Genetic Dissection of the Biotic Stress Response Using a Genome-Scale Gene Network for Rice
Genetic dissection of the biotic stress response using a genome-scale gene network for rice Insuk Leea,1,2, Young-Su Seob,1,3, Dusica Coltraneb, Sohyun Hwanga, Taeyun Oha, Edward M. Marcottec,d,2, and Pamela C. Ronaldb,e,f,2 aDepartment of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, Korea; bDepartment of Plant Pathology, University of California, Davis, CA 95616; cCenter for Systems and Synthetic Biology, and dDepartment of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-1064; eJoint Bioenergy Institute, Emeryville, CA 94608; and fThe Genome Center, University of California, Davis, California 95616 Edited by Steven P. Briggs, University of California at San Diego, La Jolla, CA, and approved October 11, 2011 (received for review June 28, 2011) Rice is a staple food for one-half the world’s population and a species, including rice. However, monocots and dicots diverged model for other monocotyledonous species. Thus, efficient ap- >160–200 million years ago; thus, many gene networks differ sig- proaches for identifying key genes controlling simple or complex nificantly between these two main groups of flowering plants (19– traits in rice have important biological, agricultural, and economic 25). Therefore, a complete understanding of monocot gene net- consequences. Here, we report on the construction of RiceNet, an works will depend on a full characterization of these pathways in experimentally tested genome-scale gene network for a monocot- an experimentally tractable monocotyledonous species such as yledonous species. Many different datasets, derived from five dif- rice.
[Show full text]