Weierstrass's Non-Differentiable Function

Total Page:16

File Type:pdf, Size:1020Kb

Weierstrass's Non-Differentiable Function Weierstrass’s non-differentiable function Jeff Calder December 12, 2014 In the nineteenth century, many mathematicians held the belief that a continuous function must be differentiable at a large set of points. In 1872, Karl Weierstrass shocked the mathe- matical world by giving the first published example of a continuous function that is nowhere differentiable. His function is given by 1 X W (x) = an cos(bnπx): n=0 In particular, Weierstrass proved the following theorem: Theorem 1 (Weierstrass 1872). Let a 2 (0; 1), let b > 1 be an odd integer, and assume that 3 ab > 1 + π: (1) 2 Then the function W is continuous and nowhere differentiable on R. To see that W is continuous on R, note that jan cos(bnπx)j = anj cos(bnπx)j ≤ an: Since the geometric series P an converges for a 2 (0; 1), the Weierstrass M-test shows that n n the series defining W converges uniformly to W on R. Since each function a cos(b πx) is continuous, each partial sum is continuous, and therefore W is continuous, being the uniform limit of a sequence of continuous functions. To give some motivation for the condition (1), consider the partial sums n X k k Wn(x) = a cos(b πx): k=0 These partial sums are differentiable functions and n 0 X k k Wn(x) = − π(ab) sin(b πx): k=0 0 If ab < 1, then we can again use the Weierstrass M-test to show that (Wn) converges uniformly to a continuous function on R. In this case we can actually prove that W is differentiable 0 0 and Wn ! W uniformly. Therefore, at the very least we need ab ≥ 1 for W to be non- differentiable. In 1916, Godfrey Hardy showed that ab ≥ 1 is sufficient for the nowhere 1 2 2 1.5 1.8 1 1.6 0.5 0 1.4 −0.5 1.2 −1 1 −1.5 −2 0.8 −1 −0.5 0 0.5 1 −0.1 −0.05 0 0.05 0.1 (a) (b) Figure 1: The Weierstrass function W (x) for a = 0:5 and b = 3. Notice that W appears the same on the two different scales shown in (a) and (b). 3 differentiability of W . The more restrictive condition ab > 1 + 2 π present in Weierstrass’s proof is an artifact of the techniques he used. Hardy also relaxed the integral assumption on b, and allowed b to be any real number greater than 1. Figure1 shows a plot of the Weierstrass function for a = 0:5 and b = 3 on two different scales. Notice the similar repeating patterns on each scale. If we were to continue zooming in on W , we would continue seeing the same patterns. The Weierstrass function is an early example of a fractal, which has repeating patterns at every scale. Before giving the proof, we recall a few facts that will be useful in the proof. Let x; y 2 R, and suppose x > y. Then by the fundamental theorem of calculus Z x Z x cos(x) − cos(y) = − sin(t) dt ≤ 1 dt = x − y; y y and Z x cos(x) − cos(y) ≥ −1 dt = −(x − y): y Therefore j cos(x) − cos(y)j ≤ jx − yj: The argument is similar when y ≥ x, so we deduce j cos(x) − cos(y)j ≤ jx − yj for all x; y 2 R: (2) Consider cos(nπ + x) for an integer n and x 2 R. If n is even, then since cosine is 2π-periodic, cos(nπ + x) = cos(x). If n is odd, then n + 1 is even and cos(nπ + x) = cos((n + 1)π + x − π) = cos(x − π) = − cos(x): Draw a graph of cos(x) if the last equality is unclear. Therefore we obtain n cos(nπ + x) = (−1) cos(x) for all x 2 R: (3) We now give the proof of Theorem1. 2 m Proof. Let x0 2 R and let m 2 N. Let us round b x0 to the nearest integer, and call this integer km. Therefore 1 1 bmx − ≤ k ≤ bmx + : (4) 0 2 m 0 2 Let us also set k + 1 x = m : (5) m bm By (4) we see that m 1 m b x0 − 2 + 1 b x0 xm ≥ m > = x0; b bm and m 1 b x0 + + 1 3 x ≤ 2 = x + : m bm 0 2bm Combining these equations we have 3 x < x ≤ x + : (6) 0 m 0 2bm By the squeeze lemma, limm!1 xm = x0. Let us consider the difference 1 1 X n n X n n W (xm) − W (x0) = a cos(b πxm) − a cos(b πx0) n=0 n=0 1 X n n n = a (cos(b πxm) − cos(b πx0)) n=0 = A + B; (7) where m−1 X n n n A = a (cos(b πxm) − cos(b πx0)) ; (8) n=0 and 1 X n n n B = a (cos(b πxm) − cos(b πx0)) : (9) n=m The proof is now split into three steps. 1. The first step is to find an upper bound for jAj. Using the triangle inequality and the identity (2) m−1 m−1 m−1 X n n n X n n X n jAj ≤ a jcos(b πxm) − cos(b πx0)j ≤ a b π(xm − x0) = π(xm − x0) (ab) : n=0 n=0 n=0 Noticing the geometric series, we deduce 1 − (ab)m (ab)m − 1 π(ab)m jAj ≤ π(x − x ) = π(x − x ) ≤ (x − x ): (10) m 0 1 − ab m 0 ab − 1 ab − 1 m 0 3 In the last step we used the hypothesis that ab > 1 + 2 π > 1. 3 2. The second step is to find a lower bound for jBj. By the definition of xm (5) k + 1 cos(bnπx ) = cos bnπ m = cos(bn−m(k + 1)π): m bm m n−m For n ≥ m, b (km + 1) is an integer, and hence n−m n−m km+1 n b (km+1) b km+1 km cos(b πxm) = (−1) = (−1) = (−1) = −(−1) ; (11) where we used the fact that bn−m is odd so that (−1)bn−m = −1. On the other hand, we also have k + bmx − k cos(bnπx ) = cos bnπ m 0 m = cos(bn−mk π + bn−mz π); 0 bm m m m n−m where zm = b x0 − km. Since n ≥ m, b km is an integer and we can use (3) to find that n−m n b km n−m km n−m cos(b πx0) = (−1) cos(b zmπ) = (−1) cos(b zmπ); (12) where, as before, we used the fact that bn−m is odd. We now insert (11) and (12) into (9) to obtain 1 X n km km n−m B = a −(−1) − (−1) cos(b zmπ) n=m 1 km X n n−m = −(−1) a 1 + cos(b zmπ) : n=m n n−m Notice that a > 0 and 1 + cos(b zmπ) ≥ 0. It follows that all the terms in the sum above are non-negative, and therefore 1 X n n−m m jBj = a 1 + cos(b zmπ) ≥ a (1 + cos(zmπ)) : n=m m 1 1 π π Recall that zm = b x0 − km. By (4), zm 2 [− 2 ; 2 ], and therefore πzm 2 [− 2 ; 2 ]. It follows that cos(zmπ) ≥ 0 and jBj ≥ am: 3 By (6), xm − x0 ≤ 2bm , and thus 2bm (x − x ) ≤ 1: 3 m 0 We can combine this with jBj ≥ am to find that 2(ab)m jBj ≥ am · 1 ≥ (x − x ): (13) 3 m 0 This is the desired lower bound on jBj, and completes part 2 of the proof. 3. We now combine the bounds (10) and (13) to complete the proof. Notice by (10), (13) and the reverse triangle inequality that 2(ab)m π(ab)m 2 π jA + Bj ≥ jBj − jAj ≥ (x − x ) − (x − x ) = (ab)m − (x − x ): 3 m 0 ab − 1 m 0 3 ab − 1 m 0 4 By (7) we see that 2 π jW (x ) − W (x )j = jA + Bj ≥ (ab)m − (x − x ): m 0 3 ab − 1 m 0 Since xm − x0 > 0, so that jxm − x0j = xm − x0, we have W (xm) − W (x0) m 2 π ≥ (ab) − : (14) xm − x0 3 ab − 1 We would like this difference quotient to tend to 1 in absolute value as m ! 1. For this we need ab > 1 and 2 π − > 0: 3 ab − 1 Rearranging this for ab we see that we need 3 ab > π + 1; 2 which is exactly the hypothesis (1). Therefore W (xm) − W (x0) lim = +1; m!1 xm − x0 and xm ! x0 as m ! 1. This shows that W is not differentiable at x0. With slight modifications to the proof, we can also show that W (x) − W (x ) lim 0 x!x0 x − x0 does not exist as a real number or ±∞. This rules out the possibility of the Weierstrass function having a vertical tangent line, or an “infinite derivative” anywhere. 5.
Recommended publications
  • Karl Weierstraß – Zum 200. Geburtstag „Alles Im Leben Kommt Doch Leider Zu Spät“ Reinhard Bölling Universität Potsdam, Institut Für Mathematik Prolog Nunmehr Im 74
    1 Karl Weierstraß – zum 200. Geburtstag „Alles im Leben kommt doch leider zu spät“ Reinhard Bölling Universität Potsdam, Institut für Mathematik Prolog Nunmehr im 74. Lebensjahr stehend, scheint es sehr wahrscheinlich, dass dies mein einziger und letzter Beitrag über Karl Weierstraß für die Mediathek meiner ehemaligen Potsdamer Arbeitsstätte sein dürfte. Deshalb erlaube ich mir, einige persönliche Bemerkungen voranzustellen. Am 9. November 1989 ging die Nachricht von der Öffnung der Berliner Mauer um die Welt. Am Tag darauf schrieb mir mein Freund in Stockholm: „Herzlich willkommen!“ Ich besorgte das damals noch erforderliche Visum in der Botschaft Schwedens und fuhr im Januar 1990 nach Stockholm. Endlich konnte ich das Mittag- Leffler-Institut in Djursholm, im nördlichen Randgebiet Stockholms gelegen, besuchen. Dort befinden sich umfangreiche Teile des Nachlasses von Weierstraß und Kowalewskaja, die von Mittag-Leffler zusammengetragen worden waren. Ich hatte meine Arbeit am Briefwechsel zwischen Weierstraß und Kowalewskaja, die meine erste mathematikhistorische Publikation werden sollte, vom Inhalt her abgeschlossen. Das Manuskript lag in nahezu satzfertiger Form vor und sollte dem Verlag übergeben werden. Geradezu selbstverständlich wäre es für diese Arbeit gewesen, die Archivalien im Mittag-Leffler-Institut zu studieren. Aber auch als Mitarbeiter des Karl-Weierstraß- Institutes für Mathematik in Ostberlin gehörte ich nicht zu denen, die man ins westliche Ausland reisen ließ. – Nun konnte ich mir also endlich einen ersten Überblick über die Archivalien im Mittag-Leffler-Institut verschaffen. Ich studierte in jenen Tagen ohne Unterbrechung von morgens bis abends Schriftstücke, Dokumente usw. aus dem dortigen Archiv, denn mir stand nur eine Woche zur Verfügung. Am zweiten Tag in Djursholm entdeckte ich unter Papieren ganz anderen Inhalts einige lose Blätter, die Kowalewskaja beschrieben hatte.
    [Show full text]
  • Halloweierstrass
    Happy Hallo WEIERSTRASS Did you know that Weierestrass was born on Halloween? Neither did we… Dmitriy Bilyk will be speaking on Lacunary Fourier series: from Weierstrass to our days Monday, Oct 31 at 12:15pm in Vin 313 followed by Mesa Pizza in the first floor lounge Brought to you by the UMN AMS Student Chapter and born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstrass 31 October 1815 { 19 February 1897 born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstraß 31 October 1815 { 19 February 1897 born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstraß 31 October 1815 { 19 February 1897 sent to University of Bonn to prepare for a government position { dropped out.
    [Show full text]
  • On Fractal Properties of Weierstrass-Type Functions
    Proceedings of the International Geometry Center Vol. 12, no. 2 (2019) pp. 43–61 On fractal properties of Weierstrass-type functions Claire David Abstract. In the sequel, starting from the classical Weierstrass function + 8 n n defined, for any real number x, by (x) = λ cos (2 π Nb x), where λ W n=0 ÿ and Nb are two real numbers such that 0 λ 1, Nb N and λ Nb 1, we highlight intrinsic properties of curious mapsă ă which happenP to constituteą a new class of iterated function system. Those properties are all the more interesting, in so far as they can be directly linked to the computation of the box dimension of the curve, and to the proof of the non-differentiabilty of Weierstrass type functions. Анотація. Метою даної роботи є узагальнення попередніх результатів автора про класичну функцію Вейерштрасса та її графік. Його можна отримати як границю послідовності префракталів, тобто графів, отри- маних за допомогою ітераційної системи функцій, які, як правило, не є стискаючими відображеннями. Натомість вони мають в деякому сенсі еквівалентну властивість до стискаючих відображень, оскільки на ко- жному етапі ітераційного процесу, який дає змогу отримати префра- ктали, вони зменшують двовимірні міри Лебега заданої послідовності прямокутників, що покривають криву. Такі системи функцій відіграють певну роль на першому кроці процесу побудови підкови Смейла. Вони можуть бути використані для доведення недиференційованості функції Вейєрштрасса та обчислення box-розмірності її графіка, а також для по- будови більш широких класів неперервних, але ніде не диференційовних функцій. Останнє питання ми вивчатимемо в подальших роботах. 2010 Mathematics Subject Classification: 37F20, 28A80, 05C63 Keywords: Weierstrass function; non-differentiability; iterative function systems DOI: http://dx.doi.org/10.15673/tmgc.v12i2.1485 43 44 Cl.
    [Show full text]
  • Continuous Nowhere Differentiable Functions
    2003:320 CIV MASTER’S THESIS Continuous Nowhere Differentiable Functions JOHAN THIM MASTER OF SCIENCE PROGRAMME Department of Mathematics 2003:320 CIV • ISSN: 1402 - 1617 • ISRN: LTU - EX - - 03/320 - - SE Continuous Nowhere Differentiable Functions Johan Thim December 2003 Master Thesis Supervisor: Lech Maligranda Department of Mathematics Abstract In the early nineteenth century, most mathematicians believed that a contin- uous function has derivative at a significant set of points. A. M. Amp`ereeven tried to give a theoretical justification for this (within the limitations of the definitions of his time) in his paper from 1806. In a presentation before the Berlin Academy on July 18, 1872 Karl Weierstrass shocked the mathematical community by proving this conjecture to be false. He presented a function which was continuous everywhere but differentiable nowhere. The function in question was defined by ∞ X W (x) = ak cos(bkπx), k=0 where a is a real number with 0 < a < 1, b is an odd integer and ab > 1+3π/2. This example was first published by du Bois-Reymond in 1875. Weierstrass also mentioned Riemann, who apparently had used a similar construction (which was unpublished) in his own lectures as early as 1861. However, neither Weierstrass’ nor Riemann’s function was the first such construction. The earliest known example is due to Czech mathematician Bernard Bolzano, who in the years around 1830 (published in 1922 after being discovered a few years earlier) exhibited a continuous function which was nowhere differen- tiable. Around 1860, the Swiss mathematician Charles Cell´erieralso discov- ered (independently) an example which unfortunately wasn’t published until 1890 (posthumously).
    [Show full text]
  • A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
    Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge­ bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe­ maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe­ matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members.
    [Show full text]
  • Pathological” Functions and Their Classes
    Properties of “Pathological” Functions and their Classes Syed Sameed Ahmed (179044322) University of Leicester 27th April 2020 Abstract This paper is meant to serve as an exposition on the theorem proved by Richard Aron, V.I. Gurariy and J.B. Seoane in their 2004 paper [2], which states that ‘The Set of Dif- ferentiable but Nowhere Monotone Functions (DNM) is Lineable.’ I begin by showing how certain properties that our intuition generally associates with continuous or differen- tiable functions can be wrong. This is followed by examples of functions with surprisingly unintuitive properties that have appeared in mathematical literature in relatively recent times. After a brief discussion of some preliminary concepts and tools needed for the rest of the paper, a construction of a ‘Continuous but Nowhere Monotone (CNM)’ function is provided which serves as a first concrete introduction to the so called “pathological functions” in this paper. The existence of such functions leaves one wondering about the ‘Differentiable but Nowhere Monotone (DNM)’ functions. Therefore, the next section of- fers a description of how the 2004 paper by the three authors shows that such functions are very abundant and not mere fancy counter-examples that can be called “pathological.” 1Introduction A wide variety of assumptions about the nature of mathematical objects inform our intuition when we perform calculations. These assumptions have their utility because they help us perform calculations swiftly without being over skeptical or neurotic. The problem, however, is that it is not entirely obvious as to which assumptions are legitimate and can be rigorously justified and which ones are not.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Inauguration
    INAUGURATION OF THE PERMANENT SECRETARIAT OF THE INTERNATIONAL MATHEMATICAL UNION February 1, 2011, Berlin, Germany Ribbon Cutting Ceremony: Professor Dr. Martin Grötschel, Dr. Georg Schütte, Professor Dr. Ingrid Daubechies, Dr. Knut Nevermann, Professor Dr. Jürgen Sprekels (from left to right), and Gauss on the wall. Contents The IMU and Berlin ..................................................................................................................... 3 Where to find the IMU Secretariat ............................................................................................... 4 Adresses delivered at the Opening Ceremony ............................................................................. 5 Dr. Georg Schütte, State Secretary at the German Federal Ministry of Education and Research .............................. 5 Professor Dr. Jürgen Zöllner, Senator for Education, Science and Research of the State of Berlin, speech read by Dr. Knut Nevermann, State Secretary for Science and Research at the Berlin Senate .................................................... 8 Professor Dr. Ingrid Daubechies, President of the International Mathematical Union ............. 10 Professor Dr. Christian Bär, President of the German Mathematical Society (DMV) ............. 12 Professor Dr. Jürgen Sprekels, Director of the Weierstrass Institute, Berlin ............................ 13 The Team of the Permanent Secretariat ..................................................................................... 16 Impressions from the Opening
    [Show full text]
  • The Book and Printed Culture of Mathematics in England and Canada, 1830-1930
    Paper Index of the Mind: The Book and Printed Culture of Mathematics in England and Canada, 1830-1930 by Sylvia M. Nickerson A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute for the History and Philosophy of Science and Technology University of Toronto © Copyright by Sylvia M. Nickerson 2014 Paper Index of the Mind: The Book and Printed Culture of Mathematics in England and Canada, 1830-1930 Sylvia M. Nickerson Doctor of Philosophy Institute for the History and Philosophy of Science and Technology University of Toronto 2014 Abstract This thesis demonstrates how the book industry shaped knowledge formation by mediating the selection, expression, marketing, distribution and commercialization of mathematical knowledge. It examines how the medium of print and the practices of book production affected the development of mathematical culture in England and Canada during the nineteenth and early twentieth century. Chapter one introduces the field of book history, and discusses how questions and methods arising from this inquiry might be applied to the history of mathematics. Chapter two looks at how nineteenth century printing technologies were used to reproduce mathematics. Mathematical expressions were more difficult and expensive to produce using moveable type than other forms of content; engraved diagrams required close collaboration between author, publisher and engraver. Chapter three examines how editorial decision-making differed at book publishers compared to mathematical journals and general science journals. Each medium followed different editorial processes and applied distinct criteria in decision-making about what to publish. ii Daniel MacAlister, Macmillan and Company’s reader of science, reviewed mathematical manuscripts submitted to the company and influenced which ones would be published as books.
    [Show full text]
  • Karl Weierstrass' Bicentenary
    Karl Weierstrass’ Bicentenary G.I. Sinkevich Saint Petersburg State University of Architecture and Civil Engineering Vtoraja Krasnoarmejskaja ul. 4, St. Petersburg, 190005, Russia [email protected] Abstract. Academic biography of Karl Weierstrass, his basic works, influence of his doctrine on the development of mathematics. Key words: Karl Weierstrass, academic biography. In 2015, the mathematical world celebrates the bicentenary of the great German mathematician Karl Weierstrass (1815-1897) who created the modern mathematical analysis. Childhood and adolescence. Karl Theodor Wilhelm Weierstrass was born on 31 October 1815 in Ostenfelde (Westphalia) to a catholic family of burgomaster’s secretary, Wilhelm Weierstrass and Theodora born Vonderforst. Karl was the eldest child. He was 12 when his mother died. His father’s service was associated with the Tax Department, and therefore, the family had to move from one place to another quite often. His father was a genteel person. He taught his children French and English. Karl started attending school in Münster, and at the age of 14, he entered the catholic Gymnasium at Theodorianum in Padeborn. In addition to good general education, he obtained a good mathematical training at the Gymnasium: stereometry, trigonometry, Diophantine analysis, series expansion. The schooling was thorough. It was for good reason that when the Franco-Prussian War was over, Bismarck said that the war was won by the schoolteacher. There was a scientific library in the Gymnasium. Weierstrass was known to browse mathematical magazines there, especially Crelle’s Journal (Journal für die reine und angewandte Mathematik). Each issue of the Journal incorporated four fascicles. In certain years, even two issues were published.
    [Show full text]
  • Arxiv:1803.02193V1 [Math.HO] 6 Mar 2018 AQE AR IT AZZK EE ENG IHI .KA G
    KLEIN VS MEHRTENS: RESTORING THE REPUTATION OF A GREAT MODERN JACQUES BAIR, PIOTR BLASZCZYK, PETER HEINIG, MIKHAIL G. KATZ, JAN PETER SCHAFERMEYER,¨ AND DAVID SHERRY Abstract. Historian Herbert Mehrtens sought to portray the his- tory of turn-of-the-century mathematics as a struggle of modern vs countermodern, led respectively by David Hilbert and Felix Klein. Some of Mehrtens’ conclusions have been picked up by both histo- rians (Jeremy Gray) and mathematicians (Frank Quinn). We argue that Klein and Hilbert, both at G¨ottingen, were not adversaries but rather modernist allies in a bid to broaden the scope of mathematics beyond a narrow focus on arithmetized anal- ysis as practiced by the Berlin school. Klein’s G¨ottingen lecture and other texts shed light on Klein’s modernism. Hilbert’s views on intuition are closer to Klein’s views than Mehrtens is willing to allow. Klein and Hilbert were equally interested in the axiomatisation of physics. Among Klein’s credits is helping launch the career of Abraham Fraenkel, and advancing the careers of Sophus Lie, Emmy Noether, and Ernst Zermelo, all four surely of impeccable modernist credentials. Mehrtens’ unsourced claim that Hilbert was interested in pro- duction rather than meaning appears to stem from Mehrtens’ marx- ist leanings. Mehrtens’ claim that [the future SS-Brigadef¨uhrer] “Theodor Vahlen . cited Klein’s racist distinctions within math- ematics, and sharpened them into open antisemitism” fabricates a spurious continuity between the two figures mentioned and is thus an odious misrepresentation of Klein’s position. arXiv:1803.02193v1 [math.HO] 6 Mar 2018 Contents 1.
    [Show full text]
  • F L Fractals What Makes a Fractal?
    FlFractals from Wikipedia: list of fractals by Hausdoff dimension Sierpinski Triangle 3D Cantor Dust Lorenz attractor Coastline of Great Britain Mandelbrot Set What makes a fractal? I’m using 2 references: Fractal Geometry by Kenneth Falconer Encounters with Chaos by Denny Gulick 1) A fractal is a subset of Rn with non integer dimension. Of course thi s mak e no sense wit hout a de fin it ion o f dimens ion. 2) Fractal contains copies of itself at many scales. 3) It is too irregular to be described by traditional language. Mandelbrot coined the term in the late 1970s though many examples were known. "Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line."(Mandelbrot, 1983). 1 1) Cantor Dust. From the interval [0,1] remove the middle third. Then remove the middle third from the remainingg[ 2 intervals [0,,][,1/3] and [2/3,1]. Keep going with this removal of middle thirds forever ….. You end up with the Cantor dust. Impossible to draw it. We give the first 3 steps. Later we will see the Cantor Dust has box dimension ln2/ln3 ≅ .63. Higher dimension than a point but smaller than an interval. There are many interest ing facts a bout t he Cantor d ust. For example, the set is uncountable, but if you integrate the function that is 1 on the Cantor set and 0 off the set (using the Lebesgue in tegra l), you ge t 0. The Rie mann in tegra l canno t dea l w ith this.
    [Show full text]