct containing the repeat A region of XIST alone could silence the flanking reporter genes but not the more distal endogenous genes. Reporter gene silencing could also be accomplished by a synthetic construct consisting of nine copies of a consensus repeat A sequence, consistent with previous studies in mice. Progressively shorter constructs showed a linear relationship between the repeat number and the silencing capacity of the RNA. Constructs containing only two repeat A units were still able to partially silence the reporter genes and could thus be used for site-directed mutagenesis to demonstrate that sequences within the two palindromic cores of the repeat are essential for silencing, and that it is likely the first palindrome sequence folds to form a hairpin, consistent with compensatory mutations observed in eutherian sequences.
    [Show full text]
  • A Single-Cell Transcriptomic Landscape of Primate Arterial Aging
    ARTICLE https://doi.org/10.1038/s41467-020-15997-0 OPEN A single-cell transcriptomic landscape of primate arterial aging Weiqi Zhang 1,2,3,4,5,13, Shu Zhang6,7,13, Pengze Yan3,8,13, Jie Ren7,9,13, Moshi Song3,5,8, Jingyi Li2,3,8, Jinghui Lei4, Huize Pan2,3, Si Wang3,5,8, Xibo Ma3,10, Shuai Ma2,3,8, Hongyu Li2,3, Fei Sun2,3, Haifeng Wan3,5,11, ✉ ✉ ✉ Wei Li 3,5,11, Piu Chan4, Qi Zhou3,5,11, Guang-Hui Liu 2,3,4,5,8 , Fuchou Tang 6,7,9,12 & Jing Qu 3,5,11 Our understanding of how aging affects the cellular and molecular components of the vas- 1234567890():,; culature and contributes to cardiovascular diseases is still limited. Here we report a single-cell transcriptomic survey of aortas and coronary arteries in young and old cynomolgus monkeys. Our data define the molecular signatures of specialized arteries and identify eight markers discriminating aortic and coronary vasculatures. Gene network analyses characterize tran- scriptional landmarks that regulate vascular senility and position FOXO3A, a longevity- associated transcription factor, as a master regulator gene that is downregulated in six subtypes of monkey vascular cells during aging. Targeted inactivation of FOXO3A in human vascular endothelial cells recapitulates the major phenotypic defects observed in aged monkey arteries, verifying FOXO3A loss as a key driver for arterial endothelial aging. Our study provides a critical resource for understanding the principles underlying primate arterial aging and contributes important clues to future treatment of age-associated vascular disorders. 1 CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • 5' Untranslated Region Elements Show High Abundance and Great
    International Journal of Molecular Sciences Article 0 5 Untranslated Region Elements Show High Abundance and Great Variability in Homologous ABCA Subfamily Genes Pavel Dvorak 1,2,* , Viktor Hlavac 2,3 and Pavel Soucek 2,3 1 Department of Biology, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic 2 Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; [email protected] (V.H.); [email protected] (P.S.) 3 Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic * Correspondence: [email protected]; Tel.: +420-377593263 Received: 7 October 2020; Accepted: 20 November 2020; Published: 23 November 2020 Abstract: The 12 members of the ABCA subfamily in humans are known for their ability to transport cholesterol and its derivatives, vitamins, and xenobiotics across biomembranes. Several ABCA genes are causatively linked to inborn diseases, and the role in cancer progression and metastasis is studied intensively. The regulation of translation initiation is implicated as the major mechanism in the processes of post-transcriptional modifications determining final protein levels. In the current bioinformatics study, we mapped the features of the 50 untranslated regions (50UTR) known to have the potential to regulate translation, such as the length of 50UTRs, upstream ATG codons, upstream open-reading frames, introns, RNA G-quadruplex-forming sequences, stem loops, and Kozak consensus motifs, in the DNA sequences of all members of the subfamily. Subsequently, the conservation of the features, correlations among them, ribosome profiling data as well as protein levels in normal human tissues were examined. The 50UTRs of ABCA genes contain above-average numbers of upstream ATGs, open-reading frames and introns, as well as conserved ones, and these elements probably play important biological roles in this subfamily, unlike RG4s.
    [Show full text]
  • Molecular Structure of a Novel Cholesterol-Responsive a Subclass ABC Transporter, ABCA9
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Regensburg Publication Server BBRC Biochemical and Biophysical Research Communications 295 (2002) 408–416 www.academicpress.com Molecular structure of a novel cholesterol-responsive A subclass ABC transporter, ABCA9 Armin Piehler,1 Wolfgang E. Kaminski,1 Juurgen€ J. Wenzel, Thomas Langmann, and Gerd Schmitz* Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93042, Regensburg, Germany Received 25 May 2002 Abstract We recently identified a novel ABC A subclass transporter, ABCA6, in human macrophages. Here, we report the molecular cloning of an additional ABC A subfamily transporter from macrophages denoted ABCA9. The identified coding sequence is 4.9 kb in size and codes for a 1624 amino acid protein product. In accordance with the proposed nomenclature, the novel transporter was designated ABCA9. The putative full-length ABC transporter polypeptide consists of two transmembrane domains and two nu- cleotide binding folds and thus conforms to the group of full-size ABC transporters. We identified alternative ABCA9 mRNA variants in human macrophages that predict the existence of three truncated forms of the novel transporter. Among the human ABC A subfamily transporters, ABCA9 exhibits the highest amino acid sequence homology with ABCA8 (72%) and ABCA6 (60%), respectively. The striking amino acid sequence similarity between these transporter molecules supports the notion that they represent an evolutionary more recently emerged subgroup within the family of ABC A transporters, which we refer to as ‘‘ABCA6-like transporters.’’ ABCA9 mRNA is ubiquitously expressed with the highest mRNA levels in heart, brain, and fetal tissues.
    [Show full text]
  • RCAN2 Antibody Cat
    RCAN2 Antibody Cat. No.: 5051 RCAN2 Antibody Immunohistochemistry of RCAN2 in mouse brain tissue Immunofluorescence of RCAN2 in mouse brain tissue with with RCAN2 antibody at 2.5 μg/mL. RCAN2 antibody at 20 μg/mL. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat HOMOLOGY: Predicted species reactivity based on immunogen sequence: Bovine: (100%) RCAN2 antibody was raised against a 14 amino acid synthetic peptide near the center of human RCAN2. IMMUNOGEN: The immunogen is located within amino acids 70 - 120 of RCAN2. TESTED APPLICATIONS: ELISA, IF, IHC-P, WB September 26, 2021 1 https://www.prosci-inc.com/rcan2-antibody-5051.html RCAN2 antibody can be used for detection of RCAN2 by Western blot at 1 - 2 μg/mL. Antibody can also be used for immunohistochemistry starting at 2.5 μg/mL. For immunofluorescence start at 20 μg/mL. APPLICATIONS: Antibody validated: Western Blot in mouse samples; Immunohistochemistry in mouse samples and Immunofluorescence in mouse samples. All other applications and species not yet tested. POSITIVE CONTROL: 1) Cat. No. 1282 - 3T3 (NIH) Cell Lysate Properties PURIFICATION: RCAN2 Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: RCAN2 Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL RCAN2 antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: Rcan2 RCAN2 Antibody: Csp2, MCIP2, ZAKI-4, Dscr1l1, Zaki4, Calcipressin-2, Calcineurin inhibitory ALTERNATE NAMES: protein ZAKI-4 ACCESSION NO.: AAH62141 PROTEIN GI NO.: 38328420 GENE ID: 53901 USER NOTE: Optimal dilutions for each application to be determined by the researcher.
    [Show full text]