Addressing the Rising Prevalence of Hearing Loss
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Occupational Airborne Particulates
Environmental Burden of Disease Series, No. 7 Occupational airborne particulates Assessing the environmental burden of disease at national and local levels Tim Driscoll Kyle Steenland Deborah Imel Nelson James Leigh Series Editors Annette Prüss-Üstün, Diarmid Campbell-Lendrum, Carlos Corvalán, Alistair Woodward World Health Organization Protection of the Human Environment Geneva 2004 WHO Library Cataloguing-in-Publication Data Occupational airborne particulates : assessing the environmental burden of disease at national and local levels / Tim Driscoll … [et al.]. (Environmental burden of disease series / series editors: Annette Prüss-Ustun ... [et al.] ; no. 7) 1.Dust - adverse effects 2.Occupational exposure 3.Asthma - chemically induced 4.Pulmonary disease, Chronic obstructive - chemically induced 5.Pneumoconiosis - etiology 6.Cost of illness 7.Epidemiologic studies 8.Risk assessment - methods 9.Manuals I.Driscoll, Tim. II.Prüss-Üstün, Annette. III.Series. ISBN 92 4 159186 2 (NLM classification: WA 450) ISSN 1728-1652 Suggested Citation Tim Driscoll, et al. Occupational airborne particulates: assessing the environmental burden of disease at national and local levels. Geneva, World Health Organization, 2004. (Environmental Burden of Disease Series, No. 7). © World Health Organization 2004 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). -
Dust Exposure and Byssinosis Among Cotton Textile Workers in Dar Es Salaam, Tanzania
MOJ Public Health Research Article Open Access Dust exposure and byssinosis among cotton textile workers in Dar es salaam, Tanzania Abstract Volume 9 Issue 6 - 2020 Background: Cotton dust exposure increases the risk of developing lung diseases including Luco P Mwelange, Simon Mamuya, Gloria Byssinosis. The prevalence of byssinosis is more in developing countries compare to developed countries. For the past forty years there are little information known about the Sakwari, Witness John Axwesso Department of Environmental and Occupational Health, prevalence of byssinosis and its associated risk factors among textile workers in Tanzania. Muhimbili University of Health and Allied Sciences, Tanzania Objective: The study aimed to assess dust exposure and associated risk factors among textile workers, in Dar es Salaam, Tanzania. Correspondence: Luco P Mwelange, Muhimbili University of Health and Allied Sciences, Tanzania, Tel+255655049524, Material and methods: The study design was descriptive cross sectional study conducted Email from March to August 2019. Stratified sampling technique was used to obtain 325 participants (exposed 164 and control 161) respectively. A modified British Medical Received: October 29, 2020 | Published: November 30, 2020 Research Council (BMRC) questionnaire and Side Kick Casella Pump were used for data collection. Data were analyzed using Statistical Package for Social Science software 23 versions. Chi square test and Binary logistic regression were performed to check for association. A 95% confidence Interval with a significance expressed in P˂0.05 was used. Results: Prevalence of byssinosis in the exposed group was 18.9% and 6.2% in the control group. Respiratory symptoms such as Coughing more days in three consecutive months (P˂0.001), wheezing (P˂0.02), dyspnoea I (P˂0.03), dyspnoea II (P˂0.007), and dyspnoea III (P˂0.002), were higher among exposed group compare to control group and the differences were statistically significant. -
NOISE and MILITARY SERVICE Implications for Hearing Loss and Tinnitus
NOISE AND MILITARY SERVICE Implications for Hearing Loss and Tinnitus Committee on Noise-Induced Hearing Loss and Tinnitus Associated with Military Service from World War II to the Present Medical Follow-up Agency Larry E. Humes, Lois M. Joellenbeck, and Jane S. Durch, Editors THE NATIONAL ACADEMIES PRESS Washington, DC www.nap.edu THE NATIONAL ACADEMIES PRESS • 500 Fifth Street, N.W. • Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Insti- tute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study was supported by Contract No. V101(93)P-1637 #29 between the Na- tional Academy of Sciences and the Department of Veterans Affairs. Any opinions, find- ings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the organizations or agencies that provided support for this project. Library of Congress Cataloging-in-Publication Data Noise and military service : implications for hearing loss and tinnitus / Committee on Noise-Induced Hearing Loss and Tinnitus Associated with Military Service from World War II to the Present, Medical Follow- up Agency ; Larry E. Humes, Lois M. Joellenbeck, and Jane S. Durch, editors. p. ; cm. Includes bibliographical references. ISBN 0-309-09949-8 — ISBN 0-309-65307-X 1. Deafness—Etiology. -
Recreational Noise-Induced Hearing Loss
Hearing loss due to recreational exposure to loud sounds A review World Health Organization Hearing loss due to recreational exposure to loud sounds A review World Health Organization Contributors: Etienne Krug, Maria Alarcos Cieza, Shelly Chadha, Laura Sminkey, Thais Morata, DeWet Swanepoel, Adrian Fuente, Warwick Williams, Joseph Cerquone, Ricardo Martinez, Gretchen Stevens, Margie Peden, Sowmya Rao, Paras Agarwal, Eighmey Zeeck, Anna Bladey, Malachi Arunda, Aileen Ncube. Graphics Credits: INIS Communications WHO Library Cataloguing-in-Publication Data Hearing loss due to recreational exposure to loud sounds: a review. 1.Hearing Loss, Noise-Induced. 2.Music. 3.Noise. 4.Recreation. 5.Noise. Transportation. 6.Adolescent. I.World Health Organization. ISBN 978 92 4 150851 3 (NLM classification: WV 270) © World Health Organization 2015 All rights reserved. Publications of the World Health Organization are available on the WHO website (http://www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for non- commercial distribution – should be addressed to WHO Press through the WHO website (http://www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Deafness and Hearing Loss Caroline’S Story
Deafness and Hearing Loss Caroline’s Story Caroline is six years old, A publication of NICHCY with bright brown eyes and, at Disability Fact Sheet #3 June 2010 the moment, no front teeth, like so many other first graders. She also wears a hearing aid in each ear—and has done so since she was three, when she Caroline was immediately Hearing Loss was diagnosed with a moderate fitted with hearing aids. She in Children hearing loss. also began receiving special education and related services Hearing is one of our five For Caroline’s parents, there through the public school senses. Hearing gives us access were many clues along the way. system. Now in the first grade, to sounds in the world around Caroline often didn’t respond she regularly gets speech us—people’s voices, their to her name if her back was therapy and other services, and words, a car horn blown in turned. She didn’t startle at her speech has improved warning or as hello! noises that made other people dramatically. So has her vocabu- jump. She liked the TV on loud. lary and her attentiveness. She When a child has a hearing But it was the preschool she sits in the front row in class, an loss, it is cause for immediate started attending when she was accommodation that helps her attention. That’s because three that first put the clues hear the teacher clearly. She’s language and communication together and suggested to back on track, soaking up new skills develop most rapidly in Caroline’s parents that they information like a sponge, and childhood, especially before the have her hearing checked. -
Objective Measures of Ototoxicity
The following article appeared in the September 2005 issue (Vol. 9, No. 1, pp. 10-16) of the Division 6 publication Perspectives on Hearing and Hearing Disorders: Research and Diagnostics. To learn more about Division 6, contact the ASHA Action Center at 1-800-498-2071 or visit the division’s Web page at www.asha.org/about/membership-certification/divs/div_6.htm. Objective Measures of Ototoxicity Elizabeth Leigh-Paffenroth Veterans Affairs Rehabilitation Research and Development Service, National Center for Rehabilitative Auditory Research, VA Medical Center Portland, OR Department of Otolaryngology, Oregon Health & Science University Portland, OR Kelly M. Reavis, Jane S. Gordon, Kathleen T. Dunckley Veterans Affairs Rehabilitation Research and Development Service, National Center for Rehabilitative Auditory Research, VA Medical Center Portland, OR Stephen A. Fausti and Dawn Konrad-Martin Veterans Affairs Rehabilitation Research and Development Service, National Center for Rehabilitative Auditory Research, VA Medical Center Portland, OR Department of Otolaryngology, Oregon Health & Science University, Portland, OR A leading cause of preventable sensorineural hear- of patients who are unable to provide reliable re- ing loss is therapeutic treatment with medications that sponses; subsequently, many of these patients do not are toxic to inner ear tissues, including certain drugs receive monitoring for ototoxic-induced changes in used to fight cancer and life-threatening infectious dis- their hearing. The development of objective measures eases. Ototoxic-induced hearing loss typically begins that do not require patient cooperation is necessary to in the high frequencies and progresses to lower fre- monitor all patients receiving ototoxic drugs. quencies as drug administration continues (Campbell Two objective measures offer promise in their abil- & Durrant, 1993; Campbell et al., 2003; Macdonald, ity to detect and to monitor hearing changes caused by Harrison, Wake, Bliss, & Macdonald, 1994). -
Occupational Lung Diseases
24 Occupational lung diseases Introduction i Occupational diseases are often thought to be Key points uniquely and specifically related to factors in the work environment; examples of such diseases are • Systematic under-reporting and the pneumoconioses. However, in addition to other difficulties in attributing causation both contribute to underappreciation of the factors (usually related to lifestyle), occupational burden of occupational respiratory exposures also contribute to the development or diseases. worsening of common respiratory diseases, such • Work-related exposures are estimated as chronic obstructive pulmonary disease (COPD), to account for about 15% of all adult asthma and lung cancer. asthma cases. • Boththe accumulation of toxic dust in the Information about the occurrence of occupational lungs and immunological sensitisation respiratory diseases and their contribution to to inhaled occupational agents can morbidity and mortality in the general population is cause interstitial lung disease. provided by different sources of varying quality. Some • Despite asbestos use being phased European countries do not register occupational out, mesothelioma rates are forecast diseases and in these countries, information about to continue rising owing to the long latency of the disease. the burden of such diseases is completely absent. • The emergence of novel occupational In others, registration is limited to cases where causes of respiratory disease in compensation is awarded, which have to fulfil specific recent years emphasises the need for administrative or legal criteria as well as strict continuing vigilance. medical criteria; this leads to biased information and underestimation of the real prevalence. Under- reporting of occupational disease is most likely to occur in older patients who are no longer at work but whose condition may well be due to their previous job. -
Hearing Impairment Sheet
Oklahoma State Department of Education Special Education Services • 405-521-3351 • www.ok.gov/sde/special-education FACT HEARING IMPAIRMENT SHEET ■ Definition of Intellectual POSSIBLE CAUSES Disabilities under IDEA • Acquired, meaning that the loss occurred after birth, Hearing impairment means an impairment in hearing, due to illness or injury; or whether permanent or fluctuating, that adversely affects • Congenital, meaning that the hearing loss or deafness a child’s educational performance. 34 CFR 300.8(c)(5) was present at birth The most common cause of acquired hearing loss is TYPES exposure to noise (Merck Manual’s Online Medical Conductive hearing losses are caused by diseases or Library, 2007). Other causes can include: obstructions in the outer or middle ear (the pathways • Build up of fluid behind the eardrum for sound to reach the inner ear). Conductive hearing • Ear infections (known as otitis media) losses usually affect all frequencies of hearing evenly • Childhood diseases, such as mumps, measles, or and do not result in severe losses. A person with a con- chicken pox; and ductive hearing loss usually is able to use a hearing aid • Head trauma well or can be helped medically or surgically. Congenital causes of hearing loss and Sensorineural hearing losses result from damage to the deafness include: delicate sensory hair cells of the inner ear or the nerves • A family history of hearing loss or deafness that supply it. These hearing losses can range from • Infections during pregnancy (such as rubella) mild to profound. They often affect the person’s abil- • Complications during pregnancy (such as the Rh ity to hear certain frequencies more than others. -
Can Other People Hear the Noise in My Ears? Not Usually, but Sometimes They Are Able to Hear a (Ertant Type Oftinnitus
Not at all. Tinnitus is the name for these head noises, and they are very common. Nearly 36 million Americans suffer from this discomfort. Tinnitus mav come and go, or you may be aware of a continuous sound. It can vary in pitch from a low roar to a high squeal or whine, and you may hear it in one or both ears. When the ringing is constant, It can be annoying and distracting. More than seven million people are afflicted so severely that they cannot lead normal lives. Can other people hear the noise in my ears? Not usually, but sometimes they are able to hear a (ertant type oftinnitus. This is called objective tinnitus, and it is caused either by abnormalities in blood vessels around the outside of the ear or by muscle spasms, which may sound like clicks or crackling illside the middle ear. There are many causes for subjective tinnitus, the nOlSC only you can hear. Some causes are not serious (a small plug of wax in the ear canal might cause temporary tinnitus). Tinnitus can also be a symptom of more serious middle ear problems such as infection, a hole in the eardrum, an accumulation of fluid, or stiffening (otosclerosis) of the middle ear bones. Tinnitus may also be caused by allergy, high or 10\V blood pressure (blood circulation problems), OUTER EAR MIDDLE EAR INNER EAR \ a tumor, diabetes, thyroid problems, injury to the head or neck, and a variety of other causes including medications such as anti-inflammatories, antibiotics, sedatives/antidepressants, and aspirin. -
Preventing Hearing Loss Caused by Chemical (Ototoxicity) and Noise Exposure
Preventing Hearing Loss Caused by Chemical (Ototoxicity) and Noise Exposure Safety and Health Information Bulletin SHIB 03-08-2018 DHHS (NIOSH) Publication No. 2018-124 Introduction Millions of workers are exposed to noise in the workplace every day and when uncontrolled, noise exposure may cause permanent hearing loss. Research demonstrates exposure to certain chemicals, called ototoxicants, may cause hearing loss or balance problems, regardless of noise exposure. Substances including certain pesticides, solvents, and pharmaceuticals that contain ototoxicants can negatively affect how the ear functions, causing hearing loss, and/or affect balance. Source/Copyright: OSHA The risk of hearing loss is increased when workers are exposed to these chemicals while working around elevated noise levels. This combination often results in hearing loss that can be temporary or permanent, depending on the level of noise, the dose of the chemical, and the duration of the exposure. This hearing impairment affects many occupations and industries, from machinists to firefighters. Effects on Hearing Harmful exposure to ototoxicants may occur through inhalation, ingestion, or skin absorption. Health effects caused by ototoxic chemicals vary based on exposure frequency, intensity, duration, workplace exposure to other hazards, and individual factors such as age. Effects may be temporary or permanent, can affect hearing sensitivity and result in a standard threshold shift. Since chemicals can affect central portions of the auditory system (e.g., nerves or nuclei in the central nervous system, the pathways to the brain or in the brain itself), not only do sounds need to be louder to be detected, but also they lose clarity. Specifically, speech discrimination dysfunction, the ability to hear voices separately from background noise, may occur and involve: . -
08-0205: N.M. and DEPARTMENT of the NAVY, PUGET S
United States Department of Labor Employees’ Compensation Appeals Board __________________________________________ ) N.M., Appellant ) ) and ) Docket No. 08-205 ) Issued: September 2, 2008 DEPARTMENT OF THE NAVY, PUGET ) SOUND NAVAL SHIPYARD, Bremerton, WA, ) Employer ) __________________________________________ ) Appearances: Oral Argument July 16, 2008 John Eiler Goodwin, Esq., for the appellant No appearance, for the Director DECISION AND ORDER Before: DAVID S. GERSON, Judge COLLEEN DUFFY KIKO, Judge JAMES A. HAYNES, Alternate Judge JURISDICTION On October 30, 2007 appellant filed a timely appeal from a November 17, 2006 decision of the Office of Workers’ Compensation Programs denying his occupational disease claim. Pursuant to 20 C.F.R. §§ 501.2(c) and 501.3, the Board has jurisdiction over the merits of the claim. ISSUE The issue is whether appellant has established that he sustained occupational asthma in the performance of duty due to accepted workplace exposures. On appeal, he, through his attorney, asserts that the Office did not provide Dr. William C. Stewart, the impartial medical examiner, with a complete, accurate statement of accepted facts. FACTUAL HISTORY On December 8, 2004 appellant, then a 57-year-old insulator, filed an occupational disease claim (Form CA-2) asserting that he sustained occupational asthma and increasing shortness of breath due to workplace exposures to fiberglass, silicates, welding smoke, polychlorobenzenes, rubber, dusts, gases, fumes and smoke from “burning out” submarines from 1991 through January -
Tinnitus What Is Tinnitus? Tinnitus Is Defined As the Perception of Sound When No External Sound Is Present
Tinnitus What is tinnitus? Tinnitus is defined as the perception of sound when no external sound is present. The common vernacular is "ringing in the ears"; however, the quality of the tinnitus can range from roaring to hissing and chirping to clicking. Tinnitus can pulsate or be constant. It can be a single tone or multiple tones, and it's amplitude can vary from background noise to an excruciating experience. What causes tinnitus? Tinnitus has a variety of causes. The most common causes include wax in the ear canal, noise trauma or temporomandibular joint (TMJ) dysfunction. It can also be caused by Meniere's disease, endolymphatic hydrops, allergies, destruction of the middle ear bones, infection, nutritional deficiency, cardiovascular disease, thyroid disorders, certain medications, head injury and cervical disorders. Recently, migraine disorders have also been listed as a culprit. Regardless of the inciting etiology, it has been shown that the it is within the brain that the sound resides, persists, evolves and propagates. Tinnitus may begin with damage to the peripheral auditory system (the cochlea and auditory nerve), but its persistence is a function of the attention that it receives parietal cortex and frontal cortex), the importance that it is given (cingulate cortex, anterior insula) and it maintaining residence in the limbic system (the amygdala, hippocampus and thalamus). Ongoing research is being aggressively pursued to stop this feed-forward cycle in its tracks. Medications that may exacerbate tinnitus (adapted from Bailey's Otolaryngology - Head and Neck Surgery 4th ed.) include aspirin and aspirin-containing compounds, aminoglycoside antibiotics, nonsteroidal antiinflammatory drugs and heterocycline antidepressants.