Differential Precipitation of Mg(OH)2 from Caso4·2H2O Using Citrate As

Total Page:16

File Type:pdf, Size:1020Kb

Differential Precipitation of Mg(OH)2 from Caso4·2H2O Using Citrate As molecules Article Differential Precipitation of Mg(OH)2 from CaSO4·2H2O Using Citrate as Inhibitor—A Promising Concept for Reagent Recovery from MgSO4 Waste Streams Szilveszter Ziegenheim 1,2,Márton Szabados 2,3, Zoltán Kónya 4,5 , Ákos Kukovecz 4, István Pálinkó 2,3 and Pál Sipos 1,2,* 1 Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; [email protected] 2 Material and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, H-6720 Szeged, Hungary; [email protected] (M.S.); [email protected] (I.P.) 3 Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary 4 Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; [email protected] (Z.K.); [email protected] (Á.K.) 5 MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich B. tér 1, H-6720 Szeged, Hungary * Correspondence: [email protected]; Tel.: +36-62-54-4045 Academic Editor: Nikolay Gerasimchuk Received: 8 September 2020; Accepted: 27 October 2020; Published: 29 October 2020 Abstract: In hydrometallurgical processing and acidic wastewater treatment, one of the neutralizing agents employed is MgO or Mg(OH)2. At the end of this process, the resulting solution, which is rich 2 2+ in SO4 − and Mg is treated with lime to remove (or minimize the amount) of these ions via the precipitation of Mg(OH) and CaSO 2H O (gypsum). In our work, an attempt was made to separate 2 4· 2 the two solids by increasing the induction time of the gypsum precipitation, thus regenerating relatively pure Mg(OH)2 which could be reused in wastewater treatments or hydrometallurgical processing circuits, and in this way, significantly enhancing the economic viability of the process. During our experiments, the reaction of an MgSO4 solution with milk of lime prepared from quicklime was studied. The effects of a range of organic additives, which can slow down the precipitation of gypsum have been assessed. The process was optimized for the most promising inhibiting agent—that is, the citrate ion. The reactions were continuously monitored in situ by conductometric measurements with parallel monitoring of solution pH and temperature. ICP-OES measurements were also carried out on samples taken from the reaction slurry. The composition of the precipitating solids at different reaction times was established by powder XRD and their morphology by SEM. Finally, experiments were carried out to locate the additive after the completion of the precipitation reaction to get information about its potential reuse. Keywords: gypsum; magnesium hydroxide; inhibition; citric acid; precipitation separation 1. Introduction Solid precipitation from supersaturated solutions is a common phenomenon; however, in industrial processes it can cause several nuisances—e.g., via scaling or as a co-precipitating side product. Scaling can reduce the efficiency of heat-exchanging surfaces (water cooling systems), clog membranes and tubes (reverse osmosis units, water injection systems in oil and gas production), while co-precipitating Molecules 2020, 25, 5012; doi:10.3390/molecules25215012 www.mdpi.com/journal/molecules Molecules 2019, 24, x FOR PEER REVIEW 2 of 16 Molecules 2020, 25, 5012 2 of 16 membranes and tubes (reverse osmosis units, water injection systems in oil and gas production), while co-precipitating solids are present as impurities in the final products. One of the most solidscommonly are present precipitating as impurities solids inis theCaSO final4·2H products.2O, gypsum; One oftherefore, the most the commonly detailed precipitatingunderstanding solids of its is CaSO 2H O, gypsum; therefore, the detailed understanding of its crystallization is necessary in a crystallization4· 2 is necessary in a variety of processes, which are adversely affected by its precipitation. varietyAn of important processes, field which where are adverselygypsum is a ffpresentected by in itshigh precipitation. quantities is acidic wastewater treatment. Normally,An important these acidic field waters where contain gypsum heavy is present metal in and high sulfate quantities ions, which is acidic are wastewater precipitated treatment. as metal Normally,hydroxides these and calcium acidic waters sulfate contain using lime heavy for metal neutralization and sulfate [1]. ions, This which way, arethe precipitatedremaining water as metal can hydroxidesbe released to and natural calcium waters. sulfate However, using lime the for sludge neutralization, which forms, [1]. This requires way, further the remaining treatment water and can must be releasedbe disposed. to natural Using waters.magnesium However, oxide/hydroxide the sludge, whichas the forms,first step requires of a two-st furtherep treatmentneutralization and mustprocess be disposed.can provide Using an alternative, magnesium and oxide this way,/hydroxide gypsum as can the be first precipitated step of a two-stepseparately neutralization from the heavy process metal canhydroxides provide [2,3], an alternative, as shown andin Scheme this way, 1. gypsumThe proce canss could be precipitated also be useful separately in the fromdesalination the heavy process metal hydroxides[4]. [2,3], as shown in Scheme1. The process could also be useful in the desalination process [ 4]. Scheme 1. Two-step neutralization of acidic mine drainagedrainage using magnesium oxideoxide/hydroxide/hydroxide for separate precipitation of metal hydroxides. In thisthis work, work, an an attempt attempt is made is made to improve to improv the lattere the method latter furthermethod by separatingfurther by theseparating precipitation the ofprecipitation magnesium of hydroxide magnesium and gypsumhydroxide in solutionand gypsumby using in additives.solution by This using has the additives. potential This of enhancing has the thepotential economic of enhancing and environmental the economic viability and environmental of the process, viability and the resultsof the process, can be extended and the toresults separate can gypsumbe extended precipitation to separate in timegypsum from precipitation rapidly precipitating in time from solids rapidly other than precipitating Mg(OH)2. solids other than 11 Mg(OH)The2 solubility. of Mg(OH)2 (Ksp is around 1.38 10− ) is significantly lower than that of CaSO4 5 × (Ksp Theis around solubility 2.5 of 10Mg(OH))[5,62]. (K Thesp is nucleationaround 1.38 of ×Mg(OH) 10−11) is significantlyis also highly lower dependent than that on of theCaSO ion4 × − 2 concentrations,(Ksp is around and2.5 is× very10−5) fast[5,6]. (practically The nucleation instantaneous) of Mg(OH) at high2 is supersaturation also highly dependent [7–10]. The on inhibition the ion ofconcentrations, the crystallization and ofis Mg(OH)very fast2 was(practically found to in bestantaneous) rather difficult at whenhigh supersaturation conventional additives [7–10]. wereThe usedinhibition [10–13 of]. the crystallization of Mg(OH)2 was found to be rather difficult when conventional additivesThe kineticswere used of [10–13]. gypsum precipitation, which is significantly slower than that of Mg(OH)2, was investigatedThe kinetics of in gypsum several studiesprecipitation, [6,14– 18which]. As is itsignificantly is a common slower scaling than and that precipitating of Mg(OH)2 solid,, was theinvestigated inhibition in of several its crystallization studies [6,14–18]. has been theAs focusit is a of common various studiesscaling since and theprecipitating 1950s [19]. solid, The eff theect ofinhibition various of additives its crystallization has been has scrutinized been the overfocus recent of various decades. studies Various since the metal 1950s ions [19]. were The found effect toof influencevarious additives the precipitation has been of gypsum,scrutinized aff ectingover rece bothnt crystal decades. growth Various and morphologymetal ions [were20–23 found], even to in theinfluence presence the of precipitation certain amino of acidsgypsum, [24]. affecting Organic phosphonatesboth crystal growth were also and demonstrated morphology to[20–23], be effi evencient inhibitorsin the presence in gypsum of certain precipitation amino [acids25–28 [24].]. Polymeric Organic compounds phosphonates with were carboxylic also demonstrated groups also proved to be toefficient be effective inhibitors in the in inhibition gypsum ofprecipitation gypsum precipitation—the [25–28]. Polymeric most compounds popular is perhapswith carboxylic polyacrylic groups acid; however,also proved some to be other effective “green” in the alternatives inhibition were of gypsum also effi precipitation—thecient [29–32]. Looking most into popular small-molecule is perhaps simplepolyacrylic carboxylic acid; however, acids, the some performance other “green” of citric altern acidatives seemed were to bealso remarkable efficient [29–32]. [33] and Looking accordingly into itssmall-molecule inhibiting eff ectssimple were carboxylic investigated acids, in the more performance detail [34–36 of]. citric acid seemed to be remarkable [33] and accordinglyIt seems plausible its inhibiting that the effects inhibition were of investigated the precipitation in more of gypsum detail [34–36]. is much more promising than that ofIt magnesiumseems plausible hydroxide. that the Accordingly, inhibition of scouting the precipitation experiments of weregypsum performed is much in more a stoichiometric promising Cathan2+ +thatSO of2 reactionmagnesium at pH hydroxide.7
Recommended publications
  • Appendix a Common Abbreviations Used in Medication
    UNIVERSITY OF AMSTERDAM MASTERS THESIS Impact of Medication Grouping on Fall Risk Prediction in Elders: A Retrospective Analysis of MIMIC-III Critical Care Database Student: SRP Mentor: Noman Dormosh Dr. Martijn C. Schut Student No. 11412682 – SRP Tutor: Prof. dr. Ameen Abu-Hanna SRP Address: Amsterdam University Medical Center - Location AMC Department Medical Informatics Meibergdreef 9, 1105 AZ Amsterdam Practice teaching period: November 2018 - June 2019 A thesis submitted in fulfillment of the requirements for the degree of Master of Medical Informatics iii Abstract Background: Falls are the leading cause of injury in elderly patients. Risk factors for falls in- cluding among others history of falls, old age, and female gender. Research studies have also linked certain medications with an increased risk of fall in what is called fall-risk-increasing drugs (FRIDs), such as psychotropics and cardiovascular drugs. However, there is a lack of consistency in the definitions of FRIDs between the studies and many studies did not use any systematic classification for medications. Objective: The aim of this study was to investigate the effect of grouping medications at different levels of granularity of a medication classification system on the performance of fall risk prediction models. Methods: This is a retrospective analysis of the MIMIC-III cohort database. We created seven prediction models including demographic, comorbidity and medication variables. Medica- tions were grouped using the anatomical therapeutic chemical classification system (ATC) starting from the most specific scope of medications and moving up to the more generic groups: one model used individual medications (ATC level 5), four models used medication grouping at levels one, two, three and four of the ATC and one model did not include med- ications.
    [Show full text]
  • Chemicals Used for Chemical Manufacturing Page 1 of 2
    Chemicals used for Chemical Manufacturing Page 1 of 2 Acetic Acid (Glacial, 56%) Glycol Ether PMA Acetone Glycol Ether PNB Acrylic Acid Glycol Ether PNP Activated Carbon Glycol Ether TPM Adipic Acid Glycols Aloe Vera Grease Aluminum Stearate Gum Arabic Aluminum Sulfate Heat Transfer Fluids Amino Acid Heptane Ammonium Acetate Hexane Ammonium Bicarbonate Hydrazine Hydrate Ammonium Bifluoride Hydrochloric Acid (Muriatic) Ammonium Chloride Hydrogen Peroxide Ammonium Citrate Hydroquinone Ammonium Hydroxide Hydroxylamine Sulfate Ammonium Laureth Sulfate Ice Melter Ammonium Lauryl Sulfate Imidazole Ammonium Nitrate Isobutyl Acetate Ammonium Persulfate Isobutyl Alcohol Ammonium Silicofluoride Calcium Stearate Dipropylene Glycol Isopropanolamine Ammonium Sulfate Carboxymethylcellulose Disodium Phosphate Isopropyl Acetate Antifoams Caustic Potash D'Limonene Isopropyl Alcohol Antifreeze Caustic Soda (All Grades) Dodecylbenzene Sulfonic Acid Isopropyl Myristate Antimicrobials Caustic Soda (Beads, Prills) (DDBSA) Isopropyl Palmitate Antimony Oxide Cetyl Alcohol Dowfrost Itaconic Acid Aqua Ammonia Cetyl Palmitate Dowfrost HD Jojoba Oil Ascorbic Acid Chlorine, Granular Dowtherm SR-1 Keratin Barium Carbonate Chloroform Dowtherm 4000 Lactic Acid Barium Chloride Chromic Acid EDTA Lanolin Beeswax Citric Acid (Dry and Liquid) EDTA Plus Lauric Acid Bentonite Coal Epsom Salt Lauryl Alcohol Benzaldehyde Cocamide DEA Ethyl Acetate Lecithin Benzoic Acid Copper Nitrate Ethyl Alcohol (Denatured) Lime Benzyl Alcohol Copper Sulfate Ethylene Glycol Linoleic Acid Bicarbonate
    [Show full text]
  • Chlorthalidone Is Superior to Potassium Citrate in Reducing Calcium Phosphate Stones and Increasing Bone Quality in Hypercalciuric Stone-Forming Rats
    BASIC RESEARCH www.jasn.org Chlorthalidone Is Superior to Potassium Citrate in Reducing Calcium Phosphate Stones and Increasing Bone Quality in Hypercalciuric Stone-Forming Rats Nancy S. Krieger,1 John R. Asplin,2 Ignacio Granja,2 Felix M. Ramos,1 Courtney Flotteron,1 Luojing Chen,1 Tong Tong Wu,3 Marc D. Grynpas,4 and David A. Bushinsky1 1Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; 2Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois; 3Department of Biostatistics and Computational Biology, University of Rochester School of Medicine, Rochester, New York; and 4Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada ABSTRACT Background The pathophysiology of genetic hypercalciuric stone-forming rats parallels that of human idiopathic hypercalciuria. In this model, all animals form calcium phosphate stones. We previously found that chlorthalidone, but not potassium citrate, decreased stone formation in these rats. Methods To test whether chlorthalidone and potassium citrate combined would reduce calcium phos- phate stone formation more than either medication alone, four groups of rats were fed a fixed amount of a normal calcium and phosphorus diet, supplemented with potassium chloride (as control), potassium citrate, chlorthalidone (with potassium chloride to equalize potassium intake), or potassium citrate plus chlorthalidone. We measured urine every 6 weeks and assessed stone formation and bone quality at 18 weeks. Results Potassium citrate reduced urine calcium compared with controls, chlorthalidone reduced it fur- ther, and potassium citrate plus chlorthalidone reduced it even more. Chlorthalidone increased urine citrate and potassium citrate increased it even more; the combination did not increase it further.
    [Show full text]
  • Magnesium Sulfate
    MAGNESIUM SULFATE Prepared at the 68th JECFA (2007), published in FAO JECFA Monographs 4 (2007), superseding the specifications prepared at the 63rd JECFA (2004) and published the Combined Compendium of Food Additive Specifications, FAO JECFA Monographs 1 (2005). An ADI “not specified” was established at the 68th JECFA (2007). SYNONYMS Epsom salt (heptahydrate); INS No.518 DEFINITION Magnesium sulfate occurs naturally in sea water, mineral springs and in minerals such as kieserite and epsomite. It is recovered from them or by reacting sulfuric acid and magnesium oxide. It is produced with one or seven molecules of water of hydration or in a dried form containing the equivalent of between 2 and 3 waters of hydration. Chemical names Magnesium sulfate C.A.S. number Monohydrate: 14168-73-1 Heptahydrate: 10034-99-8 Dried: 15244-36-7 Chemical formula Monohydrate: MgSO4.H2O Heptahydrate: MgSO4.7H2O Dried: MgSO4.xH2O, where x is the average hydration value (between 2 and 3) Formula weight Monohydrate: 138.38 Heptahydrate: 246.47 Assay Not less than 99.0 % and not more than 100.5% on the ignited basis DESCRIPTION Colourless crystals, granular crystalline powder or white powder. Crystals effloresce in warm, dry air. FUNCTIONAL USES Nutrient; flavour enhancer; firming agent; and processing aid (fermentation aid in the production of beer and malt beverages) CHARACTERISTICS IDENTIFICATION Solubility (Vol. 4) Freely soluble in water, very soluble in boiling water, and sparingly soluble in ethanol. Test for magnesium (Vol. 4) Passes test Test for sulfate (Vol. 4) Passes test PURITY Loss on ignition (Vol. 4) Monohydrate: between 13.0 and 16.0 %, Heptahydrate: between 40.0 and 52.0 %, Dried: between 22.0 and 32.0 % (105°, 2h, then 400° to constant weight) pH (Vol.
    [Show full text]
  • Mechanosynthesis of Magnesium and Calcium Salt?Urea Ionic Cocrystal
    Letter pubs.acs.org/journal/ascecg Mechanosynthesis of Magnesium and Calcium Salt−Urea Ionic Cocrystal Fertilizer Materials for Improved Nitrogen Management Kenneth Honer, Eren Kalfaoglu, Carlos Pico, Jane McCann, and Jonas Baltrusaitis* Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States *S Supporting Information ABSTRACT: Only 47% of the total fertilizer nitrogen applied to the environment is taken up by the plants whereas approximately 40% of the total fertilizer nitrogen lost to the environment reverts back into unreactive atmospheric dinitrogen that greatly affects the global nitrogen cycle including increased energy consumption for NH3 synthesis, as well as accumulation of nitrates in drinking water. In this letter, we provide a mechanochemical method of inorganic magnesium and calcium salt−urea ionic cocrystal synthesis to obtain enhanced stability nitrogen fertilizers. The solvent-free mechanochemical synthesis presented can result in a greater manufacturing process sustainability by reducing or eliminating the need for solution handling and evaporation. NH3 emission testing suggests that urea ionic cocrystals are capable of decreasing NH3 emissions to the environment when compared to pure urea, thus providing implications for a sustainable global solution to the management of the nitrogen cycle. KEYWORDS: Fertilizers, Nitrogen, urea, Mechanochemistry, Cocrystal, pXRD, NH3 Emissions, Stability ■ INTRODUCTION ammonia as opposed to up to 61.1% of soil treated with urea 7,8 fi only, which suggests that major improvements to the global Atmospheric dinitrogen, N2, xation to synthesize ammonia, 9,10 ’ 1 nitrogen cycle are achievable. Additionally, urea molecular NH3, consumes more than 1% of the world s primary energy.
    [Show full text]
  • Potassium-Magnesium Citrate Is an Effective Prophylaxis Against Recurrent Calcium Oxalate Nephrolithiasis
    0022-5347/97/1586-2069$03.00/0 JOURNAL OF UROLOGY Vol. 158,2069-2073, December 1997 Copyright Q 1997 by AMERICANUROLOGICAL ASS~CIATION, INC. Printed in U.S.A. POTASSIUM-MAGNESIUM CITRATE IS AN EFFECTIVE PROPHYLAXIS AGAINST RECURRENT CALCIUM OXALATE NEPHROLITHIASIS BRUCE ETTINGER,* CHARLES Y. C. PAK, JOHN T. CITRON, CARL THOMAS, BEVERLEY ADAMS-HIJET AND ARLINE VANGESSEL From the Diuision of Research, Kaiser Permanente Medical Care Program, Oakland, California, the Department of Mineral Metabolism, Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, Department of Medicine, Kaiser Permanente Medical Center, Walnut Creek, California, Department of Urology, Kaiser Permanente Medical Center, San Francisco, California, and Kaiser Foundation Research Institute, Kaiser Foundation Hospitals, Oakland, California ABSTRACT Purpose: We examined the efficacy of potassium-magnesium citrate in preventing recurrent calcium oxalate kidney calculi. Materials and Methods: We conducted a prospective double-blind study of 64 patients who were randomly assigned to receive placebo or potassium-magnesium citrate (42 mEq. potassium, 21 mEq. magnesium, and 63 mEq. citrate) daily for up to 3 years. Results. New calculi formed in 63.6%of subjects receiving placebo and in 12.9%of subjects receiving potassium-magnesiumcitrate. When compared with placebo, the relative risk of treat- ment failure for potassium-magnesium citrate was 0.16 (95%confidence interval 0.05 to 0.46). potassium-magnesium citrate had a statistically significant effect (relative risk 0.10,95%confi- dence interval 0.03 to 0.36) even after adjustment for possible confounders, including age, pretreatment calculous event rate and urinary biochemical abnormalities.
    [Show full text]
  • The Importance of Minerals in the Long Term Health of Humans Philip H
    The Importance of Minerals in the Long Term Health of Humans Philip H. Merrell, PhD Technical Market Manager, Jost Chemical Co. Calcium 20 Ca 40.078 Copper 29 Cu 63.546 Iron Magnesium 26 12 Fe Mg 55.845 24.305 Manganese Zinc 25 30 Mn Zn 55.938 65.380 Table of Contents Introduction, Discussion and General Information ..................................1 Calcium ......................................................................................................3 Copper .......................................................................................................7 Iron ...........................................................................................................10 Magnesium ..............................................................................................13 Manganese ..............................................................................................16 Zinc ..........................................................................................................19 Introduction Daily intakes of several minerals are necessary for the continued basic functioning of the human body. The minerals, Calcium (Ca), Iron (Fe), Copper (Cu), Magnesium (Mg), Manganese (Mn), and Zinc (Zn) are known to be necessary for proper function and growth of the many systems in the human body and thus contribute to the overall health of the individual. There are several other trace minerals requirements. Minimum (and in some cases maximum) daily amounts for each of these minerals have been established by the Institute of
    [Show full text]
  • Laxatives for the Management of Constipation in People Receiving Palliative Care (Review)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Laxatives for the management of constipation in people receiving palliative care (Review) Candy B, Jones L, Larkin PJ, Vickerstaff V, Tookman A, Stone P This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2015, Issue 5 http://www.thecochranelibrary.com Laxatives for the management of constipation in people receiving palliative care (Review) Copyright © 2015 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 BACKGROUND .................................... 2 OBJECTIVES ..................................... 4 METHODS ...................................... 4 RESULTS....................................... 7 Figure1. ..................................... 8 Figure2. ..................................... 9 Figure3. ..................................... 10 DISCUSSION ..................................... 13 AUTHORS’CONCLUSIONS . 14 ACKNOWLEDGEMENTS . 14 REFERENCES ..................................... 15 CHARACTERISTICSOFSTUDIES . 17 DATAANDANALYSES. 26 ADDITIONALTABLES. 26 APPENDICES ..................................... 28 WHAT’SNEW..................................... 35 HISTORY....................................... 35 CONTRIBUTIONSOFAUTHORS . 36 DECLARATIONSOFINTEREST . 36 SOURCESOFSUPPORT . 36 DIFFERENCES
    [Show full text]
  • Some Drugs Are Excluded from Medicare Part D, but Are Covered by Your Medicaid Benefits Under the Healthpartners® MSHO Plan (HMO)
    Some drugs are excluded from Medicare Part D, but are covered by your Medicaid benefits under the HealthPartners® MSHO Plan (HMO). These drugs include some over‐the‐counter (OTC) items, vitamins, and cough and cold medicines. If covered, these drugs will have no copay and will not count toward your total drug cost. For questions, please call Member Services at 952‐967‐7029 or 1‐888‐820‐4285. TTY members should call 952‐883‐6060 or 1‐800‐443‐0156. From October 1 through February 14, we take calls from 8 a.m. to 8 p.m., seven days a week. You’ll speak with a representative. From February 15 to September 30, call us 8 a.m. to 8 p.m. Monday through Friday to speak with a representative. On Saturdays, Sundays and holidays, you can leave a message and we’ll get back to you within one business day. Drug Description Strength 3 DAY VAGINAL 4% 5‐HYDROXYTRYPTOPHAN 50 MG ABSORBASE ACETAMINOPHEN 500 MG ACETAMINOPHEN 120MG ACETAMINOPHEN 325 MG ACETAMINOPHEN 650MG ACETAMINOPHEN 80 MG ACETAMINOPHEN 650 MG ACETAMINOPHEN 160 MG/5ML ACETAMINOPHEN 500 MG/5ML ACETAMINOPHEN 160 MG/5ML ACETAMINOPHEN 500MG/15ML ACETAMINOPHEN 100 MG/ML ACETAMINOPHEN 500 MG ACETAMINOPHEN 325 MG ACETAMINOPHEN 500 MG ACETAMINOPHEN 80 MG ACETAMINOPHEN 100.00% ACETAMINOPHEN 80 MG ACETAMINOPHEN 160 MG ACETAMINOPHEN 80MG/0.8ML ACETAMINOPHEN‐BUTALBITAL 50MG‐325MG ACNE CLEANSING PADS 2% ACNE TREATMENT,EXTRA STRENGTH 10% ACT ANTI‐CAVITY MOUTH RINSE 0.05% Updated 12/01/2012 ACTICAL ACTIDOSE‐AQUA 50G/240ML ACTIDOSE‐AQUA 15G/72ML ACTIDOSE‐AQUA 25G/120ML ACTIVATED CHARCOAL 25 G ADEKS 7.5 MG
    [Show full text]
  • Sulfate Resistance Study of Carbonated Low-Calcium Silicate Systems
    Sixth International Conference on Durability of Concrete Structures Paper Number PSE12 18 - 20 July 2018 University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom Sulfate Resistance Study of Carbonated Low-Calcium Silicate Systems R. Tokpatayeva and J. Olek Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA J. Jain, A. Seth and N. DeCristofaro Solidia Technologies Inc., Piscataway, NJ, USA ABSTRACT This paper summarizes the results of sulfate resistance study of carbonated mortar specimens made with Solidia Cement (SC) and tested for expansion according to ASTM C1012 specification while exposed to three types of soak solutions: sodium sulfate, magnesium sulfate and deionized water. A control set of ordinary portland cement (OPC) mortars was also evaluated. Besides the length change measurements, visual observations of changes in the appearance of specimens were conducted after various lengths of exposure. In addition, microstructural characterization of the specimens was conducted using scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA) techniques. Finally, changes in the concentration of the chemical species present in the soak solutions in contact with the SC specimens were evaluated using both, the ion chromatography (IC) and the inductively coupled plasma optical emission spectrometry (ICP-OES). As expected, the OPC mortar specimens started deteriorating early and reached the critical (i.e.0.1%) level of expansion in about 4 months in case of sodium sulfate solution and in about 6 months in case of magnesium sulfate solution. With respect to the SC mortar specimens, those exposed to magnesium sulfate solution showed higher expansion than those exposed to sodium sulfate solution.
    [Show full text]
  • Cycle Stability and Hydration Behavior of Magnesium Oxide and Its Dependence on the Precursor-Related Particle Morphology
    nanomaterials Article Cycle Stability and Hydration Behavior of Magnesium Oxide and Its Dependence on the Precursor-Related Particle Morphology Georg Gravogl 1,2, Christian Knoll 2,3 , Jan M. Welch 4, Werner Artner 5, Norbert Freiberger 6, Roland Nilica 6, Elisabeth Eitenberger 7, Gernot Friedbacher 7, Michael Harasek 3 , Andreas Werner 8, Klaudia Hradil 5, Herwig Peterlik 9, Peter Weinberger 2 , Danny Müller 2,* and Ronald Miletich 1 1 Department of Mineralogy and Crystallography, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; [email protected] (G.G.); [email protected] (R.M.) 2 Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria; [email protected] (C.K.); [email protected] (P.W.) 3 Institute of Chemical, Environmental & Biological Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria; [email protected] 4 Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria; [email protected] 5 X-ray Center, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria; [email protected] (W.A.); [email protected] (K.H.) 6 RHI-AG, Magnesitstraße 2, 8700 Leoben, Austria; [email protected] (N.F.); [email protected] (R.N.) 7 Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria; [email protected] (E.E); [email protected] (G.F.) 8 Institute for Energy Systems and Thermodynamics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria; [email protected] 9 Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria; [email protected] * Correspondence: [email protected]; Tel.: +43-1-5880-1163-740 Received: 31 August 2018; Accepted: 2 October 2018; Published: 7 October 2018 Abstract: Thermochemical energy storage is considered as an auspicious method for the recycling of medium-temperature waste heat.
    [Show full text]
  • Impact of a Drugs & Therapeutics Backgrounder on Docusate Utilization
    Impact of a Drugs & Therapeutics Backgrounder on Docusate Utilization Darren Pasay, B.Sc.Pharm Drug Stewardship Pharmacist (Central Zone) [email protected] Disclosure I have no actual or potential conflict of interest in relation to this topic or presentation. Drug Stewardship in Alberta Health Services • Drug Stewardship (DS) Team established in 2012 • “The shared responsibility of Drugs & Safety Therapeutics Committee (DTC), prescribers, pharmacy and care units to ensure Sustainability medications are used in a manner that maximizes the effectiveness, safety and sustainability of care for our patients” Effectiveness • Research and project support Drugs & Therapeutics Backgrounders (DTBs) • Frontline staff wanted background and support on DTC/formulary issues1 • One page document, meant to enhance conversations with prescribers • Supported by content experts, based upon DTC directions • Published 6 times/year • Followed by 2 interactive webinars for each edition 1. Pasay Darren K, Chow Sheldon JS, Bresee Lauren C, Guirguis Micheal, Slobodan Jeremy. Assessment of current antimicrobial stewardship policies and resources: a focus group project. Healthcare Infection 2015; 20: 7–15. Docusate • Over-the-counter stool softener • It is clear, based on published peer-reviewed literature, that docusate is ineffective for the prevention or treatment of constipation • Open listed on AHS Provincial Drug Formulary • Limited coverage on Alberta Drug Benefit List (palliative care only) Docusate DTB • Preliminary work o ~ 2 million doses/year dispensed • Influences o Some LTC sites have eliminated o Engrained in practice use already • Part of pharmacy, medicine, nursing curriculums • Order sets, Pre-printed care • What are the costs of? orders (PPCO) o Procurement o Seen as innocuous, safe o Processing, dispensing o Medication administration o Medication burden BOTTOM LINE: Docusate is no more effective than placebo for the prevention and treatment of constipation.
    [Show full text]