Mha Tfa X-Bp5.39
Total Page:16
File Type:pdf, Size:1020Kb
X-460-70-300 PREIN1T mhA Tfa X-bP5.39 SUPER-HIGH-FREQUENCY (SHF) COMMUNICATIONS SYSTEM PERFORMANCE ON ATS VOLUME 2: DATA AND ANALYSIS AUGUST 1970 - GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND A70-41386 (PAGE) _ CD) RIoWducedby 0NF (NAS CROR TMX ORAD NUMBER) (CATEGORY) -- R in V5 X-460-70-300 SUPER-HIGH-FREQUENCY (SHF) COMMUNICATIONS SYSTEM PERFORMANCE ON ATS VOLUME 2: DATA AND ANALYSIS Prepared by: Westinghouse Electric Corporation and The ATS Project Office August 1970 GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland This report consists of two volumes. Volume 1, System Summary (X-460-70-299), contains section 1 only (section 2 was deleted). Volume 2, Data and Analysis (X-460-70-300), contains sections 3, (4 deleted), 5, 6, and 7. TABLE OF CONTENTS 3 DATA ANALYSIS ..................................... 3.1 3.1 PATH LOSS EXPERIMENTS .......................... 3.2 3. 1. 1 RF Signal Power Levels and Propagation Losses .......... 3.2 3.2 MULTIPLEX IF/RF AND BASEBAND PERFORMANCE EXPERIMENTS ................................... 3.8 3.2.1 Baseband Noise Power Ratio ......................... 3.8 3. 2. 2 FDM Baseband Attenuation Versus Frequency (Baseband Frequency Response) ............................... 3.94 3.3 CONTROL LOOP AND STABILITY EXPERIMENTS .............. 3.100 3.3.1 Multiplex Channel Frequency Stability .................. 3.100 3.3.2 Multiplex Channel Level Stability .................. 3.119 3.3.3 Ground Transmitter Automatic Level Control Loop ...... 3.126 3.4 MULTIPLEX PERFORMANCE EXPERIMENTS ................. 3.132 3.4.1 Channel TT/NRatio ........................... 3.132 3.4.2 Digital Data Error Rate ........................ 3.171 3.4.3 Multiplex Channel Linearity ...................... 3.179 3.4.4 Multiplex Channel Audio Envelope Delay ............... 3.182 3.4.5 Multiplex Channel Total Distortion ..................... 3.186 3.4.6 Multiplex Channel Amplitude Versus Frequency Response . 3.193 3.5 TELEVISION PERFORMANCE EXPERIMENTS ................. 3.196 3.5.1 Continuous Random Noise (TV Weighted Noise) ........... 3.197 3.5.2 Video Channel Periodic Noise, and Two-Tone Intermodu lation Distortion . ............................. 3. 203 3.5.3 Field-Time and Line-Time Linear Waveform Distortion (Video Low Frequency Response) .................. 3.208 3.5.4 Short-Time Linear Waveform Distortion (Video Transient Response) ............................ 3. 214 3. 5.'5 Insertion Gain (and Variations) (Video Insertion Gain) (Stability) .................................. 3.218 3.5.6 Line-Time Non-Linearity Distortion'(Video Differential Gain) . .................................... 3. 221 3.5.7 Color Vector Amplitude and Phase Distortions ........... 3.225 3.5.8 TV Audio Channel Idle Noise .......................... 3.229 3.5.9 TV Audio Channel Periodic and Crosstalk Noise .......... 3.234 3.5. 10 TV Audio Channel Amplitude Versus Frequency Response . 3.240 3.5. 11 TV Audio Channel Non-Linear Distortion ............... 3. 253 iii TABLE OF CONTENTS (Continued) 3.5.12 Video Baseband Attenuation Versus Frequency (BasebandFrequency Response) ...................... 3. 257 3.5.13 Envelope Delay Versus Baseband Frequency (Envelope Delay Distortion) ..................... 3.262 3.6 SPACECRAFT EXPERIMENTS ........................ 3.272 3. 6. 1 Spacecraft Antenna Patterns ......................... 3. 272 3.6.2 Carrier Modulation Due to Spin ...................... 3.291 3.6.3 Repeater Saturation Characteristics .................. 3.303 3.7 EARTH STATION EXPERIMENTS ...................... 3.307 3.7.1 Earth Terminal G/T ........................... 3.307 3.7.2 Earth Station Transmit Antenna Pattern .................. 3.319 3.7.3 Earth Station Receive Antenna Pattern .................. 3. 335 4 DATA -DELETED 5 SPECIAL INVESTIGATIONS ............................. 5.1 5.1 MULTIPLEX CHANNEL FREQUENCY STABILITY .............. 5.1 5.1.1 Development of the AFC System Transfer Function ...... 5.3 5.1.2 AFC Error Due to Doppler ...................... 5.5 5.1.3 AFC Doppler Error With Cancellation .................. 5.9 5.1.4 The Power Density Spectrum of the AFC Error .......... 5. 10 5. 1.5 Alternate Solutions to the AFC Problem ................. 5.14 5.1.6 Determination of the RMS Frequency Error .............. 5.23 5.1.7 Determination of the Multiplex Channel Error Probability . 5.25 5.1.8 Analysis of the 1. 6 Hz S/C Spin Effect on the Multiplex Channel Frequency Error ....................... 5.27 5.1.9 The Effect of 60 Hz Modulation on the Mux Channel Frequency ................................. 5.32 5.1.10 An Analysis of the 6 GHz Klystron Phase Lock Synchronizer Technique ........................ 5.33 5.1.11 Presentation of the Fourier Analysis Experimentation Results ................................... 5.44 5.1.12 Results of Special Low Deviation FSK Tests ............. 5.58 5.1.13 Short Term Frequency Stability Improvement Using the Carrier Reference Technique .................... 5.60 5.2 ANTENNA CHARACTERISTICS ........................ 5.77 5.2.1 Introduction ................................ 5.77 5.2.2 Initial Investigation ........................... 5.77 5.2.3 Proposed Investigation ............................ 5.87 iv TABLE OF CONTENTS (Continued) 6 SUPPLEMENTARY INFORMATION ......................... 6.1 6.1 REFERENCES AND BIBLIOGRAPHY ..................... 6.1 6.2 GLOSSARY OF TERMINOLOGY ......................... 6.5 7 COMMON PERFORMANCE EQUATIONS AND CALCULATIONS ......... 7.1 7.1 S/N LINK CALCULATIONS ............................ 7.1 7. 1. 1 MA Mode Link Calculations ....................... 7.1 7.1.2 FT Mode Link Calculations ....................... 7.4 7.2 PATH LOSS CALCULATIONS .......................... 7.16 7.3 EXPERIMENTAL ERROR ANALYSIS ..................... 7.22 7.4 DERIVATION OF EXPRESSION FOR THE STABILITY OF AN OSCILLATOR WITH NOISE OF SPECTRAL DENSITY Ge(f)=K/f .... 7.28 7.4.1 Relationships Between Oscillator RMS Frequency Deviation and Carrier to Phase Jitter Noise Ratio .................. 7.28 7.4.2 Oscillator Stability Criterion ...................... 7.29 7.5 DETERMINATION OF INTERMODULATION NOISE POWER CHARACTERISTICS FROM TEST DATA ....................... 7.31 7.5.1 Definition of Terms . ............................ 7.31 7.5. 2 Determination of TT and TT ......... R N............71 7.32 of T 7.5.3 Determination - ............................ 7.33 7.5.4 Determination of TPR as a Function of C/N ............... 7.34 7.6 BACKGROUND MATERIAL FOR ANALYSIS OF MULTIPLEX TEST DATA ...................................... 7.36 7. 6. 1 Nomalization of System Noise Temperature and Carrier to Noise Ratio . ................................ 7.36 S7. 6. 2 FDM Multiplex User Requirements ..................... 7.38 7.6.3 System Loading ............................... 7.41 7. 6.4 Calculation of Overall Carrier-to-Noise Ratio.............. 7.44 7. 6. 5 Differential Doppler Effects ........................... 7.51 7.7 INTERMODULATION PREDICTION TECHNIQUE ................ 7.56 7.7.1 FT Mode ................................... 7.56 7.7.2 SSB/PhM (MA) Mode ........................... 7.61 7.8 EXPERIMENT ORGANIZATION ....... ................. 7.84 7.8.1 Description of Field Test Procedures ................... 7.89 v TABLE OF CONTENTS (Continued) 7.9 DATA ACQUISITION TECHNIQUES ....................... 7.118 7.9.1 General ... .................................. 7.118 7.9.2 Automated Acquisition . .......................... 7.118 7.9.3 Manual Acquisition .............................. 7.121 LIST OF ILLUSTRATIONS 3.32 3.1 Idle Baseband Noise Spectrum (FT Mode) .......................... 3.33 3.2 Loaded Baseband Noise Spectrum (FT Mode) .................... 3.3 Baseband Idle Noise Spectrum With/Without De-Emphasis (FT Mode, High C/N) . .......................................... 3.34 3.4 Second and Third Order Intermodulation Noise Spectrums (FT Mode, 1200 Channels, ATS-3) ................................... 3.35 3.5 Idle Noise Spectrum of the SSB-PhM (MA) Mode (No Modulation) ........ 3.36 3.6 Loaded Noise Spectrum of the SSB-PhM (MA) Mode (1200 Channel Noise Modulation) ..................................... 3.37 3.7 SSB-PhM (MA) Mode Baseband Noise Spectrun (C/N = 20 dB) .......... 3.38 3.8 SSB-PhM (MA) Mode Baseband Noise Spectrum (C/N = 12 dB) .......... 3.39 3.9 SSB-PhM (MA) Mode Baseband Noise Spectrum (C/N = 8 dB) .......... 3.40 3.10 Second and Third Order Intermodulation Noise Spectrums (MA Mode, 1200 Channels, ATS-3) .................................. 3.41 3.11 Two Station Two Tone Test, Mojave Receiving Earth Station (ATS-3, EIRP = 54.6 dbm, MA Mode) ............................. 3.42 3.12 Two Station Two Tone Test, Rosman Receiving Earth Station (ATS-3, EIRP5 = 54.6 dbm, MA Mode) ............................. 3.43 3.13 One Tone Test (Rosman, MA Mode, ATS-3) ........................ 3.44 3.14 Two Tone Test (Rosman, MA Mode, ATS-3) ........................ 3.45 3.15 Three Tone Test (Rosman, MA Mode, ATS-3) .................. 3.46 3.16 One Tone Test (Mojave, MA Mode, ATS-3) ........................ 3.47 3.17 Two Tone Test (Mojave, MA Mode, ATS-3) .................... 3.48 3.18 Three Tone Test (Mojave, MA Mode, ATS-3) ....................... 3.49 3.19 Two Tone Test (Rosman, FT Mode, ATS-3) ........................ 3.50 3.51 3.20 Three Tone Test (Rosman, FT Mode, ATS-3) ....................... 3.21 Two Tone Test (Mojave, FT Mode, ATS-3) .................... 3.52 3.22 Three Tone Test (Mojave, FT Mode, ATS-3) ................... 3.53 3.23 IF/RF Group Delay Measurements for FT Mode (Mojave, ATS-3 , BIF = 30 MHz) .......................................