Guidelines for the Direct Detection of Anaplasma Spp. in Diagnosis and Epidemiological Studies

Total Page:16

File Type:pdf, Size:1020Kb

Guidelines for the Direct Detection of Anaplasma Spp. in Diagnosis and Epidemiological Studies See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/312263467 Guidelines for the Direct Detection of Anaplasma spp. in Diagnosis and Epidemiological Studies Article in Vector Borne and Zoonotic Diseases · January 2017 DOI: 10.1089/vbz.2016.1960 CITATIONS READS 6 369 13 authors, including: Cornelia Silaghi Ana Sofia Santos Friedrich Loeffler Institute National Institute of Health Dr. Ricardo Jorge 250 PUBLICATIONS 2,287 CITATIONS 72 PUBLICATIONS 575 CITATIONS SEE PROFILE SEE PROFILE Jacinto Gomes Iva Christova Instituto Nacional de Investigação Agrária e Veterinária (INIAV) National Centre of Infectious and Parasitic Diseases, Bulgaria 65 PUBLICATIONS 253 CITATIONS 104 PUBLICATIONS 1,105 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Pathogenesis and control of Flaviviruses: Cocirculation and Co-infection of resident and migratory avian hosts throughout Spain View project REVIVE Network - Entomological surveillance in Portugal View project All content following this page was uploaded by Ana Domingos on 27 November 2017. The user has requested enhancement of the downloaded file. VECTOR-BORNE AND ZOONOTIC DISEASES Volume 17, Number 1, 2017 ª Mary Ann Liebert, Inc. DOI: 10.1089/vbz.2016.1960 Guidelines for the Direct Detection of Anaplasma spp. in Diagnosis and Epidemiological Studies Cornelia Silaghi,1,* Ana Sofia Santos,2,* Jacinto Gomes,3 Iva Christova,4 Ioana Adriana Matei,5 Gernot Walder,6 Ana Domingos,7 Lesley Bell-Sakyi,8 Hein Sprong,9 Friederike D. von Loewenich,10 Jose´ A. Oteo,11 Jose´ de la Fuente,12,13 and J. Stephen Dumler14,15 Abstract The genus Anaplasma (Rickettsiales: Anaplasmataceae) comprises obligate intracellular Gram-negative bacteria that are mainly transmitted by ticks, and currently includes six species: Anaplasma bovis, Anaplasma centrale, Anaplasma marginale, Anaplasma phagocytophilum, Anaplasma platys, and Anaplasma ovis. These have long been known as etiological agents of veterinary diseases that affect domestic and wild animals worldwide. A zoonotic role has been recognized for A. phagocytophilum, but other species can also be pathogenic for humans. Anaplasma infections are usually challenging to diagnose, clinically presenting with nonspecific symptoms that vary greatly depending on the agent involved, the affected host, and other factors such as immune status and coinfections. The substantial economic impact associated with livestock infection and the growing number of human cases along with the risk of transfusion-transmitted infections, determines the need for accurate laboratory tests. Because hosts are usually seronegative in the initial phase of infection and serological cross-reactions with several Anaplasma species are observed after seroconversion, direct tests are the best approach for both case definition and epidemiological studies. Blood samples are routinely used for Anaplasma spp. screening, but in persistently infected animals with intermittent or low-level bacteremia, other tissues might be useful. These guidelines have been developed as a direct outcome of the COST action TD1303 EURNEGVEC (‘‘European Network of Neglected Vectors and Vector-Borne Diseases’’). They review the direct laboratory tests (microscopy, nucleic acid-based detection and in vitro isolation) currently used for Anaplasma detection in ticks and vertebrates and their application. Keywords: Anaplasma spp., direct diagnosis, in vitro isolation, microscopy, PCR, ticks, vertebrate hosts 1National Center for Vector Entomology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland. 2Center for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, A´ guas de Moura, Portugal. 3Animal Health and Production Unit, National Institute for Agrarian and Veterinary Research, Oeiras, Portugal. 4Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria. 5Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania. 6Department of Hygiene, Medical Microbiology and Social Medicine, Innsbruck Medical University, Innsbruck, Austria. 7Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal. 8The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom. 9Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. 10Department of Medical Microbiology and Hygiene, University of Mainz, Medical Center, Mainz, Germany. 11Infectious Diseases Department, Center of Rickettsioses and Arthropod-Borne Diseases, Hospital San Pedro- CIBIR, Logron˜o, Spain. 12SaBio. Instituto de Investigacio´n de Recursos Cinege´ticos, IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain. 13Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma. 14Departments of Pathology and Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland. 15Department of Pathology, Uniformed Services University for the Health Sciences ‘‘America’s Medical School,’’ Bethesda, Maryland. *These authors contributed equally to this work. 12 ANAPLASMA SPP. DIRECT DETECTION 13 Introduction Peripheral blood smears directly prepared after fingerstick or superficial vein puncture or from venous blood collected embers of the genus Anaplasma (Rickettsiales: into anticoagulant, obtained during the early acute phase of MAnaplasmataceae) are non-motile, obligate intracellu- symptoms and before initiation of effective antimicrobial lar Gram-negative bacteria residing in membrane-bound therapy, are best for visualization of bacteria in both animals cytoplasmic vacuoles of the host cell where they form ag- and humans. This time frame for sample collection is crucial glomerates called morulae (Latin morus = mulberry). Fol- for all direct tests, including molecular detection and in vitro lowing the reorganization of the order Rickettsiales in 2001, cultivation, as it covers the stage of infection when sufficient the genus Anaplasma contains at least six species: Anaplasma numbers of bacteria are present in the circulating blood. For bovis, Anaplasma centrale, Anaplasma marginale, Anaplas- leukocytotropic species (A. bovis and A. phagocytophilum), ma phagocytophilum, Anaplasma platys, and Anaplasma ovis buffy coat smears are preferred to regular whole blood pre- (Dumler et al. 2001, 2005). In future, recently identified parations, as due to leukopenia very few infected leukocytes agents such as Anaplasma odocoilei and Anaplasma capra may be present. Representing a leukocyte- and platelet- could be included (Tate el al. 2013, Li et al. 2015). Anaplasma enriched fraction, buffy coat is also considered useful for spp. are etiologic agents of veterinary diseases affecting detection of A. platys morulae within platelets (Eddlestone domestic ruminants, equines, dogs, and cats worldwide. et al. 2007). In any case, bacterial detection is best achieved if A. phagocytophilum is also regarded as an emerging human smears are prepared immediately after blood collection. Al- pathogen with growing importance in the Northern Hemi- ternatively, anticoagulated samples can be refrigerated and sphere (Jin et al. 2012, Bakken and Dumler 2015). Reports processed preferably within 24–48 h. At post-mortem exam- of human infections caused by other species such as A. platys, ination, tissue impressions or smears (spleen, liver, kidney, A. ovis, and the putative A. capra, suggest a broader medical heart, lung and, in particular, blood vessels) can be performed relevance of this taxon (Chochlakis et al. 2010, Maggi et al. in an attempt to visualize erythrocytotropic Anaplasma spp. 2013, Arraga-Alvarado et al. 2014, Breitschwerdt et al. 2014, (Kocan et al. 2010, OIE 2015). After being dried and fixed in Li et al. 2015). methanol, smears are stable for at least 2 months. Differential Anaplasma exhibit a biological cycle involving infection staining is achieved with Eosin Azure (Romanovsky)-type of both invertebrate and vertebrate hosts. Ticks are regarded dyes such as Giemsa and Diff-Quik; Anaplasma morulae as primary vectors, with different cell types targeted by these typically appear in the host cells as dark blue to purple for- agents in a replication cycle, including invasion of salivary mations by light microscopic examination at 400· or 1000· glands and transmission in saliva released during blood magnification. Open access reference images can be found in feeding. Alternative transmission routes include mechanical the literature of A. bovis (Liu et al. 2012), A. centrale (Bell- transfer by other hematophagous arthropods or fomites such Sakyi et al. 2015), A. marginale (Kocan et al. 2003), A. pha- as contaminated veterinary instruments, and transfusion- gocytophilum (Annen et al. 2012, Henniger et al. 2013), A. transmitted infections (Leiby and Gill 2004, Aubry and Geale platys (Dyachenko et al. 2012), and A. ovis (Yasini et al. 2012). 2011, Renneker et al. 2013, Shields et al. 2015). Anaplasma Light microscopy is the most inexpensive and quickest spp. display unique cell tropisms in vertebrate hosts and de- laboratory test, but also the least sensitive, and is highly pending on the species, different cells of the hematopoietic dependent on examiner experience, relative
Recommended publications
  • Anaplasma Species of Veterinary Importance in Japan
    Veterinary World, EISSN: 2231-0916 REVIEW ARTICLE Available at www.veterinaryworld.org/Vol.9/November-2016/4.pdf Open Access Anaplasma species of veterinary importance in Japan Adrian Patalinghug Ybañez1 and Hisashi Inokuma2 1. Biology and Environmental Studies Program, Sciences Cluster, University of the Philippines Cebu, Lahug, Cebu City 6000, Philippines; 2. Department of Veterinary Clinical Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Inada Cho, Hokkaido 080-8555, Japan. Corresponding author: Adrian Patalinghug Ybañez, e-mail: [email protected], HI: [email protected] Received: 14-06-2016, Accepted: 28-09-2016, Published online: 04-11-2016 doi: 10.14202/vetworld.2016.1190-1196 How to cite this article: Ybañez AP, Inokuma H (2016) Anaplasma species of veterinary importance in Japan, Veterinary World, 9(11): 1190-1196. Abstract Anaplasma species of the family Anaplasmataceae, order Rickettsiales are tick-borne organisms that can cause disease in animals and humans. In Japan, all recognized species of Anaplasma (except for Anaplasma ovis) and a potentially novel Anaplasma sp. closely related to Anaplasma phagocytophilum have been reported. Most of these detected tick- borne pathogens are believed to be lowly pathogenic in animals in Japan although the zoonotic A. phagocytophilum has recently been reported to cause clinical signs in a dog and in humans. This review documents the studies and reports about Anaplasma spp. in Japan. Keywords: Anaplasma spp., Japan, tick-borne pathogen. Introduction A. phagocytophilum sequences [10-15]. Phylogenetic Anaplasma species are Gram-negative, obligate inferences have suggested that 2 clades exist within intracellular bacteria of the order Rickettsiales, fam- the genus Anaplasma: (1) Erythrocytic (A.
    [Show full text]
  • Inactivation of CRISPR-Cas Systems by Anti-CRISPR Proteins in Diverse Bacterial Species April Pawluk1, Raymond H.J
    LETTERS PUBLISHED: 13 JUNE 2016 | ARTICLE NUMBER: 16085 | DOI: 10.1038/NMICROBIOL.2016.85 Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species April Pawluk1, Raymond H.J. Staals2, Corinda Taylor2, Bridget N.J. Watson2, Senjuti Saha3, Peter C. Fineran2, Karen L. Maxwell4* and Alan R. Davidson1,3* CRISPR-Cas systems provide sequence-specific adaptive immu- MGE-encoded mechanisms that inhibit CRISPR-Cas systems. In nity against foreign nucleic acids1,2. They are present in approxi- support of this hypothesis, phages infecting Pseudomonas aeruginosa mately half of all sequenced prokaryotes3 and are expected to were found to encode diverse families of proteins that inhibit constitute a major barrier to horizontal gene transfer. We pre- the CRISPR-Cas systems of their host through several distinct viously described nine distinct families of proteins encoded in mechanisms4,5,17,18. However, homologues of these anti-CRISPR Pseudomonas phage genomes that inhibit CRISPR-Cas function4,5. proteins were found only within the Pseudomonas genus. Here, We have developed a bioinformatic approach that enabled us to we describe a bioinformatic approach that allowed us to identify discover additional anti-CRISPR proteins encoded in phages five novel families of functional anti-CRISPR proteins encoded in and other mobile genetic elements of diverse bacterial phages and other putative MGEs in species spanning the diversity species. We show that five previously undiscovered families of Proteobacteria. of anti-CRISPRs inhibit the type I-F CRISPR-Cas systems of The nine previously characterized anti-CRISPR protein families both Pseudomonas aeruginosa and Pectobacterium atrosepticum, possess no common sequence motifs, so we used genomic context to and a dual specificity anti-CRISPR inactivates both type I-F search for novel anti-CRISPR genes.
    [Show full text]
  • (Batch Learning Self-Organizing Maps), to the Microbiome Analysis of Ticks
    Title A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks Nakao, Ryo; Abe, Takashi; Nijhof, Ard M; Yamamoto, Seigo; Jongejan, Frans; Ikemura, Toshimichi; Sugimoto, Author(s) Chihiro The ISME Journal, 7(5), 1003-1015 Citation https://doi.org/10.1038/ismej.2012.171 Issue Date 2013-03 Doc URL http://hdl.handle.net/2115/53167 Type article (author version) File Information ISME_Nakao.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks Ryo Nakao1,a, Takashi Abe2,3,a, Ard M. Nijhof4, Seigo Yamamoto5, Frans Jongejan6,7, Toshimichi Ikemura2, Chihiro Sugimoto1 1Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan 2Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan 3Graduate School of Science & Technology, Niigata University, 8050, Igarashi 2-no-cho, Nishi- ku, Niigata 950-2181, Japan 4Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany 5Miyazaki Prefectural Institute for Public Health and Environment, 2-3-2 Gakuen Kibanadai Nishi, Miyazaki 889-2155, Japan 6Utrecht Centre for Tick-borne Diseases (UCTD), Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands 7Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110 Onderstepoort, South Africa aThese authors contributed equally to this work. Keywords: BLSOMs/emerging diseases/metagenomics/microbiomes/symbionts/ticks Running title: Tick microbiomes revealed by BLSOMs Subject category: Microbe-microbe and microbe-host interactions Abstract Ticks transmit a variety of viral, bacterial and protozoal pathogens, which are often zoonotic.
    [Show full text]
  • Morbidity and Mortality Weekly Report Weekly March 20, 2009 / Vol
    Morbidity and Mortality Weekly Report www.cdc.gov/mmwr Weekly March 20, 2009 / Vol. 58 / No. 10 Trends in Tuberculosis — World TB Day — March 24, 2009 United States, 2008 World TB Day is observed each year on March 24 to commemorate the date in 1882 when Dr. Robert Koch In 2008, a total of 12,898 incident tuberculosis (TB) cases announced the discovery of Mycobacterium tuberculosis, the were reported in the United States; the TB rate declined 3.8% bacterium that causes tuberculosis (TB). Worldwide, TB from 2007 to 4.2 cases per 100,000 population, the lowest remains one of the leading causes of death from infectious rate recorded since national reporting began in 1953. This disease. An estimated 2 billion persons are infected with report summarizes provisional 2008 data from the National M. tuberculosis (1). In 2006, approximately 9.2 million TB Surveillance System and describes trends since 1993. persons became ill from TB, and 1.7 million died from Despite this overall improvement, progress has slowed in the disease (1). World TB Day provides an opportunity recent years; the average annual percentage decline in the TB for TB programs, nongovernmental organizations, and rate decreased from 7.3% per year during 1993–2000 to 3.8% other partners to describe problems and solutions related during 2000–2008.* Foreign-born persons and racial/ethnic to the TB pandemic and to support worldwide TB minorities continued to bear a disproportionate burden of TB control efforts. The U.S. theme for this year’s observance disease in the United States. In 2008, the TB rate in foreign- is Partnerships for TB Elimination.
    [Show full text]
  • 2012 Case Definitions Infectious Disease
    Arizona Department of Health Services Case Definitions for Reportable Communicable Morbidities 2012 TABLE OF CONTENTS Definition of Terms Used in Case Classification .......................................................................................................... 6 Definition of Bi-national Case ............................................................................................................................................. 7 ------------------------------------------------------------------------------------------------------- ............................................... 7 AMEBIASIS ............................................................................................................................................................................. 8 ANTHRAX (β) ......................................................................................................................................................................... 9 ASEPTIC MENINGITIS (viral) ......................................................................................................................................... 11 BASIDIOBOLOMYCOSIS ................................................................................................................................................. 12 BOTULISM, FOODBORNE (β) ....................................................................................................................................... 13 BOTULISM, INFANT (β) ...................................................................................................................................................
    [Show full text]
  • Potential of Bacterial Cellulose Chemisorbed with Anti-Metabolites, 3-Bromopyruvate Or Sertraline, to Fight Against Helicobacter Pylori Lawn Biofilm
    International Journal of Molecular Sciences Article Potential of Bacterial Cellulose Chemisorbed with Anti-Metabolites, 3-Bromopyruvate or Sertraline, to Fight against Helicobacter pylori Lawn Biofilm Paweł Krzy˙zek 1,* , Gra˙zynaGo´sciniak 1 , Karol Fijałkowski 2 , Paweł Migdał 3 , Mariusz Dziadas 4 , Artur Owczarek 5 , Joanna Czajkowska 6, Olga Aniołek 7 and Adam Junka 8 1 Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; [email protected] 2 Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 70-311 Szczecin, Poland; karol.fi[email protected] 3 Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland; [email protected] 4 Faculty of Chemistry, University of Wroclaw, 50-353 Wroclaw, Poland; [email protected] 5 Department of Drug Form Technology, Wroclaw Medical University, 50-556 Wroclaw, Poland; [email protected] 6 Laboratory of Microbiology, Polish Center for Technology Development PORT, 54-066 Wroclaw, Poland; [email protected] 7 Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland; [email protected] 8 Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; [email protected] * Correspondence: [email protected] Received: 23 November 2020; Accepted: 11 December 2020; Published: 14 December 2020 Abstract: Helicobacter pylori is a bacterium known mainly of its ability to cause persistent inflammations of the human stomach, resulting in peptic ulcer diseases and gastric cancers. Continuous exposure of this bacterium to antibiotics has resulted in high detection of multidrug-resistant strains and difficulties in obtaining a therapeutic effect.
    [Show full text]
  • Ehrlichiosis and Anaplasmosis Are Tick-Borne Diseases Caused by Obligate Anaplasmosis: Intracellular Bacteria in the Genera Ehrlichia and Anaplasma
    Ehrlichiosis and Importance Ehrlichiosis and anaplasmosis are tick-borne diseases caused by obligate Anaplasmosis: intracellular bacteria in the genera Ehrlichia and Anaplasma. These organisms are widespread in nature; the reservoir hosts include numerous wild animals, as well as Zoonotic Species some domesticated species. For many years, Ehrlichia and Anaplasma species have been known to cause illness in pets and livestock. The consequences of exposure vary Canine Monocytic Ehrlichiosis, from asymptomatic infections to severe, potentially fatal illness. Some organisms Canine Hemorrhagic Fever, have also been recognized as human pathogens since the 1980s and 1990s. Tropical Canine Pancytopenia, Etiology Tracker Dog Disease, Ehrlichiosis and anaplasmosis are caused by members of the genera Ehrlichia Canine Tick Typhus, and Anaplasma, respectively. Both genera contain small, pleomorphic, Gram negative, Nairobi Bleeding Disorder, obligate intracellular organisms, and belong to the family Anaplasmataceae, order Canine Granulocytic Ehrlichiosis, Rickettsiales. They are classified as α-proteobacteria. A number of Ehrlichia and Canine Granulocytic Anaplasmosis, Anaplasma species affect animals. A limited number of these organisms have also Equine Granulocytic Ehrlichiosis, been identified in people. Equine Granulocytic Anaplasmosis, Recent changes in taxonomy can make the nomenclature of the Anaplasmataceae Tick-borne Fever, and their diseases somewhat confusing. At one time, ehrlichiosis was a group of Pasture Fever, diseases caused by organisms that mostly replicated in membrane-bound cytoplasmic Human Monocytic Ehrlichiosis, vacuoles of leukocytes, and belonged to the genus Ehrlichia, tribe Ehrlichieae and Human Granulocytic Anaplasmosis, family Rickettsiaceae. The names of the diseases were often based on the host Human Granulocytic Ehrlichiosis, species, together with type of leukocyte most often infected.
    [Show full text]
  • Ehrlichia Ewingii Sp. Nov., the Etiologic Agent of Canine Granulocytic Ehrlichiosis
    INTERNATIONAL JOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1992, p. 299-302 Vol. 42, No. 2 0020-7713/92/020299-04$02.00/0 Copyright 0 1992, International Union of Microbiological Societies NOTES Ehrlichia ewingii sp. nov., the Etiologic Agent of Canine Granulocytic Ehrlichiosis BURT E. ANDERSON,l* CRAIG E. GREENE,2 DANA C. JONES,l AND JACQUELINE E. DAWSON’ viral and Rickettsial Zoonoses Branch, Division of viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia 30333, and Department of Small Animal Medicine, College of Veterinaly Medicine, University of Georgia, Athens, Georgia 306022 The 16s rRNA gene was amplified, cloned, and sequenced from the blood of two dogs that were experimentally infected with the etiologic agent of canine granulocytic ehrlichiosis. The 16s rRNA sequence was found to be unique when it was compared with the sequences of other members of the genus Ehrlichia. The most closely related species were Ehrlichia canis (98.0% related) and the human ehrlichiosis agent (Ehrlichia chafeensis) (98.1% related); all other species in the genus were found to be phylogenetically much more distant. Our results, coupled with previous serologic data, provide conclusive evidence that the canine granulocytic ehrlichiosis agent is a new species of the genus Ehrlichia that is related to, but is distinct from, E. canis and all other members of the genus. We propose the name Ehrlichia ewingii sp. nov.; the Stillwater strain is the type strain. Ehrlichia canis, the type species of the genus Ehrlichia, human ehrlichiosis (Ehrlichia chafeensis) (1) is discussed was first described by Donatien and Lestoquard in 1935 (7).
    [Show full text]
  • Anaplasma Platys Diagnosis in Dogs
    Anaplasma platys Diagnosis in Dogs: Comparison Between Morphological and Molecular Tests Renata Fernandes Ferreira, VMD, MSc1 Aloysio de Mello Figueiredo Cerqueira, VMD, MSc, DSc2 Ananda Müller Pereira, VMD1 Cecília Matheus Guimarães BSc2 Alexandre Garcia de Sá, VMD, MSc1 Fabricio da Silva Abreu, VMD, MSc1 Carlos Luiz Massard, VMD, MSc, PhD3 Nádia Regina Pereira Almosny, VMD, MSc, PhD1 1Departamento de Patologia e Clínica Veterinária Universidade Federal Fluminense Niterói, Rio de Janeiro, Brazil 2Departamento de Microbiologia e Parasitologia Universidade Federal Fluminense Niterói, Rio de Janeiro, Brazil 3Departamento de Parasitologia Animal Universidade Federal Rural do Rio de Janeiro Seropédica, Rio de Janeiro, Brazil KEY WORDS: Anaplasma platys, PCR, ickettsia helminthoeca (PCR1). The second inclusions stage consisted of the utilization of specific primers for the detection of the species A ABSTRACT platys (PCR2). Upon comparison of the re- Anaplasma platys is related to the appear- sults, 18.81% of the studied animals showed ance of inclusion bodies in blood platelets; positive for PCR1. For PCR2, 15.84% of the however, this may be a nonspecific occur- studied animals had a positive result. In the rence as there are nonparasitic inclusion morphological analysis of the inclusion bod- bodies within these figured elements. Aiming ies, 14.85% of the animals showed positive to validate the morphological diagnosis for for A platys. The other inclusion bodies were A platys, 101 dogs were selected due to the considered as nonspecific, therefore nega- appearance of inclusion bodies, indepen- tive. When compared to the morphological dently from suggestive parasites, which analysis, the results of the molecule analysis were submitted to polymerase chain reac- by means of the MacNemar test led to the tion (PCR) carried out in 2 stages.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Yu-Chen Ling and John W. Moreau
    Microbial Distribution and Activity in a Coastal Acid Sulfate Soil System Introduction: Bioremediation in Yu-Chen Ling and John W. Moreau coastal acid sulfate soil systems Method A Coastal acid sulfate soil (CASS) systems were School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia formed when people drained the coastal area Microbial distribution controlled by environmental parameters Microbial activity showed two patterns exposing the soil to the air. Drainage makes iron Microbial structures can be grouped into three zones based on the highest similarity between samples (Fig. 4). Abundant populations, such as Deltaproteobacteria, kept constant activity across tidal cycling, whereas rare sulfides oxidize and release acidity to the These three zones were consistent with their geological background (Fig. 5). Zone 1: Organic horizon, had the populations changed activity response to environmental variations. Activity = cDNA/DNA environment, low pH pore water further dissolved lowest pH value. Zone 2: surface tidal zone, was influenced the most by tidal activity. Zone 3: Sulfuric zone, Abundant populations: the heavy metals. The acidity and toxic metals then Method A Deltaproteobacteria Deltaproteobacteria this area got neutralized the most. contaminate coastal and nearby ecosystems and Method B 1.5 cause environmental problems, such as fish kills, 1.5 decreased rice yields, release of greenhouse gases, Chloroflexi and construction damage. In Australia, there is Gammaproteobacteria Gammaproteobacteria about a $10 billion “legacy” from acid sulfate soils, Chloroflexi even though Australia is only occupied by around 1.0 1.0 Cyanobacteria,@ Acidobacteria Acidobacteria Alphaproteobacteria 18% of the global acid sulfate soils. Chloroplast Zetaproteobacteria Rare populations: Alphaproteobacteria Method A log(RNA(%)+1) Zetaproteobacteria log(RNA(%)+1) Method C Method B 0.5 0.5 Cyanobacteria,@ Bacteroidetes Chloroplast Firmicutes Firmicutes Bacteroidetes Planctomycetes Planctomycetes Ac8nobacteria Fig.
    [Show full text]
  • Appendix B the Following List Represents 29 Zoonotic/Anthroponotic Pathogens Denoted As Grey-Zone Pathogens
    Appendix B The following list represents 29 zoonotic/anthroponotic pathogens denoted as Grey-Zone Pathogens. These represent any pathogen where there is some evidence the dog is involved in transmission, maintenance or detection of the pathogen, but current research has not definitively proven the dog’s role at the time of this study. There were no sapronoses in this group. Of these pathogens, those that have been reported in Canada are marked with a 1. Those pathogens that have the potential to occur in Canada but have not yet been reported are marked with a 2. Bacteria Protozoa Acinetobacter baumannii 1 Babesia canis canis Borrelia turicatae 1 Babesia canis rossi Campylobacter gracilis 1 Babesia canis vogeli 1 Campylobacter lari 1 Blastocystis hominis 1 Helicobacter bizzozeronii 2 Blastocystis spp. 1 Mycoplasma canis 2 Cryptosporidium parvum 1 Mycoplasma maculosum 2 Leishmania donovani 1 Rhodococcus equi 1 Staphylococcus schleiferi coagulans Rickettsia Anaplasma platys 1 Fungi Ehrlichia chaffeensis 2 Encephalitozoon cuniculi 1 Ehrlichia ewingii 2 Encephalitozoon intestinalis 2 Enterocytozoon bieneusi 2 Viruses Reovirus MRV (Mammalian Reovirus) serotype 1 1 Helminths Reovirus MRV (Mammalian Reovirus) serotype 2 1 Ascaris lumbricoides 1 Reovirus MRV (Mammalian Reovirus) serotype 3 1 Trichinella spiralis 1 West Nile virus1 Trichuris vulpis 1 Only a portion of the information obtained in this study is presented here. Please contact the authors for additional reference material on why a pathogen was or was not included in a particular step. Appendix C The following list represents 74 zoonotic/sapronotic pathogens where the dog is involved in transmission, maintenance, or detection of the pathogen and the pathogen has been reported to have historically occurred in Canada, however, Canadian canine-specific reports are lacking (Tier 2).
    [Show full text]