Involvement of Outer Membrane Proteins and Peroxide-Sensor Genes in Burkholderia Cepacia Resistance to Isothiazolone

Total Page:16

File Type:pdf, Size:1020Kb

Involvement of Outer Membrane Proteins and Peroxide-Sensor Genes in Burkholderia Cepacia Resistance to Isothiazolone World J Microbiol Biotechnol (2014) 30:1251–1260 DOI 10.1007/s11274-013-1538-3 ORIGINAL PAPER Involvement of outer membrane proteins and peroxide-sensor genes in Burkholderia cepacia resistance to isothiazolone Gang Zhou • Qing-shan Shi • You-sheng Ouyang • Yi-ben Chen Received: 23 June 2013 / Accepted: 22 October 2013 / Published online: 6 November 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Isothiazolones are used as preservatives in Keywords Burkholderia cepacia Á Kathon various modern industrial products. Although microor- preservative Á Biocide resistance properties Á Outer ganisms that exhibit resistance towards these biocides have membrane proteins Á Peroxide-sensor genes been identified, the underlying resistance mechanisms are still unclear. Therefore, we investigated the resistance properties of the following Burkholderia cepacia strains to Kathon (a representative of isothiazolones): a wild-type Introduction (WT) strain; a laboratory resistance strain (BC-IR) induced from WT; and an isolated strain (BC-327) screened from Isothiazolone biocides are widely used as antimicrobial industrial contamination samples. The bacterial cell struc- agents to control microbial growth and biofouling in ture was disrupted by 50 lgml-1 Kathon treatment. BC- industrial applications such as cooling towers, metal- IR and BC-327 did not display resistance in the presence of working fluids, paper systems and cosmetics (Xu et al. 1mlL-1 Tween 80, 1 ml L-1 Triton X-100, 0.1 % 2009; Speksnijder et al. 2010). Isothiazolones possess sodium dodecyl sulfate or 1 mmol L-1 EDTA-2Na. broad-spectrum antimicrobial efficacy against gram-posi- Additionally, BC-IR and BC-327 exhibited lower relative tive and gram-negative bacteria (Pucci et al. 2007, 2011), conductivity from 10 to 180 min. The types as well as the fungi (Pedras and Suchy 2006; Adibpour et al. 2007; Vi- levels of outer-membrane proteins (OMPs) were altered centini et al. 2011), viruses, and algae (Sharmeen et al. among WT, BC-IR and BC-327. Finally, the two Kathon- 2001; Khalaj et al. 2004). resistance strains BC-IR and BC-327 presented higher Isothiazolones were thought to interact oxidatively with resistance capacity to H2O2. We measured the levels of accessible thiols such as glutathione and cysteine within peroxide-sensor genes and observed that the transcriptional the cell (Collier et al. 1990b) resulting in inhibition of activator oxyR, superoxide dismutase sod1, sod2, catalase growth and metabolism and loss of viability (Williams cat1 and cat3 were all up-regulated under oxidative con- 2007). Moreover, one of the most important properties of ditions for all strains. Taken together, OMPs and peroxide- isothiazolone biocides is that they are not specifically tar- sensor genes in B. cepacia contributed to isothiazolone geted to envelope or cytosolic proteins (Collier et al. resistance; However, the laboratory strain BC-IR exhibited 1990a). Several reports demonstrate biocide activity of a different resistance mechanism and properties compared isothiazolone by inhibition of transferases (El Abdellaoui to the isolated strain BC-327. et al. 2006; Furdas et al. 2011; Reddy et al. 2011), oxidoreductases (Collier et al. 1991), isomerases (Cheng et al. 2007; Pucci et al. 2011), ligases (Gedi et al. 2011), G. Zhou Á Q. Shi (&) Á Y. Ouyang Á Y. Chen hydrolases (King et al. 2009), growth factor receptors State Key Laboratory of Applied Microbiology, South China (Kiselyov et al. 2009), and even mouse fibroblast cell (The Ministry-Province Joint Development), Guangdong growth (Adibpour et al. 2010). Institute of Microbiology, Guangzhou 510070, Guangdong, People’s Republic of China To exert antibacterial action, bactericides must penetrate e-mail: [email protected] the cell envelope or accumulated therein at a sufficiently 123 1252 World J Microbiol Biotechnol (2014) 30:1251–1260 high concentration. Adaptation of the microbial cell Materials and methods envelope may contribute to the mechanism allowing for resistance to antimicrobial agents (Cloete 2003). As Bacterial strains and chemicals expected, different outer membrane proteins (OMPs) expression patterns between sensitive and resistant strains B. cepacia ATCC25416 (WT), kindly provided by were observed upon isothiazolones treatment. A 35 kDa Guangdong Culture Collection Center (Guangzhou, OMP was detectable in wild-type (WT) cells of Pseudo- China), was routinely incubated in M9 minimal medium monas aeruginosa but not in cells resistant to isothiazo- (Howard-Flanders and Theriot 1966) containing 1 g L-1 -1 -1 lone. Therefore, it was proposed that this protein was the NH4Cl, 11 g L Na2HPO4Á7H2O, 3gL KH2PO4, -1 -1 -1 channel for isothiazolone (Bro¨zel and Cloete 1994). Sim- 5gL NaCl, 4 g L glucose, 120 mg L MgSO4, and -1 ilarly, in a previous study, upon examination of OMP 10 mg L CaC12 at 37 °C in a bathing rotator with 120 profiles of methylchloroisothiazolone (MCI)-resistant iso- revolutions per minute (rpm). A representative isothiazo- lates of P. aeruginosa, it was found that each of the isolates lone product Kathon, consisting of a 3:1 (volume:volume) lacked the 42 kDa protein which is believed to be a porin ratio of 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT) known as OprD. This result indicates the role of the outer and 2-methyl-4-isothiazolin-3-one (MIT) at a final con- membrane as a permeability barrier allowing for MCI centration of 14 % total active ingredient, was obtained resistance (Chapman et al. 1998). In addition, a T-OMP in from Guangdong Dimei Biology Technology Co., LTD P. aeruginosa PAO1 was found from biocide-exposed (Guangzhou, China). Meantime, all other chemicals used in preparations but not from resistance-induced cultures, this study were of analytical grade and purchased from which were passaged in the absence of biocide. This result Sigma Chemical Co. (St. Louis, MO, USA) unless other- suggests that the disappearance of T-OMP is associated wise stated. with the onset of resistance to isothiazolones (Winder et al. 2000). Isolation and identification of B. cepacia In general, preservative resistance occurs when a for- from a contaminated sample merly effective preservative system no longer inhibits microbial growth (Chapman et al. 1998). It is important A contaminated sample of shampoo, obtained from to completely understand properties and mechanisms of Guangdong Jiangmen Investment Industry CO., LTD (Ji- industrial biocides that confer resistance for optimizing angmen, China) and contained antimicrobial agents practical application (Williams 2007). However, previous including isothiazolones, was diluted with sterile distill studies of the isothiazolone resistance mechanism were water and placed onto MacConkey agar (Oxoid Ltd., nearly all performed by analyzing an induced laboratory Basingstoke, UK), and then repeatedly cultured at 37 °C. strain, whereas little attention has been devoted to an When the morphology of colony appeared to be homolo- environmental strain isolated from a contaminated sam- gous, pure bacterium was considered to be obtained and ple. We hypothesized that the two strains have different preserved at -80 °C with 30 % glycerol. Subsequently, the resistance mechanisms or properties. Meanwhile because biochemical characteristics of isolated strains were analy- of widespread and long-term use, an increasing number sized using API 20NE system (API-BioMerieux, La Balme of isothiazolone resistance cases have been reported. Les Grottes, France) according to the manufacter’s direc- Recently a resistant strain of Burkholderia cepacia,a tions. Meanwhile, genome of selected strain was extracted major industrial contaminant in cosmetic and pharma- with TIANamp Bacteria DNA Kit (Tiangen, Beijing, ceutical raw materials and even finished products (Jime- China) based on the manusfacter’s instructions. The 16 s nez and Smalls 2000), was isolated and identified from rRNA gene was amplified with a primer pair of 16s-F (50- industrial putrefaction in our laboratory. The new genus AGAGTTTGATCATGGCTCAG-30) and 16s-R (50-TAG- Burkholderia was first assigned in 1992 (Yabuuchi et al. GGTTACCTTGTTACGACTT-30) in an Eppendorf ther- 1992), and it was identified to be resistant to most anti- mocycler 5330 (Eppendorf AG, Hamburg, Germany) using microbial agents (Vermis et al. 2003) including isot- the above genome as templates. The PCR product was hiazolones (Rushton et al. 2013). The objective of this cloned into a pMD18-T vector (TaKaRa, Dalian, China) paper is to elucidate the difference of the resistance and sequenced at Beijing Genomics Institute (Guangzhou, features between induced and isolated strains of B. China). The resultant sequence was aligned using Clustal X cepacia. Our results will contribute to the knowledge of 1.83 with corresponding sequences of representative spe- the bacteria resistance mechanism to isothiazolone bio- cies of the genus of Burkholderia. Phylogenetic trees were cides and inform users about the corrected method of constructed using neighbour-joining algorithms from biocide application. MEGA 4 (Tamura et al. 2007). The identified B. cepacia 123 World J Microbiol Biotechnol (2014) 30:1251–1260 1253 with higher resistance level to Kathon was desiganed as external structure by transmission electron microscopy BC-327. (TEM; H-7650, Hitachi, Japan) at 80 kV. Inducement of the resistance strain Determination of cell conductivity Inducement of resistance to Kathon biocide was performed Aliquots of 1 ml overnight culture of WT, BC-IR and BC- according to the method previously reported by Bro¨zel and 327 were pipetted into 50 ml fresh M9 medium respectively, Cloete (1994) with some modifications. Briefly, the WT and then the flasks were placed in a rotary incubator at 37 °C -1 strain was first sub-cultured at 0.5 lgml of Kathon. with 180 rpm shaking until the optical density (OD600) Then the culture was transferred into a fresh M9 medium reached about 2.5. After centrifugation at 5,000 rpm, the supplemented with 1 lgml-1 of Kathon, and the concen- pellets were washed three times with deionized water, tration of Kathon was increased by 0.5 lgml-1 until the transferred into new tubes and resuspended with 5 ml sub-culture could not grow within 48 h.
Recommended publications
  • Inactivation of CRISPR-Cas Systems by Anti-CRISPR Proteins in Diverse Bacterial Species April Pawluk1, Raymond H.J
    LETTERS PUBLISHED: 13 JUNE 2016 | ARTICLE NUMBER: 16085 | DOI: 10.1038/NMICROBIOL.2016.85 Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species April Pawluk1, Raymond H.J. Staals2, Corinda Taylor2, Bridget N.J. Watson2, Senjuti Saha3, Peter C. Fineran2, Karen L. Maxwell4* and Alan R. Davidson1,3* CRISPR-Cas systems provide sequence-specific adaptive immu- MGE-encoded mechanisms that inhibit CRISPR-Cas systems. In nity against foreign nucleic acids1,2. They are present in approxi- support of this hypothesis, phages infecting Pseudomonas aeruginosa mately half of all sequenced prokaryotes3 and are expected to were found to encode diverse families of proteins that inhibit constitute a major barrier to horizontal gene transfer. We pre- the CRISPR-Cas systems of their host through several distinct viously described nine distinct families of proteins encoded in mechanisms4,5,17,18. However, homologues of these anti-CRISPR Pseudomonas phage genomes that inhibit CRISPR-Cas function4,5. proteins were found only within the Pseudomonas genus. Here, We have developed a bioinformatic approach that enabled us to we describe a bioinformatic approach that allowed us to identify discover additional anti-CRISPR proteins encoded in phages five novel families of functional anti-CRISPR proteins encoded in and other mobile genetic elements of diverse bacterial phages and other putative MGEs in species spanning the diversity species. We show that five previously undiscovered families of Proteobacteria. of anti-CRISPRs inhibit the type I-F CRISPR-Cas systems of The nine previously characterized anti-CRISPR protein families both Pseudomonas aeruginosa and Pectobacterium atrosepticum, possess no common sequence motifs, so we used genomic context to and a dual specificity anti-CRISPR inactivates both type I-F search for novel anti-CRISPR genes.
    [Show full text]
  • (Batch Learning Self-Organizing Maps), to the Microbiome Analysis of Ticks
    Title A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks Nakao, Ryo; Abe, Takashi; Nijhof, Ard M; Yamamoto, Seigo; Jongejan, Frans; Ikemura, Toshimichi; Sugimoto, Author(s) Chihiro The ISME Journal, 7(5), 1003-1015 Citation https://doi.org/10.1038/ismej.2012.171 Issue Date 2013-03 Doc URL http://hdl.handle.net/2115/53167 Type article (author version) File Information ISME_Nakao.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks Ryo Nakao1,a, Takashi Abe2,3,a, Ard M. Nijhof4, Seigo Yamamoto5, Frans Jongejan6,7, Toshimichi Ikemura2, Chihiro Sugimoto1 1Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan 2Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan 3Graduate School of Science & Technology, Niigata University, 8050, Igarashi 2-no-cho, Nishi- ku, Niigata 950-2181, Japan 4Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany 5Miyazaki Prefectural Institute for Public Health and Environment, 2-3-2 Gakuen Kibanadai Nishi, Miyazaki 889-2155, Japan 6Utrecht Centre for Tick-borne Diseases (UCTD), Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands 7Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110 Onderstepoort, South Africa aThese authors contributed equally to this work. Keywords: BLSOMs/emerging diseases/metagenomics/microbiomes/symbionts/ticks Running title: Tick microbiomes revealed by BLSOMs Subject category: Microbe-microbe and microbe-host interactions Abstract Ticks transmit a variety of viral, bacterial and protozoal pathogens, which are often zoonotic.
    [Show full text]
  • Potential of Bacterial Cellulose Chemisorbed with Anti-Metabolites, 3-Bromopyruvate Or Sertraline, to Fight Against Helicobacter Pylori Lawn Biofilm
    International Journal of Molecular Sciences Article Potential of Bacterial Cellulose Chemisorbed with Anti-Metabolites, 3-Bromopyruvate or Sertraline, to Fight against Helicobacter pylori Lawn Biofilm Paweł Krzy˙zek 1,* , Gra˙zynaGo´sciniak 1 , Karol Fijałkowski 2 , Paweł Migdał 3 , Mariusz Dziadas 4 , Artur Owczarek 5 , Joanna Czajkowska 6, Olga Aniołek 7 and Adam Junka 8 1 Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; [email protected] 2 Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 70-311 Szczecin, Poland; karol.fi[email protected] 3 Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland; [email protected] 4 Faculty of Chemistry, University of Wroclaw, 50-353 Wroclaw, Poland; [email protected] 5 Department of Drug Form Technology, Wroclaw Medical University, 50-556 Wroclaw, Poland; [email protected] 6 Laboratory of Microbiology, Polish Center for Technology Development PORT, 54-066 Wroclaw, Poland; [email protected] 7 Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland; [email protected] 8 Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; [email protected] * Correspondence: [email protected] Received: 23 November 2020; Accepted: 11 December 2020; Published: 14 December 2020 Abstract: Helicobacter pylori is a bacterium known mainly of its ability to cause persistent inflammations of the human stomach, resulting in peptic ulcer diseases and gastric cancers. Continuous exposure of this bacterium to antibiotics has resulted in high detection of multidrug-resistant strains and difficulties in obtaining a therapeutic effect.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Yu-Chen Ling and John W. Moreau
    Microbial Distribution and Activity in a Coastal Acid Sulfate Soil System Introduction: Bioremediation in Yu-Chen Ling and John W. Moreau coastal acid sulfate soil systems Method A Coastal acid sulfate soil (CASS) systems were School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia formed when people drained the coastal area Microbial distribution controlled by environmental parameters Microbial activity showed two patterns exposing the soil to the air. Drainage makes iron Microbial structures can be grouped into three zones based on the highest similarity between samples (Fig. 4). Abundant populations, such as Deltaproteobacteria, kept constant activity across tidal cycling, whereas rare sulfides oxidize and release acidity to the These three zones were consistent with their geological background (Fig. 5). Zone 1: Organic horizon, had the populations changed activity response to environmental variations. Activity = cDNA/DNA environment, low pH pore water further dissolved lowest pH value. Zone 2: surface tidal zone, was influenced the most by tidal activity. Zone 3: Sulfuric zone, Abundant populations: the heavy metals. The acidity and toxic metals then Method A Deltaproteobacteria Deltaproteobacteria this area got neutralized the most. contaminate coastal and nearby ecosystems and Method B 1.5 cause environmental problems, such as fish kills, 1.5 decreased rice yields, release of greenhouse gases, Chloroflexi and construction damage. In Australia, there is Gammaproteobacteria Gammaproteobacteria about a $10 billion “legacy” from acid sulfate soils, Chloroflexi even though Australia is only occupied by around 1.0 1.0 Cyanobacteria,@ Acidobacteria Acidobacteria Alphaproteobacteria 18% of the global acid sulfate soils. Chloroplast Zetaproteobacteria Rare populations: Alphaproteobacteria Method A log(RNA(%)+1) Zetaproteobacteria log(RNA(%)+1) Method C Method B 0.5 0.5 Cyanobacteria,@ Bacteroidetes Chloroplast Firmicutes Firmicutes Bacteroidetes Planctomycetes Planctomycetes Ac8nobacteria Fig.
    [Show full text]
  • Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment
    antibiotics Article Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment Alicia Sorgen 1, James Johnson 2, Kevin Lambirth 2, Sandra M. Clinton 3 , Molly Redmond 1 , Anthony Fodor 2 and Cynthia Gibas 2,* 1 Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (A.S.); [email protected] (M.R.) 2 Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (J.J.); [email protected] (K.L.); [email protected] (A.F.) 3 Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-704-687-8378 Abstract: Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify Citation: Sorgen, A.; Johnson, J.; phenotypically resistant cultivable portions of these bacterial communities and characterized the Lambirth, K.; Clinton,
    [Show full text]
  • Chepep Controls Helicobacter Pylori Infection of the Gastric Glands and Chemotaxis in the Epsilonproteobacteria
    RESEARCH ARTICLE ChePep Controls Helicobacter pylori Infection of the Gastric Glands and Chemotaxis in the Epsilonproteobacteria Michael R. Howitt,a Josephine Y. Lee,a Paphavee Lertsethtakarn,b Roger Vogelmann,a* Lydia-Marie Joubert,c Karen M. Ottemann,b and Manuel R. Amievaa,d Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USAa; Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USAb; Cell Sciences Imaging Facility, Stanford University School of Medicine, Stanford, California, USAc; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USAd * Present address: II, Medizinische Klinik Universitätsmedizin Mannheim, Mannheim, Germany ABSTRACT Microbes use directed motility to colonize harsh and dynamic environments. We discovered that Helicobacter pylori strains establish bacterial colonies deep in the gastric glands and identified a novel protein, ChePep, necessary to colonize this niche. ChePep is preferentially localized to the flagellar pole. Although mutants lacking ChePep have normal flagellar ultrastruc- ture and are motile, they have a slight defect in swarming ability. By tracking the movement of single bacteria, we found that ⌬ChePep mutants cannot control the rotation of their flagella and swim with abnormally frequent reversals. These mutants even sustain bursts of movement backwards with the flagella pulling the bacteria. Genetic analysis of the chemotaxis signaling path- way shows that ChePep regulates flagellar rotation through the chemotaxis system. By examining H. pylori within a microscopic pH gradient, we determined that ChePep is critical for regulating chemotactic behavior. The chePep gene is unique to the Epsi- lonproteobacteria but is found throughout this diverse group.
    [Show full text]
  • Exploration of Tick-Borne Pathogens and Microbiota of Dog Ticks Collected at Potchefstroom Animal Welfare Society
    Exploration of tick-borne pathogens and microbiota of dog ticks collected at Potchefstroom Animal Welfare Society C Van Wyk orcid.org 0000-0002-5971-4396 Dissertation submitted in fulfilment of the requirements for the degree Master of Science in Environmental Sciences at the North-West University Supervisor: Prof MMO Thekisoe Co-supervisor: Ms K Mtshali Graduation May 2019 24263524 DEDICATION This thesis is dedicated to the late Nettie Coetzee. For her inspiration and lessons to overcome any obstacle that life may present. God called home another angel we all love and miss you. “We are the scientists, trying to make sense of the stars inside us.” -Christopher Poindexter i ACKNOWLEDGEMENTS My sincerest appreciation goes out to my supervisor, Prof. Oriel M.M. Thekisoe, for his support, motivation, guidance, and insightfulness during the duration of this project and been there every step of the way. I would also like to thank my co-supervisor, Ms. Khethiwe Mtshali, for her patience and insightfulness towards the corrections of this thesis. I would like to thank Dr. Stalone Terera and the staff members at PAWS for their aid towards the collection of tick specimens. For the sequencing on the Illumina MiSeq platform and metagenomic data analysis I would like to thank Dr. Moeti O. Taioe, Dr. Charlotte M.S. Mienie, Dr. Danie C. La Grange, and Dr. Marlin J. Mert. I would like to thank the National Research Foundation (NRF) for their financial support by awarding me the S&F- Innovation Masters Scholarship and the North-West University (NWU) for the use of their laboratories.
    [Show full text]
  • Lecture 1 ― INTRODUCTION INTO MICROBIOLOGY
    МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ» Кафедра микробиологии, вирусологии и иммунологии А. И. КОЗЛОВА, Д. В. ТАПАЛЬСКИЙ МИКРОБИОЛОГИЯ, ВИРУСОЛОГИЯ И ИММУНОЛОГИЯ Учебно-методическое пособие для студентов 2 и 3 курсов факультета по подготовке специалистов для зарубежных стран медицинских вузов MICROBIOLOGY, VIROLOGY AND IMMUNOLOGY Teaching workbook for 2 and 3 year students of the Faculty on preparation of experts for foreign countries of medical higher educational institutions Гомель ГомГМУ 2015 УДК 579+578+612.017.1(072)=111 ББК 28.4+28.3+28.073(2Англ)я73 К 59 Рецензенты: доктор медицинских наук, профессор, заведующий кафедрой клинической микробиологии Витебского государственного ордена Дружбы народов медицинского университета И. И. Генералов; кандидат медицинских наук, доцент, доцент кафедры эпидемиологии и микробиологии Белорусской медицинской академии последипломного образования О. В. Тонко Козлова, А. И. К 59 Микробиология, вирусология и иммунология: учеб.-метод. пособие для студентов 2 и 3 курсов факультета по подготовке специалистов для зарубежных стран медицинских вузов = Microbiology, virology and immunology: teaching workbook for 2 and 3 year students of the Faculty on preparation of experts for foreign countries of medical higher educa- tional institutions / А. И. Козлова, Д. В. Тапальский. — Гомель: Гом- ГМУ, 2015. — 240 с. ISBN 978-985-506-698-0 В учебно-методическом пособии представлены тезисы лекций по микробиоло- гии, вирусологии и иммунологии, рассмотрены вопросы морфологии, физиологии и генетики микроорганизмов, приведены сведения об общих механизмах функциони- рования системы иммунитета и современных иммунологических методах диагности- ки инфекционных и неинфекционных заболеваний. Приведены сведения об этиоло- гии, патогенезе, микробиологической диагностике и профилактике основных бакте- риальных и вирусных инфекционных заболеваний человека. Может быть использовано для закрепления материала, изученного в курсе микро- биологии, вирусологии, иммунологии.
    [Show full text]
  • Analysis of Anaplasma Marginale Strains Grown in Vitro
    ANALYSIS OF ANAPLASMA MARGINALE STRAINS GROWN IN VITRO Thèse présentée à la faculté des Sciences Institut de Biologie Université de Neuchâtel Pour l’obtention du grade de docteur ès Sciences (Ph.D.) Par Katarzyna Lis Jury Prof. Dr. Kurt Pfister, Directeur de thèse (Université de Neuchâtel, Switzerland) Prof. Dr. Lygia Passos, Supervisor (Ludwig-Maximilians-Universität, Germany) Prof. hon. Bruno Betschart (Université de Neuchâtel, Switzerland) Prof. Dr. Lise Gern (Université de Neuchâtel, Switzerland) Prof. Dr. Patrick Guerin (Université de Neuchâtel, Switzerland) Prof. Dr. Steffen Rehbein (Merial GmbH, Germany) Université de Neuchâtel - 2014 - PREFACE This PhD project was conducted at the Institute of Comparative Tropical Medicine and Parasitology at Ludwig-Maximilians-Universität, München, Germany. This work of research was a part of the POSTICK ITN (Post-graduate training network for capacity building to control ticks and tick-borne diseases), an integrated Project of the European Union’s FP7- PEOPLE – ITN programme (2009-2013), (EU Grant No. 238511). Key words: Anaplasma marginale, tick cell cultures, Percoll gradients, Major Surface Proteins, 2D-DIGE, IDE8 Mots clés: Anaplasma marginale, culture cellulaire tique, Percoll gradients, Major Surface Proteins, 2D-DIGE, IDE8 Abstract Anaplasma marginale is a tick-borne pathogen that affects ruminants worldwide, causing a disease called anaplasmosis. The disease is endemic in tropical and subtropical regions of the New World, Europe, Africa, Asia and Australia where it causes large economic losses in the cattle industry. A. marginale is an obligatory intracellular bacterium that multiplies only within tick cells or ruminants' erythrocytes. Many differences among A. marginale strains have emerged, which were probably driven by continuous exposure to different host immune systems during the transition of bacteria between ticks and vertebrates.
    [Show full text]
  • Alvinella Pompejana Is an Endemic Inhabitant Tof Deep-Sea Hydrothermal Vents Located from 21°N to 32°S Latitude on the East Pacific Rise (1)
    Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility Joseph J. Grzymskia,1, Alison E. Murraya,1, Barbara J. Campbellb, Mihailo Kaplarevicc, Guang R. Gaoc,d, Charles Leee, Roy Daniele, Amir Ghadirif, Robert A. Feldmanf, and Stephen C. Caryb,d,2 aDivision of Earth and Ecosystem Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512; bCollege of Marine and Earth Studies, University of Delaware, Lewes, DE 19958; cDelaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19702; dElectrical and Computer Engineering, University of Delaware, 140 Evans Hall, Newark, DE 19716; eDepartment of Biological Sciences, University of Waikato, Hamilton, New Zealand; fSymBio Corporation, 1455 Adams Drive, Menlo Park, CA 94025 Edited by George N. Somero, Stanford University, Pacific Grove, CA, and approved September 17, 2008 (received for review March 20, 2008) Hydrothermal vent ecosystems support diverse life forms, many of the thermal tolerance of a structural protein biomarker (5) which rely on symbiotic associations to perform functions integral supports the assertion that A. pompejana is likely among the to survival in these extreme physicochemical environments. Epsi- most thermotolerant and eurythermal metazoans on Earth lonproteobacteria, found free-living and in intimate associations (6, 7). with vent invertebrates, are the predominant vent-associated A. pompejana is characterized by a filamentous microflora that microorganisms. The vent-associated polychaete worm, Alvinella forms cohesive hair-like projections from mucous glands lining pompejana, is host to a visibly dense fleece of episymbionts on its the polychaete’s dorsal intersegmentary spaces (8). The episym- dorsal surface. The episymbionts are a multispecies consortium of biont community is constrained to the bacterial subdivision, Epsilonproteobacteria present as a biofilm.
    [Show full text]
  • Networks of Gene Sharing Among 329 Proteobacterial Genomes Reveal
    Networks of Gene Sharing among 329 Proteobacterial Genomes Reveal Differences in Lateral Gene Transfer Frequency at Different Phylogenetic Depths Thorsten Kloesges,1 Ovidiu Popa,1 William Martin,1 and Tal Dagan*,1 1Institute of Botany III, Heinrich-Heine University Du¨sseldorf, Du¨sseldorf, Germany *Corresponding author: E-mail: [email protected]. Associate editor: James McInerney Abstract Lateral gene transfer (LGT) is an important mechanism of natural variation among prokaryotes. Over the full course of evolution, most or all of the genes resident in a given prokaryotic genome have been affected by LGT, yet the frequency Research article of LGT can vary greatly across genes and across prokaryotic groups. The proteobacteria are among the most diverse of prokaryotic taxa. The prevalence of LGT in their genome evolution calls for the application of network-based methods instead of tree-based methods to investigate the relationships among these species. Here, we report networks that capture both vertical and horizontal components of evolutionary history among 1,207,272 proteins distributed across 329 sequenced proteobacterial genomes. The network of shared proteins reveals modularity structure that does not correspond to current classification schemes. On the basis of shared protein-coding genes, the five classes of proteobacteria fall into two main modules, one including the alpha-, delta-, and epsilonproteobacteria and the other including beta- and gammaproteobac- teria. The first module is stable over different protein identity thresholds. The second shows more plasticity with regard to the sequence conservation of proteins sampled, with the gammaproteobacteria showing the most chameleon-like evolutionary characteristics within the present sample.
    [Show full text]