Combined Exposure to Noise and Ototoxic Substances TE-80-09-996-EN-N

Total Page:16

File Type:pdf, Size:1020Kb

Combined Exposure to Noise and Ototoxic Substances TE-80-09-996-EN-N Combined exposure to noise and ototoxic substances TE-80-09-996-EN-N TE-80-09-996-EN-N Combined exposure to Noise and Ototoxic Substances COMBINED EXPOSURE TO NOISE AND OTOTOXIC SUBSTANCES EU-OSHA – European Agency for Safety and Health at Work 1 Combined exposure to Noise and Ototoxic Substances Authors: Pierre Campo, Katy Maguin, Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles – INRS, France Stefan Gabriel, Angela Möller, Eberhard Nies, Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung – BGIA, (Institute for Occupational Safety and Health of the German Social Accident Insurance), Germany María Dolores Solé Gómez, Instituto Nacional de Seguridad e Higiene en el Trabajo – INSHT (Spanish National Institute for Safety and Hygiene at Work), Spain Esko Toppila, Työterveyslaitos Institutet for Arbetshygien (Finnish Institute of Occupational Health – FIOH), Finland Members of the Topic Centre Risk Observatory Edited by: Eusebio Rial González, European Agency for Safety and Health at Work (EU-OSHA) Joanna Kosk-Bienko, European Agency for Safety and Health at Work (EU-OSHA) This report was commissioned by the European Agency for Safety and Health at Work (EU-OSHA). Its contents, including any opinions and/or conclusions expressed, are those of the author(s) alone and do not necessarily reflect the views of EU-OSHA. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers, or these calls may be billed. More information on the European Union is available on the Internet (http://europa.eu). Cataloguing data can be found on the cover of this publication. Luxembourg: Office for Official Publications of the European Communities, 2009 ISBN -13: 978-92-9191-276-6 DOI: 10.2802/16028 © European Agency for Safety and Health at Work, 2009. Reproduction is authorised provided the source is acknowledged. Acknowledgments The authors would like to thank Professor Ilmari Pyykkö (University of Tampere) for stimulating discussions, university lecturer Dr Jürgen Milde (SiGe, German Social Accident Insurance) and Dr Martin Liedtke (BGIA, German Social Accident Insurance) for critical reading of the manuscript, as well as Ulrike Koch, Rainer Van Gelder and Reimer Paulsen (BGIA) for their valuable help in providing MEGA and MELA datasets. EU-OSHA – European Agency for Safety and Health at Work 2 Combined exposure to Noise and Ototoxic Substances Table of Contents List of figures and tables:........................................................................................................................ 4 1. Introduction .................................................................................................................................. 5 1.1. Scope and objectives................................................................................................................... 5 1.2. Hearing mechanism: from sounds to nerve impulses ................................................................. 6 1.3. Hearing hazards: definitions ........................................................................................................ 7 1.4. Noise............................................................................................................................................ 7 1.5. Chemicals .................................................................................................................................... 9 1.5.1. Neurotoxicants ..................................................................................................................9 1.5.2. Ototoxicants ...................................................................................................................... 9 1.5.3. Cochleotoxicants............................................................................................................... 9 1.5.4. Vestibulotoxicants ............................................................................................................. 9 1.6. Age............................................................................................................................................... 9 2. Evaluation of hearing impairment .............................................................................................. 11 2.1. Pure tone audiometry ................................................................................................................ 11 2.2. High-frequency audiometry........................................................................................................ 11 2.3. Speech audiometry.................................................................................................................... 12 2.4. Otoacoustic emissions............................................................................................................... 12 2.5. Brainstem auditory evoked potentials........................................................................................ 13 3. Consequences of hearing impairment for humans.................................................................... 15 4. Ototoxic substances .................................................................................................................. 17 4.1. Rating the weight of evidence.................................................................................................... 17 4.2. Ototoxic compounds .................................................................................................................. 17 4.2.1. Compounds with “good evidence” of ototoxicity ............................................................. 17 4.2.2. Compounds with “fair evidence” of ototoxicity (suspected ototoxic substances) ........... 21 4.2.3. Compounds with “poor evidence” of ototoxicity (questionably ototoxic substances) ..... 23 4.3. Use of ototoxic chemicals in industry ........................................................................................ 24 5. Combined effects....................................................................................................................... 27 5.1. Effects of combined exposure to various (ototoxic) substances ............................................... 27 5.2. Combined effects with noise...................................................................................................... 28 5.2.1. Pharmaceuticals ............................................................................................................. 28 5.2.2. Solvents .......................................................................................................................... 28 5.2.3. Asphyxiants.....................................................................................................................29 5.2.4. Nitriles ............................................................................................................................. 29 5.2.5. Manganese ..................................................................................................................... 30 5.2.6. Tobacco smoke............................................................................................................... 30 6. Present policies.......................................................................................................................... 31 6.1. International Organisations........................................................................................................ 31 6.2. EU policy.................................................................................................................................... 31 EU-OSHA – European Agency for Safety and Health at Work 3 Combined exposure to Noise and Ototoxic Substances 6.3. Policies in EU Member States: some examples ........................................................................32 6.4. Policies in other countries ..........................................................................................................33 7. Conclusions................................................................................................................................35 8. References .................................................................................................................................39 9. GLOSSARY................................................................................................................................55 10. Annex 1 ......................................................................................................................................57 Evaluations of the BGIA – MELA noise exposure database.................................................................57 Evaluations of the BGIA – MEGA hazardous substances database ....................................................57 Evaluations of the BGIA – MELA noise exposure database.................................................................58 Evaluations of the BGIA – MEGA hazardous substances database ....................................................58 Evaluations of the BGIA – MELA noise exposure database.................................................................59 Evaluations of the BGIA – MEGA hazardous substances database ....................................................59 Evaluations of the BGIA – MELA noise exposure database.................................................................60
Recommended publications
  • Objective Measures of Ototoxicity
    The following article appeared in the September 2005 issue (Vol. 9, No. 1, pp. 10-16) of the Division 6 publication Perspectives on Hearing and Hearing Disorders: Research and Diagnostics. To learn more about Division 6, contact the ASHA Action Center at 1-800-498-2071 or visit the division’s Web page at www.asha.org/about/membership-certification/divs/div_6.htm. Objective Measures of Ototoxicity Elizabeth Leigh-Paffenroth Veterans Affairs Rehabilitation Research and Development Service, National Center for Rehabilitative Auditory Research, VA Medical Center Portland, OR Department of Otolaryngology, Oregon Health & Science University Portland, OR Kelly M. Reavis, Jane S. Gordon, Kathleen T. Dunckley Veterans Affairs Rehabilitation Research and Development Service, National Center for Rehabilitative Auditory Research, VA Medical Center Portland, OR Stephen A. Fausti and Dawn Konrad-Martin Veterans Affairs Rehabilitation Research and Development Service, National Center for Rehabilitative Auditory Research, VA Medical Center Portland, OR Department of Otolaryngology, Oregon Health & Science University, Portland, OR A leading cause of preventable sensorineural hear- of patients who are unable to provide reliable re- ing loss is therapeutic treatment with medications that sponses; subsequently, many of these patients do not are toxic to inner ear tissues, including certain drugs receive monitoring for ototoxic-induced changes in used to fight cancer and life-threatening infectious dis- their hearing. The development of objective measures eases. Ototoxic-induced hearing loss typically begins that do not require patient cooperation is necessary to in the high frequencies and progresses to lower fre- monitor all patients receiving ototoxic drugs. quencies as drug administration continues (Campbell Two objective measures offer promise in their abil- & Durrant, 1993; Campbell et al., 2003; Macdonald, ity to detect and to monitor hearing changes caused by Harrison, Wake, Bliss, & Macdonald, 1994).
    [Show full text]
  • Investigations of Auditory Filters Based Excitation Patterns for Assessment of Noise Induced Hearing Loss
    Investigations of Auditory Filters Based Excitation Patterns for Assessment of Noise Induced Hearing Loss Wisam Subhi Al-Dayyeni, Pengfei Sun, Jun Qin Department of Electrical and Computer Engineering, Southern Illinois University, Carbondale, IL, USA Abstract: Noise induced hearing loss (NIHL) as one of major avoidable occupational related health issues has been studied for decades. To assess NIHL, the excitation pattern (EP) has been considered as one of mechanisms to estimate movements of basilar membrane (BM) in cochlea. In this study, two auditory filters, dual resonance nonlinear (DRNL) filter and rounded- exponential (ROEX) filter, have been applied to create two EPs, referring as the velocity EP and the loudness EP, respectively. Two noise hazard metrics are also proposed based on the developed EPs to evaluate hazardous levels caused by different types of noise. Moreover, Gaussian noise and pure-tone noise have been simulated to evaluate performances of the developed EPs and noise metrics. The results show that both developed EPs can reflect the responses of BM to different types of noise. For Gaussian noise, there is a frequency shift between the velocity EP and the loudness EP. For pure-tone noise, both EPs can reflect the frequencies of input noise accurately. The results suggest that both EPs can be potentially used for assessment of NIHL. Key words: Noise induced hearing loss; excitation pattern; basilar membrane motion; auditory filter; noise assessment metrics. 1. Introduction Noise-induced hearing loss (NIHL) remains as one of the most common health related problems nowadays as stated by the World Health Organization (WHO). One of the main causes of the permanent hearing loss is the exposure to excessive noise [1-3].
    [Show full text]
  • Preventing Hearing Loss Caused by Chemical (Ototoxicity) and Noise Exposure
    Preventing Hearing Loss Caused by Chemical (Ototoxicity) and Noise Exposure Safety and Health Information Bulletin SHIB 03-08-2018 DHHS (NIOSH) Publication No. 2018-124 Introduction Millions of workers are exposed to noise in the workplace every day and when uncontrolled, noise exposure may cause permanent hearing loss. Research demonstrates exposure to certain chemicals, called ototoxicants, may cause hearing loss or balance problems, regardless of noise exposure. Substances including certain pesticides, solvents, and pharmaceuticals that contain ototoxicants can negatively affect how the ear functions, causing hearing loss, and/or affect balance. Source/Copyright: OSHA The risk of hearing loss is increased when workers are exposed to these chemicals while working around elevated noise levels. This combination often results in hearing loss that can be temporary or permanent, depending on the level of noise, the dose of the chemical, and the duration of the exposure. This hearing impairment affects many occupations and industries, from machinists to firefighters. Effects on Hearing Harmful exposure to ototoxicants may occur through inhalation, ingestion, or skin absorption. Health effects caused by ototoxic chemicals vary based on exposure frequency, intensity, duration, workplace exposure to other hazards, and individual factors such as age. Effects may be temporary or permanent, can affect hearing sensitivity and result in a standard threshold shift. Since chemicals can affect central portions of the auditory system (e.g., nerves or nuclei in the central nervous system, the pathways to the brain or in the brain itself), not only do sounds need to be louder to be detected, but also they lose clarity. Specifically, speech discrimination dysfunction, the ability to hear voices separately from background noise, may occur and involve: .
    [Show full text]
  • Current Practices in the Assessment of Recreational Noise-Induced Hearing Loss: a Review
    Current Practices in the Assessment of Make Listening Safe WHO Recreational Noise- induced Hearing Loss: a review This document presents a review of current practices in the assessment of hearing loss caused by exposure to loud sounds in recreational settings. The review will be used to February 2017 stimulate discussion and consider the points raised in the accompanying discussion paper regarding the need for a universal research protocol. This review has been undertaken by Dr. Kamakshi Gopal, in collaboration with the World Health Organization. Current Practices in the Assessment of Recreational Noise-induced Hearing Loss: a review Authored by: Dr Kamakshi Gopal Professor of Audiology University of Northern Texas United States with inputs from …… any other name to be added?? Reviewed by: Dr Peter Thorne Professor of Audiology University of Auckland New Zealand Dr Shelly Chadha Technical Officer, Prevention of deafness and hearing loss World Health Organization Geneva, Switzerland 1 Table of Contents Purpose ……………………………………………………………………………. 3 Methods …………………………………………………………………………... 3 Executive Summary ………………………………………………………….. 4 Concerts/Discotheques/Bars ……………………………………………. 6 Personal Audio Systems (PAS) Studies ………………………………. 22 Sporting Events (Arenas) ………………………………………………….. 40 References ……………………………………………………………………….. 42 2 PURPOSE OF THE REPORT Hearing loss, temporary or permanent, from exposure to recreational noise is a worsening public health problem, particularly in children, adolescents, and young adults. This is attributable to the fact that young people utilize their leisure and relaxation time in activities that expose them to high levels of music or noise at concerts, bars, sports arenas and clubs, or listen to unsafe levels of music on their personal audio systems. Despite this emerging widespread trend, there are currently no universal standards set to limit exposure to recreational noise.
    [Show full text]
  • Why Is Drug-Induced Ototoxicity Still Not Preventable Nor Is It Treatable in 2019? - a Literature Review of Aminoglycoside and Cisplatin Ototoxicity Cherrabi Kaoutar*
    Review Article iMedPub Journals Archives of Medicine 2020 www.imedpub.com Vol.12 No.2:3 ISSN 1989-5216 DOI: 10.36648/1989-5216.12.2.304 Why is Drug-Induced Ototoxicity Still Not Preventable nor is it Treatable in 2019? - A Literature Review of Aminoglycoside and Cisplatin Ototoxicity Cherrabi Kaoutar* Department of Oto-Rhino-Laryngology and Cervico-Facial Studies, Fez, Morocco *Corresponding author: Cherrabi Kaoutar, Resident, Department of Oto-Rhino-Laryngology and Cervico-Facial Studies, Fez, Morocco, Tel: 0679382957; E-mail: [email protected] Received date: October 17, 2019; Accepted date: March 02, 2019; Published date: March 09, 2020 Citation: Cherrabi K (2020) Why is Drug-Induced Ototoxicity Still Not Preventable nor is it Treatable in 2019? - A Literature Review of Aminoglycoside and Cisplatin Ototoxicity. Arch Med Vol: 12 Iss: 2:3 Copyright: ©2020 Cherrabi K. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The thorough exploration of inner ear proteome, transcriptome, and genome in physiological and Abstract pathological contexts as potential biomarkers of early stages of cell lesions: The clinical application would not Oto-toxicity is defined by cochlear and or vestibular only allow a more specific understanding of different cellular lesions due to the use of drugs. The difference in mechanisms of iatrogenic oto-toxicity, but also allow new specific mechanisms, the great semi logical variability, the insights into targeted protective and post-lesional heterogeneity of incriminated drugs, the inaccessibility to therapies.
    [Show full text]
  • Gentamicin Ototoxicity: a 23-Year Selected Case Series of 103 Patients
    Research Gentamicin ototoxicity: a 23-year selected case series of 103 patients Rebekah M Ahmed entamicin is an important bac- MB BS, FRACP, Abstract Neurology Fellow1 tericidal antibiotic with two Objective: To review patients with severe bilateral vestibular loss associated serious potential adverse Imelda P Hannigan G with gentamicin treatment in hospital. RN, Neuro-otology Nurse1 effects: nephrotoxicity and ototoxicity. Design and setting: A retrospective case series of presentations to a balance Clinicians are well aware that rising Hamish G MacDougall disorders clinic between 1988 and 2010. PhD, serum creatinine levels in patients Vestibular Scientist2 treated with gentamicin could indicate Main outcome measures: Relationship between vestibulotoxicity and gentamicin dose or dosing profile; indications for prescribing gentamicin. Raymond C Chan nephrotoxicity. However, many do MB BS, FRACP, FRCPA, not know that, contrary to textbooks Results: 103 patients (age, 18–84 years; mean, 64 years) presented with Infectious Diseases imbalance, oscillopsia or both, but none had vertigo. Only three noted some Physician1 and antibiotic guidelines, gentamicin hearing impairment after having gentamicin, but audiometric thresholds for all ototoxicity causes impairment of G Michael Halmagyi 1,2 patients were consistent with their age. In all patients, the following tests gave MD, FRACP, vestibular, not auditory, function. positive results: a bilateral clinical head-impulse test, a vertical head-shaking Neurologist1 Vestibulotoxicity is frequently over- test for vertical oscillopsia, and a foam Romberg test. In 21 patients, imbalance 3-7 looked in patients having gentamicin, occurred during gentamicin treatment (ignored or dismissed by prescribers in 1 Department of Neurology, so that severe, irreversible, bilateral 20) and in 66 after treatment; the remaining 16 could not recall when symptoms Royal Prince Alfred Hospital, Sydney, NSW.
    [Show full text]
  • 3.2.1 Safety of Antibiotic Ear Drops in Children with Grommets
    Safety of antibiotic ear drops in children with grommets CONFIDENTIAL Medicines Adverse Reactions Committee Meeting date 8 June 2017 Agenda item 3.2.1 Title Safety of Antibiotic Ear Drops in children with Grommets Medsafe Pharmacovigilance Submitted by Paper type For advice Team Active constituent(s) Medicines Sponsors Clioquinol; Locorten-Vioform AFT Pharmaceuticals Flumetasone pivalate Locacorten-Viaform Ciprofloxacin; Pharmaco (NZ) Ltd Ciproxin HC Otic Ear drops Hydrocortisone Framycetin; Sanofi-aventis New Zealand limited Gramicidin; Sofradex Dexamethasone Framycetin Soframycin Sanofi-aventis New Zealand limited Neomycin; Pharmacy Retailing (NZ) Ltd t/a Gramicidin; Kenacomb Ear drops Healthcare Logistics Nystatin; Triamcinolone Funding Locorten-Vioform/Locacorten-Viaform; Kenacomb; Sofradex*; Soframycin*. *Part funded only Previous MARC None meetings International action None Prescriber Update None Schedule Prescription Advice sought The Committee is asked to advise whether: − there is evidence of a difference in the risk of ototoxicity between the antibiotic containing ear drops when used in children with grommets or in patients with a perforated tympanic membrane − the sponsor for Ciproxin HC (quinolone) ear drops should be given the opportunity to remove the contraindication for use in patients with a perforated tympanic membrane and replace it with a warning statement − the sponsor for Locorten-Vioform/Locacorten-Viaform (hydroxyquinolone) include information on the risk of ototoxicity − the sponsors for Sofradex, Soframycin and
    [Show full text]
  • Drug-Induced Ototoxicity
    Continuing Education Drug-Induced Ototoxicity Authors: Erin Bilgili Pharm.D. Harrison School of Pharmacy, Auburn University Jarrid Casimir Pharm.D. Harrison School of Pharmacy, Auburn University Kelli Pickard Pharm.D. Harrison School of Pharmacy, Auburn University Corresponding Author: Wesley Lindsey, Pharm.D. Associate Clinical Professor of Pharmacy Practice Drug Information and Learning Resource Center Harrison School of Pharmacy, Auburn University Universal Activity #: 0178-0000-17-101-H01-P | 1.25 contact hours (.125 CEUs) Initial Release Date: August 7, 2017 | Expires: May 7, 2020 Learning Objectives: After this article, the reader should be able to... • Define ototoxicity and describe the risk factors • Identify the most common classes of ototoxic medications • Discuss the different mechanisms of ototoxicity • Develop a patient-specific monitoring plan • Refer a patient to additional resources if needed Alabama Pharmacy Association | 334.271.4222 | www.aparx.org | [email protected] 1 What is ototoxicity? middle ear, and inner ear. Figure 1 illustrates the Ototoxicity is defined by Hawkins as “the tendency anatomy of the ear and its associated structures. of certain therapeutic agents and other chemical ● Outer ear: external portion of the ear, substances to cause functional impairment and consisting of the pinna, or auricle, and the ear cellular degeneration of the tissues of the inner ear, canal. and especially of the end organs and neurons of the ● Middle ear: includes the eardrum and three cochlear and vestibular divisions of the eighth cranial tiny bones of the middle ear, ending at the nerve”.1 This functional impairment and cellular round window that leads to the inner ear. degeneration can lead to ringing in the ear (tinnitus), ● Inner ear: contains both the organ of hearing hearing loss, or balance disorders.2 Any drug with (cochlea) and the organ of balance the potential to cause toxic effects to the structures of (vestibulum).
    [Show full text]
  • Occupational Noise Induced Hearing Loss and Audiometry
    2019 Occupational Noise Induced Hearing Loss and Audiometry ProfRAPID Ian Cameron REVIEW, Head John Walsh Centre for Rehabilitation Research The University of Sydney Kolling Institute of Medical Research [email protected] Dr Candice McBain, Research Assistant John Walsh Centre for Rehabilitation Research The University of Sydney Kolling Institute of Medical Research [email protected] Version 2 dated 25 June 2019 Summary Noise-induced hearing loss (NIHL) affects approximately five percent of the population worldwide (Zhou et al., 2013), making it a global public health concern. Occupational NIHL (ONIHL) occurs from continuous exposure to excessive noise, usually over a number of years. Continuous or intermittent noise in the work environment exceeding 85dB(A) during an eight-hour shift, or impact noise exceeding 120dB(A) during an eight hour working shift, is considered hazardous. Noise-induced hearing loss (HL) resulting from exposure to excessive occupational noise is a substantial health burden, and one of the most common chronic occupational diseases. In Australia, between July 2002 and June 2007, there were approximately 16,500 occupational NIHL workers compensation claims. Exposure to excessive noise can cause permanent damage to auditory structures; resulting in permanent threshold shifts that ultimately cause hearing damage. Noise induced hearing loss is a sensorineural (SNHL) hearing loss categorised by a high frequency 3-6 kHz notching audiometric pattern. Damage resulting from noise exposure usually begins at 3-6 kHz (Ali, Morgan, & Ali, 2014). However, with continued noise exposure, damage can spread to both lower (2, 1 kHz) and higher frequencies (8 kHz; Ali, (Morgan, & Ali, 2014).
    [Show full text]
  • Ototoxicity of Ototopical Dropsdan Update David S
    Otolaryngol Clin N Am 40 (2007) 669–683 Ototoxicity of Ototopical DropsdAn Update David S. Haynes, MDa,*, John Rutka, MD, FRCSCb, Michael Hawke, MD, FRCSCb, Peter S. Roland, MDc aThe Otology Group of Vanderbilt, Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Medical Center East S. Tower 7209, 1215 21st Avenue South, Nashville, TN 37232-5555, USA bDepartment of Otolaryngology, University of Toronto, 190 Elizabeth Street, Room 3S438, Fraser Elliot Building, Toronto, Ontario M5G 2N2, Canada cDepartment of OtolaryngologydHead and Neck Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, USA Topical antibiotic solutions are frequently indicated in patients who have external or middle ear infections. It is well known that any substance that can enter the middle ear can access the inner ear via the permeability of the round window membrane (RWM) (and theoretically the annular liga- ment of the stapes/microfractures of the otic capsule), where it may cause adverse effects to the cochlear and vestibular apparatus [1]. The actual po- tential for ototoxicity of these ototopical preparations has been a subject of considerable debate. The introduction of non-ototoxic fluoroquinolone ear drops in 1997–1998, recent literature regarding the possible issues of unrecognized ototoxicity from ototopical preparations, and increasing litigation from alleged inappropriate use of ototopical drops has garnered significant attention among practitioners on the subject of ototoxicity from ototopical preparations. This ongoing debate led the American Acad- emy of Otolaryngology–Head and Neck Surgery (AAO-HNS) to convene expert panels to review this issue and address the issue of ototoxicity of ototopical preparations and make an evidence-based recommendation regarding their use [2].
    [Show full text]
  • DISPELLING the OTITIS MYTHS in VETERINARY MEDICINE Anthony
    DISPELLING THE OTITIS MYTHS IN VETERINARY MEDICINE Anthony Yu BSc, DVM, MS, ACVD Yu of Guelph Veterinary Dermatology Guelph, Ontario, Canada www.yuofguelphvetderm.com Many myths regarding the diagnosis and treatment of otitis externa have anchored their way into the general veterinary practice. These misconceptions have contributed to our lack of discretion when selecting antimicrobials and improper interpretation of laboratory findings leading us to reach for medications that should normally be used in severe and truly resistant cases of otitis externa. My aim with this seminar, is to dispel those myths and improve our diagnostic and therapeutic approaches to otitis externa. From historical, to diagnostic to therapeutic and finally client educations myths, let’s start our journey into facts and not myths: 1. Otitis externa is a primary diagnosis Otitis is rarely a primary diagnosis on its own. There are multitudes of underlying etiologies that cause otitis externa along with predisposing and perpetuating factors. Therefore treatment of repeated bouts otitis externa should always encompass a search and treatment of the underlying etiology to prevent further flares. When dealing with allergies, will often take a “cut through the onion” approach rather than “peeling the onion”; that is, I address food allergies with a dietary trial, and at the same time I treat environmental allergies symptomatically and use adulticides systemically and topically to control flea allergies. By taking this multi-pronged approach to bring allergens below your patient’s allergic threshold, you will hasten my patient’s response, often controlling their underlying cause of allergic otitis within 4 weeks. Morris DO. Medical therapy of otitis externa and otitis media.
    [Show full text]
  • Noise-Induced Hearing Loss in Young Adults Maeve Derrig Augustana College, Rock Island Illinois
    Augustana College Augustana Digital Commons Communication Sciences and Disorders: Student Communication Sciences and Disorders Scholarship & Creative Works 2016 Noise-Induced Hearing Loss in Young Adults Maeve Derrig Augustana College, Rock Island Illinois Follow this and additional works at: http://digitalcommons.augustana.edu/csdstudent Part of the Communication Sciences and Disorders Commons Augustana Digital Commons Citation Derrig, Maeve. "Noise-Induced Hearing Loss in Young Adults" (2016). Communication Sciences and Disorders: Student Scholarship & Creative Works. http://digitalcommons.augustana.edu/csdstudent/7 This Student Paper is brought to you for free and open access by the Communication Sciences and Disorders at Augustana Digital Commons. It has been accepted for inclusion in Communication Sciences and Disorders: Student Scholarship & Creative Works by an authorized administrator of Augustana Digital Commons. For more information, please contact [email protected]. NOISE-INDUCED HEARING LOSS IN YOUNG ADULTS 1 Introduction An 18-year-old high school senior comes into an audiology clinic complaining of ringing in her ears and occasional difficulty understanding her friends, parents, and others in conversation. The audiologist performs an otoscopic examination and observes no abnormalities in the outer ear, including a clear external auditory meatus and an intact, healthy tympanic membrane. The audiologist administers a hearing test to the student and finds a slight to mild sensorineural hearing loss in the high frequencies in both ears. During case history, the student reports that the ringing in her ears is occasional and is worse after listening to her music. The audiologist informs the student that she has experienced a noise-induced hearing loss. The audiologist explains how listening to music at loud levels for long periods of time has damaged her hearing, causing a permanent hearing loss.
    [Show full text]