State-Of-The Art Study in Citizen Observatories: Technological Trends, Development Challenges and Research Avenues

Total Page:16

File Type:pdf, Size:1020Kb

State-Of-The Art Study in Citizen Observatories: Technological Trends, Development Challenges and Research Avenues STATE-OF-THE ART STUDY IN CITIZEN OBSERVATORIES: TECHNOLOGICAL TRENDS, DEVELOPMENT CHALLENGES AND RESEARCH AVENUES AUTHORS: LUT SYKE Maria Palacin Silva Timo Pyhälahti Ahmed Seffah Yrjö Sucksdorff Kari Heikkinen Saku Anttila Jari Porras Hanna Alasalmi Eeva Bruun Sofia Junttila Version 3.0 Lappeenranta University of Technology Department of Innovation and Software www.lut.fi Address: Skinnarilankatu 34, 53850 Lappeenranta, Finland Tel: +358 294 462 111 SYKE Finnish Environment Institute www.syke.fi Address: Mechelininkatu 34a P.O.Box 140, FI-00251 Helsinki, Finland Legal Notice: Neither the Lappeenranta University of technology nor the Finnish Environment Institute is responsible for the use which might be made of this publication. © Lappeenranta University of Technology, 2015 Reproduction is authorized when the source is acknowledged. Tel: +358 295 251 00 Page | II Table of Contents Introduction .......................................................................................................... 3 Summary of Chapters and Key Findings .............................................................................. 8 Recommendations from the Study ........................................................................ 11 Chapter I: .............................................................................................................. 14 Trends in the World: Past, Present and Future ..................................................... 14 Statistical Trends ........................................................................................................................... 17 Major domains and applications of citizen observatories ............................................................ 17 Environmental observatories commonalities and goals ............................................................. 28 Who are running citizen observatories around the world? .......................................................... 31 Challenges, Opportunities, Best Practices and Recommendations ............................................ 32 Standards, Networks and Initiatives ........................................................................................... 42 Recommendations for Further Studies ....................................................................................... 48 Literature Highlights .................................................................................................................... 49 Citizen repositories: architecture and infrastructure .................................................................. 49 Framework for setting-up a citizen observatory .......................................................................... 51 Big data and urban sensing ......................................................................................................... 56 Social computing ......................................................................................................................... 56 Pervasive ICT ................................................................................................................................ 57 Open data ..................................................................................................................................... 57 From crowdsourcing to crowdsensing ........................................................................................ 58 Mobile crowdsensing ................................................................................................................... 58 Internet of things ......................................................................................................................... 58 Chapter II: ............................................................................................................ 59 Citizen Repositories: Current Initiatives in Finland and Europe ........................... 59 Citizen Observatories in Europe ........................................................................................... 61 Citizen Observatories in Finland ......................................................................................... 66 Survey Study Results:.............................................................................................................. 68 Chapter III ............................................................................................................ 78 Research Avenues: Citizen Motivations, Active Involvement and Awareness ........ 78 Who controls data collection, and who owns the data or benefits from them? – Privacy Issues and Concerns .......................................................................................................................... 80 How is data collected? .................................................................................................................. 83 Participation? What does it involve? ............................................................................................ 84 How to motivate citizen and stakeholders? .................................................................................. 86 How to measure motivation? What citizens want to report? ....................................................... 87 Some Technologies That Can Be Used To Engage Citizens .......................................................... 88 References ............................................................................................................ 91 Version 3.0 APPENDIX ........................................................................................................... 96 I. Survey Design ............................................................................................................. 96 II. Interview Design ........................................................................................................ 99 III. Feedback Forms ........................................................................................................ 101 IV. Workgroup topics and findings ........................................................................... 102 V. Data Collection Matrix ........................................................................................... 106 5.1. Summary of Citizen Observatories .............................................................................. 106 5.2. Citizen Observatories’ Type of Data Gathering ............................................................. 144 5.3. Citizen Observatories Contact Information .................................................................. 155 5.4. Institutions Running Citizen Observatories ................................................................. 166 5.5. Citizen Observatories’ Stakeholders ............................................................................. 175 5.6. Citizen Observatories’ Technology ............................................................................... 188 5.7. Citizen Observatories’ Challenges ................................................................................. 194 5.8. Citizen Observatories’ Best Practices ............................................................................ 199 5.9. Citizen Observatories’ Recommendations and Future Perspectives ........................... 204 5.10. Citizen Observatories’ Used Standards and Networks ................................................ 208 5.11. Summary of reviewed publications (List of Most Relevant) ......................................... 212 Page | 1 Version 3.0 List of Terms and Definitions Participatory data collection: Users are actively involved in the collection process by deciding on the spot when to report data. Opportunistic data collection: Sensor sampling occurs whenever the state of the device (e.g. geographic location) matches the application’s requirements described in a sensing task, without the knowledge of the individual phone user. Spectrum monitoring (In this report): The entire range of wavelengths of electromagnetic radiation. Used to classify something in terms of its position on a scale between two extreme points. BON: Biodiversity Observation Network LUKE: Natural Resources Institute Finland SYKE: Finnish Environment Institute LAJI: Finnish Biodiversity Info Facility FinBIF: Finnish Biodiversity Information Facility LUOMUS: Finnish Museum of Natural History Metadata: Data that provides information about other data. The main purpose of metadata is to facilitate in the discovery of relevant information, more often classified as resource discovery. IoT: Internet of things EnvO: Environment ontology Page | 2 Version 3.0 Introduction Citizen Science and Citizen Observatories: Key Findings from a State of Art Review Page | 3 Version 3.0 Citizen Science: The Original Definition and Objective The term citizen science has been introduced and used to describe a range of ideas, from a philosophy of engaging in scientific research to the work of scientists, or even politicians, driven by a social needs or awareness. Citizen science represents massive scale collaboration in science as seen nowhere else, providing an opportunity for understanding aspects of other massively distributed collaborations (15). Originally, citizen science typically refers to research collaborations between scientists and volunteers, particularly (but not exclusively) to expand opportunities for scientific data collection and to provide access to scientific information for community members. Citizen repositories emerged, first as the use of technology, to
Recommended publications
  • Crowd Science: the Organization of Scientific Research in Open ଝ Collaborative Projects
    Research Policy 43 (2014) 1–20 Contents lists available at ScienceDirect Research Policy jou rnal homepage: www.elsevier.com/locate/respol Crowd science: The organization of scientific research in open ଝ collaborative projects a,∗ b Chiara Franzoni , Henry Sauermann a Department of Management, Economics and Industrial Engineering (DIG), Politecnico di Milano, P. Leonardo da Vinci 32, Milan 20133, Italy b Georgia Institute of Technology, Scheller College of Business, 800 W. Peachtree St., Atlanta, GA 30308, USA a r t a b i s c l e i n f o t r a c t Article history: A growing amount of scientific research is done in an open collaborative fashion, in projects sometimes Received 15 November 2012 referred to as “crowd science”, “citizen science”, or “networked science”. This paper seeks to gain a more Received in revised form 12 July 2013 systematic understanding of crowd science and to provide scholars with a conceptual framework and Accepted 13 July 2013 an agenda for future research. First, we briefly present three case examples that span different fields Available online 14 August 2013 of science and illustrate the heterogeneity concerning what crowd science projects do and how they are organized. Second, we identify two fundamental elements that characterize crowd science projects Keywords: – open participation and open sharing of intermediate inputs – and distinguish crowd science from Crowd science other knowledge production regimes such as innovation contests or traditional “Mertonian” science. Citizen science Crowdsourcing Third, we explore potential knowledge-related and motivational benefits that crowd science offers over Community-based production alternative organizational modes, and potential challenges it is likely to face.
    [Show full text]
  • Refereed Publications That Name
    59 Refereed Publications Since 2011 with Named Co-Authors who are NASA Citizen Scientists Compiled by Marc Kuchner February 2021 Authors in bold are citizen scientists. Aurorasaurus Semeter, J., Hunnekuhl, M., MacDonald, E., Hirsch, M., Zeller, N., Chernenkoff, A., & Wang, J. (2020). The mysterious green streaks below STEVE. AGU Advances, 1, e2020AV000183. https://doi.org/10.1029/2020AV000183 Hunnekuhl, M., & MacDonald, E. (2020). Early ground‐based work by auroral pioneer Carl Størmer on the high‐altitude detached subauroral arcs now known as “STEVE”. Space Weather, 18, e2019SW002384. https://doi.org/10.1029/2019SW002384 S. B. Mende. B. J. Harding, & C. Turner. “Subauroral Green STEVE Arcs: Evidence for Low- Energy Excitation” Geophysical Research Letters, Volume 46, Issue 24, Pages 14256-14262 (2019) http://doi.org/10.1029/2019GL086145 S. B. Mende. & C. Turner. “Color Ratios of Subauroral (STEVE) Arcs” Journal of Geophysical Research (Space Physics),Volume 124, Issue 7, Pages 5945-5955 (2019) http://doi.org/10.1029/2019JA026851 Y. Nishimura, Y., B, Gallardo-Lacourt, B., Y, Zou, E. Mishin, D.J. Knudsen, E. F. Donovan, V. Angelopoulos, R. Raybell, “Magnetospheric Signatures of STEVE: Implications for the Magnetospheric Energy Source and Interhemispheric Conjugacy” Geophysical Research Letters, Volume 46, Issue 11, Pages 5637-5644 (2019) Elizabeth A. MacDonald, Eric Donovan, Yukitoshi Nishimura, Nathan A. Case, D. Megan Gillies, Bea Gallardo-Lacourt, William E. Archer, Emma L. Spanswick, Notanee Bourassa, Martin Connors, Matthew Heavner, Brian Jackel, Burcu Kosar, David J. Knudsen, Chris Ratzlaff and Ian Schofield, “New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere” Science Advances, vol.
    [Show full text]
  • A Citation Study of Citizen Science Projects in Space Science and Astronomy
    Odenwald, S. 2018. A Citation Study of Citizen Science Projects in Space Science and Astronomy. Citizen Science: Theory and Practice, 3(2): 5, pp. 1–11. DOI: https://doi.org/10.5334/cstp.152 RESEARCH PAPER A Citation Study of Citizen Science Projects in Space Science and Astronomy Sten Odenwald This paper presents a citation study of 143 publications in refereed journals resulting from 23 citizen science (CS) projects in space science and astronomy. The projects generated a median of two papers during their average of six years of operation. The 143 papers produced 4,515 citations for a median of 10 citations/paper. These papers were compared to a uniform group of papers published in the year 2000 in refereed space science journals. The CS papers have an average annual peak citation rate that is about four times the average of the year-2000 sample. The CS citation history profiles peak within 3 years after paper publication but decline thereafter at a faster pace than the average paper published in 2000. This suggests that CS papers “burn brighter” but remain of interest for only half as long as other papers in space science and astronomy. Nevertheless, CS papers compare well with some of the most highly ranked “Top-1000” research papers of the modern era. The proportion of CS papers surpassing 200 citations is one-in-26, which is 40-fold higher than the proportion for the typical paper published in 2000. The study concludes that CS projects are not only as good as conventional non-CS research projects in generating publishable results, but can actually outperform the citation rates of the typical non-CS papers in space science and astronomy.
    [Show full text]
  • Planet Hunters, Zooniverse Evaluation Report
    Planet Hunters | Evaluation Report 2019 Planet Hunters, Zooniverse Evaluation report Authored by Dr Annaleise Depper Evaluation Officer, Public Engagement with Research Research Services, University of Oxford 1 Planet Hunters | Evaluation Report 2019 Contents 1. Key findings and highlights ..................................................................................... 3 2. Introduction ............................................................................................................ 4 3. Evaluating Planet Hunters ....................................................................................... 5 4. Exploring impacts and outcomes on citizen scientists ............................................. 6 4.1 Increased knowledge and understanding of Astronomy ..................................................................... 7 4.2 An enjoyable and interesting experience ......................................................................................... 12 4.3 Raised aspirations and interests in Astronomy ................................................................................ 13 4.4 Feeling of pride and satisfaction in helping the scientific community ............................................... 17 4.5 Benefits to individual wellbeing ...................................................................................................... 19 5. Learning from the evaluation ................................................................................ 20 5.1 Motivations for taking part in Planet Hunters
    [Show full text]
  • Abstracts Connecting to the Boston University Network
    20th Cambridge Workshop: Cool Stars, Stellar Systems, and the Sun July 29 - Aug 3, 2018 Boston / Cambridge, USA Abstracts Connecting to the Boston University Network 1. Select network ”BU Guest (unencrypted)” 2. Once connected, open a web browser and try to navigate to a website. You should be redirected to https://safeconnect.bu.edu:9443 for registration. If the page does not automatically redirect, go to bu.edu to be brought to the login page. 3. Enter the login information: Guest Username: CoolStars20 Password: CoolStars20 Click to accept the conditions then log in. ii Foreword Our story starts on January 31, 1980 when a small group of about 50 astronomers came to- gether, organized by Andrea Dupree, to discuss the results from the new high-energy satel- lites IUE and Einstein. Called “Cool Stars, Stellar Systems, and the Sun,” the meeting empha- sized the solar stellar connection and focused discussion on “several topics … in which the similarity is manifest: the structures of chromospheres and coronae, stellar activity, and the phenomena of mass loss,” according to the preface of the resulting, “Special Report of the Smithsonian Astrophysical Observatory.” We could easily have chosen the same topics for this meeting. Over the summer of 1980, the group met again in Bonas, France and then back in Cambridge in 1981. Nearly 40 years on, I am comfortable saying these workshops have evolved to be the premier conference series for cool star research. Cool Stars has been held largely biennially, alternating between North America and Europe. Over that time, the field of stellar astro- physics has been upended several times, first by results from Hubble, then ROSAT, then Keck and other large aperture ground-based adaptive optics telescopes.
    [Show full text]
  • New Candidate Extreme T Subdwarfs from the Backyard Worlds: Planet 9 Citizen Science Project
    The Astrophysical Journal, 915:120 (14pp), 2021 July 10 https://doi.org/10.3847/1538-4357/ac013c © 2021. The American Astronomical Society. All rights reserved. New Candidate Extreme T Subdwarfs from the Backyard Worlds: Planet 9 Citizen Science Project Aaron M. Meisner1 , Adam C. Schneider2,3 , Adam J. Burgasser4 , Federico Marocco5 , Michael R. Line6 , Jacqueline K. Faherty7 , J. Davy Kirkpatrick5 , Dan Caselden8 , Marc J. Kuchner9 , Christopher R. Gelino5, Jonathan Gagné10,11 , Christopher Theissen4,19 , Roman Gerasimov4 , Christian Aganze4 , Chih-chun Hsu4 , John P. Wisniewski12 , Sarah L. Casewell13 , Daniella C. Bardalez Gagliuffi7 , Sarah E. Logsdon1 , Peter R. M. Eisenhardt14, Katelyn Allers15 , John H. Debes16 , Michaela B. Allen9, Nikolaj Stevnbak Andersen17 , Sam Goodman17 , Léopold Gramaize17 , David W. Martin17, Arttu Sainio17 , and Michael C. Cushing18 The Backyard Worlds: Planet 9 Collaboration 1 NSF’s National Optical-Infrared Astronomy Research Laboratory, 950 N. Cherry Ave., Tucson, AZ 85719, USA; [email protected] 2 United States Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Rd., Flagstaff, AZ 86005, USA 3 Department of Physics and Astronomy, George Mason University, MS3F3, 4400 University Drive, Fairfax, VA 22030, USA 4 Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093, USA 5 IPAC, Mail Code 100-22, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA 6 School of Earth & Space Exploration, Arizona State University,
    [Show full text]
  • Citizen Science As a Tool for Scientific Research and Societal Benefit at NASA
    https://ntrs.nasa.gov/search.jsp?R=20180001255 2019-08-30T12:26:13+00:00Z Citizen Science as a Tool for Scientific Research and Societal Benefit at NASA Dr. Amy Kaminski NASA Headquarters, USA Australian Citizen Science Association Conference February 7, 2018 • NASA’s strategic goals include advancing knowledge and opportunity in space and improving life on Earth. • We support these goals through extensive programs in space and Earth science research accomplished via space-based missions and research funding. • NASA’s “system” is configured to conduct science using (1) in-house personnel and (2) grants, contracts, and agreements with external entities (academia, industry, international space agencies). NASA’s Citizen Science Universe + NASA-funded Disk Detective JunoCam ^ Uses NASA data/assets Planet 9: Backyard Worlds * Completed/defunct +Planet Hunters # Challenge/prize competition ^Galaxy Zoo ^Radio Galaxy Zoo +Target Asteroids ^Exoplanet Explorers +Asteroid Mappers *#Asteroid Data Hunter Challenge Citizen science Asteroid Data, Education, and Tools (CADET) projects +Stardust@home *#Cassini Rings Challenge Aurorasaurus Meteor Counter +Moon Mappers ^Student Spaceflight ^Moon Zoo Experiments Program +Mercury Mappers *#Open NASA Earth Exchange Challenges NASA S’COOL NASA/USGS Adopt-a-Pixel GLOBE/GLOBE Observer +Mars Mappers Ecological forecasting using crowdsourcing (multiple projects) *Clickworkers *#Climate Resilience Data Challenge ^Planet Four *General Aviation Study of Harmful Algal Blooms ^Planet Four: Terrains Citizen Science for Earth Systems Programs (multiple projects) Planet Four: Ridges *Astrobiology Citizen Science # * Mars Balance Mass Challenge *MAPPER Extending Astrophysics Research Capabilities: Disk Detective • WISE telescope data analysis • 28,000+ volunteers with no professional training; depth of knowledge replaced by volume of participation • Speeds completion of research – 2.5 million images reviewed since 2014 • “Super users” become Finding planetary systems part of research team – with help from 28,000 named on published new colleagues.
    [Show full text]
  • A Citizen Science Exploration of the X-Ray Transient Sky Using the Extras Science Gateway
    A Citizen Science Exploration of the X-ray Transient Sky using the EXTraS Science Gateway Daniele D'Agostinoa,∗, Duncan Law-Greenb, Mike Watsonb, Giovanni Novarac,d, Andrea Tiengoc,d,e, Stefano Sandrellid, Andrea Belfiored, Ruben Salvaterrad, Andrea De Lucad,e aNational Research Council of Italy - CNR-IMATI, Genoa, Italy bDept.of Physics & Astronomy University of Leicester, U.K. cScuola Universitaria Superiore IUSS Pavia, Italy dNational Institute for Astrophysics INAF, Milan, Italy eIstituto Nazionale di Fisica Nucleare - INFN, Italy Abstract Modern soft X-ray observatories can yield unique insights into time domain astrophysics, and a huge amount of information is stored - and largely un- exploited - in data archives. Like a treasure-hunt, the EXTraS project har- vested the hitherto unexplored temporal domain information buried in the serendipitous data collected by the European Photon Imaging Camera in- strument onboard the XMM-Newton satellite in 20 years of observations. The result is a vast catalog, describing the temporal behaviour of hundreds of thousands of X-ray sources. But the catalogue is just a starting point because it has to be, in its turn, further analysed. During the project an education activity has been defined and run in several workshops for high school students in Italy, Germany and UK. The final goal is to engage the students, and in perspective citizen scientists, to go through the whole vali- dation process: they look into the data and try to discover new sources, or to characterize already known sources. This paper describes how the EXTraS science gateway is used to accomplish these tasks and highlights the first discovery, a flaring X-ray source in the globular cluster NGC 6540.
    [Show full text]
  • Peter Pan Disks: Long-Lived Accretion Disks Around Young M Stars
    Draft version January 16, 2020 Typeset using LATEX twocolumn style in AASTeX62 Peter Pan Disks: Long-lived Accretion Disks Around Young M Stars Steven M. Silverberg,1, ∗ John P. Wisniewski,2 Marc J. Kuchner,3 Kellen D. Lawson,2 Alissa S. Bans,4 John H. Debes,5 Joseph R. Biggs,6 Milton K.D. Bosch,6 Katharina Doll,6 Hugo A. Durantini Luca,6, 7 Alexandru Enachioaie,6 Joshua Hamilton,6 Jonathan Holden,6 and Michiharu Hyogo6, 8 The Disk Detective Collaboration 1MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA 2Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019, USA 3NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 4Department of Physics, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA 5Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA 6Disk Detective Citizen Scientist 7IATE-OAC, Universidad Nacional de C´ordoba-CONICET. Laprida 854, X5000 BGR, C´ordoba, Argentina 8Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-0042, Japan Submitted to ApJ ABSTRACT WISEA J080822.18-644357.3, an M star in the Carina association, exhibits extreme infrared excess and accretion activity at an age greater than the expected accretion disk lifetime. We consider J0808 as the prototypical example of a class of M star accretion disks at ages & 20 Myr, which we call \Peter Pan" disks, since they apparently refuse to grow up. We present four new Peter Pan disk candidates identified via the Disk Detective citizen science project, coupled with Gaia astrometry.
    [Show full text]
  • What Science Could You Do Volunteers? at Goddard
    Crowdsourcing and What science could you do Citizen Science with 10,000 volunteers? at Goddard Space Flight Center We are a community using the power of citizen science and crowdsourcing to advance innovative scientific discovery and science education. Our Numbers 4 250,000 103 areas of scientific study: participants countries involved Earth science, across all citizen across all citizen astrophysics, heliophysics, science projects science projects and planetary science Aurorasaurus; aurorasaurus.org Landslide Reporter; landslides.nasa.gov Our Members Our Projects Our members run GSFC-affiliated citizen The projects listed below have started at GSFC science and crowdsourcing projects or are or have components managed at GSFC. interested in supporting or using Astrophysics crowdsourcing and citizen science at GSFC. Backyard Worlds: Planet 9 Civil servants, contractors, and those working Disk Detective closely with GSFC projects are welcome to join Earth Science our meetings. Air Quality Citizen Science Data Mining Twitter for Augmenting NASA Backyard Worlds: Planet 9; Precipitation Research and Applications MAPPPD; penguinmap.com backyardworlds.org GLOBE Observer Learn More Landslide Reporter Mapping Application for Penguin Visit our website: science.gsfc.nasa.gov/600/ Populations and Projected citizen-science/ Top: Composite image of Dynamics (MAPPPD) the United States at night Get involved with our group by subscribing to Heliophysics (NASA Earth Observatory/ NOAA NGDC) the Goddard-Crowdsci mailing list: Aurorasaurus Right: NASA GSFC citizen Air Quality Citizen Science; Radio JOVE; Disk Detective; lists.nasa.gov/mailman/listinfo/goddard- Heliophysics/Planetary Science science project data viewer aqcitizenscience.rti.org radiojove.gsfc.nasa.gov diskdetective.org portals or citizen science in crowdsci Radio JOVE action, and their URLs .
    [Show full text]
  • Citizen Science
    National Aeronautics and Space Administration CITIZEN SCIENCE Northern Lights Clouds Northern Lights Algae Blooms Planetary Surfaces Eclipses Stellar Disks Land Cover Exoplanets Landslides www.nasa.gov Love NASA Science? Join a NASA Citizen Science Project! NASA citizen science projects are collaborations Astrophysics between scientists and interested members of the • Planet Hunters TESS public. Through these collaborations, volunteers, - www.planethunters.org or “citizen scientists,” have made thousands of • Backyard Worlds: Planet 9 important scientific discoveries, including: - www.backyardworlds.org • More than half of the known comets. • Disk Detective • Hundreds of extrasolar planets. - diskdetective.org • The oldest protoplanetary disk. • Gravity Spy - gravityspy.org Along the way, citizen scientists have co-authored publications in professional scientific journals, Earth Science observed with telescopes around the world, and • Floating Forests made many lasting friendships. They have learned - floatingforests.org about climate change, interstellar dust grains, the • GLOBE surface of Mars, meteors, penguins, mosquitos, and - www.globe.gov gravitational waves, and they have helped protect • GLOBE Observer: Clouds, Land Cover, people from landslides. Mosquito Habitat Mapper and Trees - observer.globe.gov/do-globe-observer NASA is seeking new citizen scientists! Most projects require no prior knowledge, experience, • Lake Observer or special tools beyond a computer or cell phone. - www.lakeobserver.org People with advanced degrees or other relevant • Landslide Reporter training are invited. But NASA citizen science proj- - landslides.nasa.gov ects aim to teach you everything you need to know • Mapping Application for Penguin Populations as you go along—so don’t worry if you have not and Projected Dynamics (MAPPPD) studied much science in school.
    [Show full text]
  • FORMATION of the SOLAR SYSTEM Learning Objectives
    504 Chapter 14 Cosmic Samples and the Origin of the Solar System should be the parent bodies of the primitive meteorites. The great majority of the meteorites that reach Earth are primitive stones. Many of them are composed of light-colored gray silicates with some metallic grains mixed in, but there is also an important group of darker stones called carbonaceous meteorites. As their name suggests, these meteorites contain carbon, but we also find various complex organic molecules in them—chemicals based on carbon, which on Earth are the chemical building blocks of life. In addition, some of them contain chemically bound water, and many are depleted in metallic iron. The carbonaceous (or C-type) asteroids are concentrated in the outer part of the asteroid belt. Among the most useful of these meteorites have been the Allende meteorite that fell in Mexico (see Figure 14.9), the Murchison meteorite that fell in Australia (both in 1969), and the Tagish Lake meteorite that landed in a winter snowdrift on Tagish Lake, Canada, in 2000. (The fragile bits of dark material from the Tagish Lake meteorite were readily visible against the white snow, although at first they were mistaken for wolf droppings.) The Murchison meteorite (Figure 14.10) is known for the variety of organic chemicals it has yielded. Most of the carbon compounds in carbonaceous meteorites are complex, tarlike substances that defy exact analysis. Murchison also contains 16 amino acids (the building blocks of proteins), 11 of which are rare on Earth. The most remarkable thing about these organic molecules is that they include equal numbers with right-handed and left-handed molecular symmetry.
    [Show full text]