Occupational Lung Diseases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Occupational Airborne Particulates
Environmental Burden of Disease Series, No. 7 Occupational airborne particulates Assessing the environmental burden of disease at national and local levels Tim Driscoll Kyle Steenland Deborah Imel Nelson James Leigh Series Editors Annette Prüss-Üstün, Diarmid Campbell-Lendrum, Carlos Corvalán, Alistair Woodward World Health Organization Protection of the Human Environment Geneva 2004 WHO Library Cataloguing-in-Publication Data Occupational airborne particulates : assessing the environmental burden of disease at national and local levels / Tim Driscoll … [et al.]. (Environmental burden of disease series / series editors: Annette Prüss-Ustun ... [et al.] ; no. 7) 1.Dust - adverse effects 2.Occupational exposure 3.Asthma - chemically induced 4.Pulmonary disease, Chronic obstructive - chemically induced 5.Pneumoconiosis - etiology 6.Cost of illness 7.Epidemiologic studies 8.Risk assessment - methods 9.Manuals I.Driscoll, Tim. II.Prüss-Üstün, Annette. III.Series. ISBN 92 4 159186 2 (NLM classification: WA 450) ISSN 1728-1652 Suggested Citation Tim Driscoll, et al. Occupational airborne particulates: assessing the environmental burden of disease at national and local levels. Geneva, World Health Organization, 2004. (Environmental Burden of Disease Series, No. 7). © World Health Organization 2004 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). -
Dust Exposure and Byssinosis Among Cotton Textile Workers in Dar Es Salaam, Tanzania
MOJ Public Health Research Article Open Access Dust exposure and byssinosis among cotton textile workers in Dar es salaam, Tanzania Abstract Volume 9 Issue 6 - 2020 Background: Cotton dust exposure increases the risk of developing lung diseases including Luco P Mwelange, Simon Mamuya, Gloria Byssinosis. The prevalence of byssinosis is more in developing countries compare to developed countries. For the past forty years there are little information known about the Sakwari, Witness John Axwesso Department of Environmental and Occupational Health, prevalence of byssinosis and its associated risk factors among textile workers in Tanzania. Muhimbili University of Health and Allied Sciences, Tanzania Objective: The study aimed to assess dust exposure and associated risk factors among textile workers, in Dar es Salaam, Tanzania. Correspondence: Luco P Mwelange, Muhimbili University of Health and Allied Sciences, Tanzania, Tel+255655049524, Material and methods: The study design was descriptive cross sectional study conducted Email from March to August 2019. Stratified sampling technique was used to obtain 325 participants (exposed 164 and control 161) respectively. A modified British Medical Received: October 29, 2020 | Published: November 30, 2020 Research Council (BMRC) questionnaire and Side Kick Casella Pump were used for data collection. Data were analyzed using Statistical Package for Social Science software 23 versions. Chi square test and Binary logistic regression were performed to check for association. A 95% confidence Interval with a significance expressed in P˂0.05 was used. Results: Prevalence of byssinosis in the exposed group was 18.9% and 6.2% in the control group. Respiratory symptoms such as Coughing more days in three consecutive months (P˂0.001), wheezing (P˂0.02), dyspnoea I (P˂0.03), dyspnoea II (P˂0.007), and dyspnoea III (P˂0.002), were higher among exposed group compare to control group and the differences were statistically significant. -
PICTORIAL REVIEW Thoracic Involvement in Connective
JBR–BTR, 2015, 98: 3-19. PICTORIAL REVIEW THORACIC INVOLVEMENT IN CONNECTIVE TISSUE DISEASES: RADIO- LOGICAL PATTERNS AND FOLLOW-UP G. Serra1, A.-L. Brun1, P. Ialongo2, M.-L. Chabi1, P.A. Grenier1 Connective tissue diseases (CTDs) are a heterogeneous group of idiopathic inflammatory diseases involving various organs. A thoracic involvement is frequent, and chest-CT represents the imaging technique of reference in its assess- ment. Pulmonary abnormalities related to CTDs are various; although several disease-specific aspects have been described, the two most clinically relevant complications are represented by interstitial lung disease and pulmonary arterial hypertension. The early identification of a thoracic involvement, with the adoption of specific therapies, can significantly change patient’s prognosis. The aim of this article is to review the most common typical and atypical CT features of thoracic involvement occurring in CT, especially focusing on interstitial lung disease. Key-word: Connective tissue, diseases – Lung, interstitial disease – Hypertension, pulmonary. Connective tissue diseases (CTDs) at the time of diagnosis of CTD, or chronic inflammation in the alveolar are a heterogeneous group of in- more commonly manifest later in the walls. The patients usually response flammatory diseases derived from course of the disease (5, 6). well to corticosteroid therapy and an immunologic deregulation affect- The most common histopatholog- have a good prognosis. However pa- ing various organs. A thoracic in- ic patterns of ILD seen in the setting tients with OP associated with CTD volvement (pulmonary, pleural or of CTDs are non specific interstitial seem to have a greater tendency to mediastinal) can be frequently pneumonia (NSIP), usual interstitial develop fibrosis and a higher mortal- found; its frequency and expression pneumonia (UIP), organizing pneu- ity than patients with cryptogenic depends on the type of disease, and monia (OP), diffuse alveolar damage OP (5, 6). -
Management of Malignant Pleural Effusions an Official ATS/STS/STR Clinical Practice Guideline David J
AMERICAN THORACIC SOCIETY DOCUMENTS Management of Malignant Pleural Effusions An Official ATS/STS/STR Clinical Practice Guideline David J. Feller-Kopman*, Chakravarthy B. Reddy*, Malcolm M. DeCamp, Rebecca L. Diekemper, Michael K. Gould, Travis Henry, Narayan P. Iyer, Y. C. Gary Lee, Sandra Z. Lewis, Nick A. Maskell, Najib M. Rahman, Daniel H. Sterman, Momen M. Wahidi, and Alex A. Balekian; on behalf of the American Thoracic Society, Society of Thoracic Surgeons, and Society of Thoracic Radiology THIS OFFICIAL CLINICAL PRACTICE GUIDELINE WAS APPROVED BY THE AMERICAN THORACIC SOCIETY OCTOBER 2018, THE SOCIETY OF THORACIC SURGEONS JUNE 2018, AND THE SOCIETY OF THORACIC RADIOLOGY JULY 2018 Background: This Guideline, a collaborative effort from the MPE; 3) using either an indwelling pleural catheter (IPC) or American Thoracic Society, Society of Thoracic Surgeons, and chemical pleurodesis in symptomatic patients with MPE and Society of Thoracic Radiology, aims to provide evidence-based suspected expandable lung; 4) performing large-volume recommendations to guide contemporary management of patients thoracentesis to assess symptomatic response and lung expansion; with a malignant pleural effusion (MPE). 5) using either talc poudrage or talc slurry for chemical pleurodesis; 6) using IPC instead of chemical pleurodesis in patients with Methods: A multidisciplinary panel developed seven questions nonexpandable lung or failed pleurodesis; and 7) treating using the PICO (Population, Intervention, Comparator, and IPC-associated infections with antibiotics and not removing the Outcomes) format. The GRADE (Grading of Recommendations, catheter. Assessment, Development and Evaluation) approach and the Evidence to Decision framework was applied to each question. Recommendations Conclusions: These recommendations, based on the best available were formulated, discussed, and approved by the entire panel. -
Respiratory Function Changes After Asbestos Pleurisy
Thorax: first published as 10.1136/thx.35.1.31 on 1 January 1980. Downloaded from Thorax, 1980, 35, 31-36 Respiratory function changes after asbestos pleurisy P H WRIGHT, A HANSON, L KREEL, AND L H CAPEL From the Cardiothoracic Institute, London Chest Hospital, East Ham Chest Clinic, London, and the Division of Radiology, Clinical Research Centre, Northwick Park Hospital, Harrow ABSTRACT Six patients with radiographic evidence of diffuse pleural thickening after industrial asbestos exposure are described. Five had computed tomography of the thorax. All the scans showed marked circumferential pleural thickening often with calcification, and four showed no significant evidence of intrapulmonary fibrosis (asbestosis). Lung function testing showed reduc- tion of the inspiratory capacity and the single-breath carbon monoxide transfer factor (TLco). The transfer coefficient, calculated as the TLCO divided by the alveolar volume determined by helium dilution during the measurement of TLco, was increased. Pseudo-static compliance curves showed markedly more negative intrapleural pressures at all lung volumes than found in normal people. These results suggest that the circumferential pleural thickening was preventing normal lung expansion despite abnormally great distending pressures. The pattern of lung function tests is sufficiently distinctive for it to be recognised in clinical practice, and suggests that the lungs are held rigidly within an abnormal pleura. The pleural thickening in our patients may have been related to the condition described as "benign asbestos pleurisy" rather than the copyright. interstitial fibrosis of asbestosis. Malignant pleural effusion associated with meso- necessary in many of these early cases, and opera- thelioma or bronchial carcinoma is a recognised tion notes recorded the presence of marked http://thorax.bmj.com/ complication of asbestos exposure. -
08-0205: N.M. and DEPARTMENT of the NAVY, PUGET S
United States Department of Labor Employees’ Compensation Appeals Board __________________________________________ ) N.M., Appellant ) ) and ) Docket No. 08-205 ) Issued: September 2, 2008 DEPARTMENT OF THE NAVY, PUGET ) SOUND NAVAL SHIPYARD, Bremerton, WA, ) Employer ) __________________________________________ ) Appearances: Oral Argument July 16, 2008 John Eiler Goodwin, Esq., for the appellant No appearance, for the Director DECISION AND ORDER Before: DAVID S. GERSON, Judge COLLEEN DUFFY KIKO, Judge JAMES A. HAYNES, Alternate Judge JURISDICTION On October 30, 2007 appellant filed a timely appeal from a November 17, 2006 decision of the Office of Workers’ Compensation Programs denying his occupational disease claim. Pursuant to 20 C.F.R. §§ 501.2(c) and 501.3, the Board has jurisdiction over the merits of the claim. ISSUE The issue is whether appellant has established that he sustained occupational asthma in the performance of duty due to accepted workplace exposures. On appeal, he, through his attorney, asserts that the Office did not provide Dr. William C. Stewart, the impartial medical examiner, with a complete, accurate statement of accepted facts. FACTUAL HISTORY On December 8, 2004 appellant, then a 57-year-old insulator, filed an occupational disease claim (Form CA-2) asserting that he sustained occupational asthma and increasing shortness of breath due to workplace exposures to fiberglass, silicates, welding smoke, polychlorobenzenes, rubber, dusts, gases, fumes and smoke from “burning out” submarines from 1991 through January -
National Occupational Research Agenda (Nora)
NATIONAL OCCUPATIONAL RESEARCH AGENDA (NORA) NATIONAL OCCUPATIONAL RESEARCH AGENDA FOR HEALTHCARE AND SOCIAL ASSISTANCE (HCSA) February 2019 Developed by the NORA HCSA Council 1 . For more information about the National Occupational Research Agenda (NORA), visit the web site: https://www.cdc.gov/niosh/nora/ For monthly updates on NORA, subscribe to NIOSH eNews at www.cdc.gov/niosh/eNews Disclaimer This is a product of the National Occupational Research Agenda (NORA) Healthcare and Social Assistance Sector Council. It does not necessarily represent the official position of the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, or U.S. Department of Health and Human Services. 2 INTRODUCTION What is the National Occupational Research Agenda? The National Occupational Research Agenda (NORA) is a partnership program to stimulate innovative research and workplace interventions. In combination with other initiatives, the products of this program are expected to reduce the occurrence of injuries and illnesses at work. Unveiled in 1996, NORA has become a research framework for the Nation and the National Institute for Occupational Safety and Health (NIOSH). Diverse parties collaborate to identify the most critical issues in workplace safety and health and develop research objectives for addressing those needs. NORA enters its third decade in 2016 with an enhanced structure. The ten sectors formed for the second decade will continue to prioritize occupational safety and health research by major areas of the U.S. economy. In addition, there are seven cross-sectors organized according the major health and safety issues affecting the U.S. working population. While NIOSH is serving as the steward to move this effort forward, it is truly a national effort. -
Is Your Patient's Workplace Causing Lung Disease?
IsIs YourYour Patient’sPatient’s WWorkplaceorkplace CausingCausing LungLung Disease?Disease? Occupational lung diseases not only have a significant health impact on the affected individual, but they often result in workplace changes and significant socio-economic impact. By Susan M.Tarlo, MB, BS, FRCPC he range and relative frequency of blasting underground. Conversely, the T occupational lung diseases has diagnosis of occupational asthma caused changed significantly in Canada over the by workplace sensitizers has risen, and past 30 years. Occupational lung diseases this is now the most common chronic that were relatively common before, such occupational lung disease in Canada.1,2 as silicosis and coal miners’ pneumoco- It is estimated that occupational asthma niosis, are now uncommon conditions in (usually due to an immunologic response Canada. Although silicosis can still be to a work agent) accounts for about 7% of caused by sandblasting and occasionally all adult-onset asthma,3 and occupational by other types of exposures, it has become factors may play a role in up to 30% of uncommon in Canadian underground min- adult asthma.4 There has been increased ers. This is due to much improved dust- recognition of the role of workplace irri- control measures, such as spraying water tants in aggravating asthma and even, at to keep dust down while drilling and times, causing asthma due to very high 74 The Canadian Journal of Diagnosis / July 2001 Lung Disease respiratory irritant exposures (termed reactive airways dysfunction syndrome [RADS], or irritant-induced asthma).5,6 Besides causing asthma in some patients, workplace respiratory irritant exposures in accidental high levels (such as nitrogen oxides from silage, or spills of chlorine in chemical plants), can also induce other acute respiratory effects in any part of the respiratory tract.7 These can include acute respiratory distress syn- drome, pneumonitis, bronchiolitis, bron- chiolitis organizing pneumonia (BOOP), bronchiectasis, bronchitis, tracheitis, laryngitis and rhinitis. -
International Statistical Classification of Diseases and Related Health Problems (ICD-10) in Occupational Health Protection of T
World Health Organization WHO/SDE/OEH/99.11 English only Sustainable Development and Distr.: Limited Healthy Environments International Statistical Classification of Diseases and Related Health Problems (ICD-10) in Occupational Health Protection of the Human Environment Occupational and Environmental Health Series Geneva, 1999 INTERNATIONAL STATISTICAL CLASSIFICATION OF DISEASES AND RELATED HEALTH PROBLEMS (ICD-10) IN OCCUPATIONAL HEALTH Antti Karjalainen Finnish Institute of Occupational Health World Health Organization Geneva 1999 WORLD HEALTH ORGANIZATION ¾ WHO/SDE/OEH/99.11 ¾ page i INTERNATIONAL STATISTICAL CLASSIFICATION OF DISEASES AND RELATED HEALTH PROBLEMS (ICD-10) Preface Classifications of occupational diseases have been developed mainly for two purposes: (1) notification for labour safety and health surveillance and (2) compensation. The absence of unified diagnostic criteria, coding systems and classifications reduce the compatibility and comparability of national statistics on occupational diseases. The main purpose of this document is to serve as a guideline for the use of ICD-10 in notification of occupational diseases in countries which do not have a well-established notification system. The document contains general guidelines for the use of ICD-10 codes and a comprehensive list of ICD-10 codes which are relevant for notification of occupational diseases. The list enables one to select, for each country, a selection of occupational disease entities that are the most relevant when building a notification system for that country. The document also provides typical examples of the causative agents/risk factors and risk industries/occupations for each occupational disease. It is to be underlined that these lists are meant to be only examples and should not be taken as exhaustive. -
Thoracic Ultrasound in the Diagnosis of Malignant Pleural Effusion
Pleural disease Thoracic ultrasound in the diagnosis of malignant Thorax: first published as 10.1136/thx.2008.100545 on 13 October 2008. Downloaded from pleural effusion N R Qureshi,1 N M Rahman,2 F V Gleeson3 See Editorial, p 97 ABSTRACT criteria established in previous studies.12 13 CECT is Background: Malignant pleural effusion (MPE) is a c Additional details of the recommended as the next investigation, with a techniques, statistical analysis common clinical problem with described investigation view to subsequent histological diagnosis (blind, and figures are published online pathways. While thoracic ultrasound (TUS) has been image-guided or thoracoscopic pleural biopsy).414 only at http://thorax.bmj.com/ shown to be accurate in pleural fluid detection, its use in Thoracic ultrasound (TUS) is a valuable clinical content/vol64/issue2 the diagnosis of malignant pleural disease has not been tool which is increasingly being performed by chest 1 Department of Radiology, assessed. A study was undertaken to assess the physicians. In the UK, guidelines have recently Papworth Hospital NHS diagnostic accuracy of TUS in differentiating malignant been published with suggested training for physi- Foundation Trust, Papworth 15 Everard, Cambridge, UK; and benign pleural disease. cians with an interest in practising TUS. 2 Oxford Centre for Respiratory Methods: 52 consecutive patients with suspected MPE Hitherto, the role of TUS has been limited to Medicine and University of underwent TUS and contrast-enhanced CT (CECT). TUS pleural fluid detection (with high sensitivity) and Oxford, Oxford Radcliffe was used to assess pleural surfaces using previously image-guided techniques (thoracocentesis, drain Hospital, Oxford, UK; placement, lung biopsy).14 3 Department of Radiology, published CT imaging criteria for malignancy, diaphrag- Oxford Radcliffe Hospital, matic thickness/nodularity, effusion size/nature and The sonographic appearance of malignant Oxford, UK presence of hepatic metastasis (in right-sided effusions). -
Pulmonary and Tracheobronchial Amyloidosis
Pulmonary and Tracheobronchial Amyloidosis John L. Berk, M.D.,1,2,3 Anthony O’Regan, M.D.,1,3 and Martha Skinner, M.D.2,3 ABSTRACT Amyloidosis is a collection of diseases in which different proteins are deposited as insoluble -pleated sheets, disrupting organ function. Each precursor protein induces a separate spectrum of organ involvement, and different disease manifestations within the lung. Although autopsy data often demonstrate amyloid deposits in various compart- ments of the lung, few of the pathologic findings are expressed clinically. We review the pulmonary pathology, radiology, clinical presentations, and treatment options for each of the major systemic and localized forms of amyloidosis. This review focuses on amyloid derived from immunoglobulin light-chain protein (AL disease), which most frequently involves the lung in both systemic and localized forms of the disease. Manifestations of AL-related lung disease range from nodules identified on incidental chest films to diffuse alveolar+–septal deposition mimicking diffuse alveolar damage. We discuss respiratory failure due to diaphragm invasion, proximal tracheal disease, and diffuse alveolar–septal deposition. Guidelines for evaluation of patients with amyloid are presented. KEYWORDS: Amyloidosis, tracheobronchial amyloidosis, lung diseases Objectives: Upon completion of this article, the reader will understand the importance of amyloid fiber type on the spectrum of pul- monary manifestations and the natural course of disease in patients with systemic amyloidosis. Accreditation: The University of Michigan is accredited by the Accreditation Council for Continuing Medical Education to sponsor continuing medical education for physicians. Credits: The University of Michigan designates this educational activity for a maximum of 1.0 hour in category one credits toward the AMA Physicians Recognition Award. -
Aetiological Agents in Occupational Asthma
Eur Respir J, 1994, 7, 346–371 Copyright ERS Journals Ltd 1994 DOI: 10.1183/09031936.94.07020346 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 SERIES 'OCCUPATIONAL ASTHMA' Edited by C. Mapp Aetiological agents in occupational asthma M. Chan-Yeung*, J-L. Malo** Aetiological agents in occupational asthma. M. Chan-Yeung, J-L. Malo. ERS Journals *Dept of Medicine, Vancouver General Ltd 1994. Hospital, Vancouver, Canada. **Dept of ABSTRACT: Occupational asthma has become the most prevalent occupational lung Chest Medicine, Hôpital du Sacré-Coeur, disease in developed countries. At present, about 200 agents have been implicated Montreal, Canada. in causing occupational asthma in the workplace. These agents can be divided into Correspondence: J-L. Malo, Dept of Chest two categories by their mechanism of action: immunological and nonimmunological. Medicine, Hôpital du Sacré-Coeur, 5400 Immunological causes can be further divided into those that induce asthma through West Gouin, Montreal, H4J ICS, Canada. an immunoglobulin E (IgE)-dependent mechanism, and those that induce asthma through a non-IgE-dependent mechanism. In the latter category, specific IgE anti- Keywords: Asthma bodies are found only in a small percentage of the patients with proven disease, occupational asthma even though the clinical picture is compatible with an allergic reaction. The immuno- logical mechanism(s) responsible for these agents has yet to be identified. Received: July 16 1993 The best known example of nonimmunological asthma is Reactive Airways JL Malo and M Chan-Yeung are members Dysfunction Syndrome (RADS) or irritant-induced asthma. of the Canadian Network of Excellence in In this review, examples of types of agents causing occupational asthma are dis- Respiratory Health.