Download Assignment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Casting a Sticky Trap: SPIDERS and Their Predatory Ways
Casting a Sticky Trap: SPIDERS and Their Predatory Ways Bennett C. Moulder, ISM Research Associate and Professor Emeritus, Illinois College, Jacksonville, Illinois ating insects and other small sticky silk, capable of trapping and holding to the spot, and impales the insect with its arthropods is what spiders do for even relatively large an powerful insect prey. long chelicerae. First using her mouthparts a living. That spiders are an Damage to the orb caused by wind or strug- to cut a small slit in the tube, the spider enormously successful group of gling prey can be quickly repaired, or the then pulls the insect inside. After her meal, animals is testimony to how efficient they entire can be web taken down and replaced. the spider repairs the tear in the tube, re- Eare at catching their prey. Most insects move Many orb weavers replace their tattered web sumes her position below ground, and swiftly and, for their size, are quite powerful. with a new one every day. awaits the next victim. “For spiders to capture such prey, they have, Other spiders do not utilize webs for prey Mastophora, the bolas spider, is a mem- as a group, developed an impressive arsenal capture. Crab spiders, perfectly camouflaged ber of the family Araneidae, the typical orb of weapons and a variety of strategies. against their background, lie in wait on flow- weavers. This small spider has abandoned Except for one small family (Ul- ers or on the bark of trees to ambush unsus- the practice of orb web construction alto- oboridae), all spiders in Illinois have venom pecting insects. -
Newsletter of the Biological Survey of Canada (Terrestrial Arthropods)
Spring 1999 Vol. 18, No. 1 NEWSLETTER OF THE BIOLOGICAL SURVEY OF CANADA (TERRESTRIAL ARTHROPODS) Table of Contents General Information and Editorial Notes ............(inside front cover) News and Notes Activities at the Entomological Societies’ Meeting ...............1 Summary of the Scientific Committee Meeting.................2 EMAN National Meeting ...........................12 MacMillan Coastal Biodiversity Workshop ..................13 Workshop on Biodiversity Monitoring.....................14 Project Update: Family Keys ..........................15 Canadian Spider Diversity and Systematics ..................16 The Quiz Page..................................28 Selected Future Conferences ..........................29 Answers to Faunal Quiz.............................31 Quips and Quotes ................................32 List of Requests for Material or Information ..................33 Cooperation Offered ..............................39 List of Email Addresses.............................39 List of Addresses ................................41 Index to Taxa ..................................43 General Information The Newsletter of the Biological Survey of Canada (Terrestrial Arthropods) appears twice yearly. All material without other accreditation is prepared by the Secretariat for the Biological Survey. Editor: H.V. Danks Head, Biological Survey of Canada (Terrestrial Arthropods) Canadian Museum of Nature P.O. Box 3443, Station “D” Ottawa, Ontario K1P 6P4 TEL: 613-566-4787 FAX: 613-364-4021 E-mail: [email protected] Queries, -
Spiders and Mites
Beeston and Sheringham Commons SSSI/cSAC FAUNA: Spiders and Mites Classification : English Name Scientific Name : Authority Tetrad/ Last Common Record ARTHROPODA. ARACHNIDA (Arachnids). ARANEAE (spiders). CLUBIONIDAE: Foliage Spider. Clubonia reclusa O.P.-Cambridge, 1863 14R/B 1990 Foliage Spider. Clubonia phragmites C. L. Koch, 1843 14R/B 1990 Foliage Spider. Clubonia lutescens Westring, 1851 14R/B 1990 Foliage Spider. Clubonia subtilis L. Koch, 1867 14R/B 1990 Foliage Spider. Cheirocanthium erraticum (Walckenaer, 1802) 14R/B 1990 ZORIDAE: Ghost Spider. Zora spinimana (Sundevall, 1833) 14R/B 1990 THOMISIDAE: Crab Spider. Xysticus cristatus (Clerck, 1757) 14R/B 2015 Crab Spider. Xysticus ulmi (Hahn, 1831) 14R/B 1987 Crab Spider. Ozyptila trux (Blackwall, 1846) 14R/B 1990 Crab Spider. Ozyptila brevipes (Hahn, 1826) 14R/B 1990 PHILODROMIDAE: Running Crab Spider. Philodromus cespitum (Walckenaer, 1802) 14R/B 2006 SALTICIDAE: Jumping Spider. Neon reticulatus (Blackwall, 1853) 14R/B 1990 Jumping Spider. Pseudeuophrys lanigera (Simon, 1871) 14R/B 1991 LYCOSIDAE: Wolf Spider. Pardosa pullata (Clerck, 1757) 14R/B 1990 Wolf Spider. Pardosa prativaga (L. Koch, 1870) 14R/B 1990 Wolf Spider. Pardosa nigriceps (Thorell, 1856) 14R/B 1990 Wolf Spider. Arctosa leopardus (Sundevall, 1833) 14R/B 1990 Pirate Spider. Pirata piraticus (Clerck, 1757) 14R/B 1990 Wolf Spider. Pirata hygrophilus Thorell, 1872 14R/B 1990 Wolf Spider. Pirata latitans (Blackwall, 1841) 14R/B 1990 PISAURIDAE: Wolf Spider. Pisaura mirabilis (Clerck, 1757) 14R/BS 2014 CYBAEIDAE: Water Spider. Argyroneta aquatica (Clerck, 1757) 14R/B 1990 AGELENIDAE: Spider. Agelena labyrinthica (Clerck, 1757) 14R/B 1997 THERIDIIAE: Comb-footed Spider. Theridion sisyphium (Clerck, 1757) 14R/B 1990 Comb-footed Spider. -
Spider Biology Unit
Spider Biology Unit RET I 2000 and RET II 2002 Sally Horak Cortland Junior Senior High School Grade 7 Science Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. Spider Biology Unit Overview Grade level- 7th grade life science- heterogeneous classes Theme- The theme of this unit is to understand the connection between form and function in living things and to investigate what humans can learn from other living things. Schedule- projected time for this unit is 3 weeks Outline- *Activity- Unique spider facts *PowerPoint presentation giving a general overview of the biology of spiders with specific examples of interest *Lab- Spider observations *Cross-discipline activity #1- Spider short story *Activity- Web Spiders and Wandering spiders *Project- create a 3-D model of a spider that is anatomically correct *Project- research a specific spider and create a mini-book of information. *Activity- Spider defense pantomime *PowerPoint presentation on Spider Silk *Lab- Fiber Strength and Elasticity *Lab- Polymer Lab *Project- Spider silk challenge Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. Correlation to the NYS Intermediate Level Science Standards (Core Curriculum, Grades 5-8): General Skills- #1. Follow safety procedures in the classroom and laboratory. #2. Safely and accurately use the following measurement tools- Metric ruler, triple beam balance #3. Use appropriate units for measured or calculated values #4. Recognize and analyze patterns and trends #5. Classify objects according to an established scheme and a student-generated scheme. -
Hobo Spider, Eratigena Agrestis, Is a Fig
Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-86-08 Revised: February 2016 Hobo Spider Eratigena agrestis Ryan S. Davis Arthropod Diagnostician What You Should Know • Hobo spiders and related spiders build funnel-webs to catch prey. • In Utah, hobo spiders are frequently found indoors from August through October. • Recent scientific evidence suggests that hobo spiders do not have a necrotic bite. • The primary spider of health concern in Utah is the western black widow spider. • For more detailed information about the hobo spider, visit this page. he hobo spider, Eratigena agrestis, is a Fig. 1. Adult female hobo spider with egg sac (Ryan S. member of the funnel-web spider family Davis, Utah State University Extension). TAgelenidae (Fig. 1). Funnel-web spiders are long-legged, swift-running spiders that build funnels or tube-shaped retreats in turf, log piles, arachnologist who can examine the microscopic rock piles, and other areas around the home and characters necessary to determine the species. yard. The hobo spider is native to Europe, but was For the homeowner or non-expert, spiders with detected in the Pacific Northwest in 1936. Over banding around the legs can be eliminated as a time, the hobo spider migrated to other parts of potential hobo spider. the western United States. This species is distributed throughout northern Utah. Hobo spiders are non- Life Cycle aggressive and unlikely to bite. Their old common name, “aggressive house spider,” originated from The exact length of the hobo spider life cycle in a mis-interpretation of the species name “agrestis” Utah is not known, but it is suspected that hobos which actually means “of the field,” describing take 2 years to develop into adults. -
Common Kansas Spiders
A Pocket Guide to Common Kansas Spiders By Hank Guarisco Photos by Hank Guarisco Funded by Westar Energy Green Team, American Arachnological Society and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center i Table of Contents Introduction • 2 Arachnophobia • 3 Spider Anatomy • 4 House Spiders • 5 Hunting Spiders • 5 Venomous Spiders • 6-7 Spider Webs • 8-9 Other Arachnids • 9-12 Species accounts • 13 Texas Brown Tarantula • 14 Brown Recluse • 15 Northern Black Widow • 16 Southern & Western Black Widows • 17-18 Woodlouse Spider • 19 Truncated Cellar Spider • 20 Elongated Cellar Spider • 21 Common Cellar Spider • 22 Checkered Cobweb Weaver • 23 Quasi-social Cobweb Spider • 24 Carolina Wolf Spider • 25 Striped Wolf Spider • 26 Dotted Wolf Spider • 27 Western Lance Spider • 28 Common Nurseryweb Spider • 29 Tufted Nurseryweb Spider • 30 Giant Fishing Spider • 31 Six-spotted Fishing Spider • 32 Garden Ghost Spider Cover Photo: Cherokee Star-bellied Orbweaver ii Eastern Funnelweb Spider • 33 Eastern and Western Parson Spiders • 34 Garden Ghost Spider • 35 Bark Crab Spider • 36 Prairie Crab Spider • 37 Texas Crab Spider • 38 Black-banded Crab Spider • 39 Ridge-faced Flower Spider • 40 Striped Lynx Spider • 41 Black-banded Common and Convict Zebra Spiders • 42 Crab Spider Dimorphic Jumping Spider • 43 Bold Jumping Spider • 44 Apache Jumping Spider • 45 Prairie Jumping Spider • 46 Emerald Jumping Spider • 47 Bark Jumping Spider • 48 Puritan Pirate Spider • 49 Eastern and Four-lined Pirate Spiders • 50 Orchard Spider • 51 Castleback Orbweaver • 52 Triangulate Orbweaver • 53 Common & Cherokee Star-bellied Orbweavers • 54 Black & Yellow Garden Spider • 55 Banded Garden Spider • 56 Marbled Orbweaver • 57 Eastern Arboreal Orbweaver • 58 Western Arboreal Orbweaver • 59 Furrow Orbweaver • 60 Eastern Labyrinth Orbweaver • 61 Giant Long-jawed Orbweaver • 62 Silver Long-jawed Orbweaver • 63 Bowl and Doily Spider • 64 Filmy Dome Spider • 66 References • 67 Pocket Guides • 68-69 1 Introduction This is a guide to the most common spiders found in Kansas. -
Funnel Weaver Spiders (Funnel-Web Weavers, Grass Spiders)
Colorado Arachnids of Interest Funnel Weaver Spiders (Funnel-web weavers, Grass spiders) Class: Arachnida (Arachnids) Order: Araneae (Spiders) Family: Agelenidae (Funnel weaver Figure 1. Female grass spider on sheet web. spiders) Identification and Descriptive Features: Funnel weaver spiders are generally brownish or grayish spiders with a body typically ranging from1/3 to 2/3-inch when full grown. They have four pairs of eyes that are roughly the same size. The legs and body are hairy and legs usually have some dark banding. They are often mistaken for wolf spiders (Lycosidae family) but the size and pattern of eyes can most easily distinguish them. Like wolf spiders, the funnel weavers are very fast runners. Among the three most common genera (Agelenopsis, Hololena, Tegenaria) found in homes and around yards, Agelenopsis (Figures 1, 2 and 3) is perhaps most easily distinguished as it has long tail-like structures extending from the rear end of the body. These structures are the spider’s spinnerets, from which the silk emerges. Males of this genus have a unique and peculiarly coiled structure (embolus) on their pedipalps (Figure 3), the appendages next to the mouthparts. Hololena species often have similar appearance but lack the elongated spinnerets and male pedipalps have a normal clubbed appearance. Spiders within both genera Figure 2. Adult female of a grass spider, usually have dark longitudinal bands that run along the Agelenopsis sp. back of the cephalothorax and an elongated abdomen. Tegenaria species tend to have blunter abdomens marked with gray or black patches. Dark bands may also run along the cephalothorax, which is reddish brown with yellowish hairs in the species Tegenaria domestica (Figure 4). -
The First National Inventory of Spiders (Araneae) in Nigeria
Animal Research International (2019) 16(1): 3247 – 3254 3247 THE FIRST NATIONAL INVENTORY OF SPIDERS (ARANEAE) IN NIGERIA 1 NWANKWO, Ogonna Daniel and 2 EWUIM, Sylvanus Chima 1 Department of Entomology National Museum of Natural History, Smithsonian Institution, Washington DC, United State of America. 2 Department of Zoology, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria. Corresponding Author: Nwankwo, O. D. Department of Entomology National Museum of Natural History, Smithsonian Institution, Washington DC, United State of America. Email: [email protected] Phone: + 00 - 1 - 571 - 325 - 6082 Received: February 19 , 2019 Revised: March 15 , 2019 Accepted: March 1 9 , 2019 ABSTRACT The first inventory of Nigeria spiders was a combination of a field study carried out in Awka, south - east zone and collation of data on Nigeria spiders from experts across the globe. The sampling work in Awka was the second spider study in south - east and was done once a month for twelve months. A total of 238 species, 140 genera in 34 families were recorded from Nigeria in the present study. This is 2.4 % of the world spiders from 19 locations. No spider related research has ever taken place in the wh ole of north - west zone, while just a single species, Hersilia caudata recorded from the north - east zone. Salticidae was the most dominant family representing 35 .0 % of the total species in Nigeria. It is also the most distributed alongside Araneidae and Sp arassidae. They were found in four of the six zones of the country. Out of the 15 families that were exclusive to different zones, Nesticidae, Oxyopidae and Gnaphosidae were from Awka. -
Araneae (Spider) Photos
Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison. -
Conservation Status of New Zealand Araneae (Spiders), 2020
2021 NEW ZEALAND THREAT CLASSIFICATION SERIES 34 Conservation status of New Zealand Araneae (spiders), 2020 Phil J. Sirvid, Cor J. Vink, Brian M. Fitzgerald, Mike D. Wakelin, Jeremy Rolfe and Pascale Michel Cover: A large sheetweb sider, Cambridgea foliata – Not Threatened. Photo: Jeremy Rolfe. New Zealand Threat Classification Series is a scientific monograph series presenting publications related to the New Zealand Threat Classification System (NZTCS). Most will be lists providing NZTCS status of members of a plant or animal group (e.g. algae, birds, spiders). There are currently 23 groups, each assessed once every 5 years. From time to time the manual that defines the categories, criteria and process for the NZTCS will be reviewed. Publications in this series are considered part of the formal international scientific literature. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications. The NZTCS database can be accessed at nztcs.org.nz. For all enquiries, email [email protected]. © Copyright August 2021, New Zealand Department of Conservation ISSN 2324–1713 (web PDF) ISBN 978–1–99–115291–6 (web PDF) This report was prepared for publication by Te Rōpū Ratonga Auaha, Te Papa Atawhai/Creative Services, Department of Conservation; editing and layout by Lynette Clelland. Publication was approved by the Director, Terrestrial Ecosystems Unit, Department of Conservation, Wellington, New Zealand Published by Department of Conservation Te Papa Atawhai, PO Box 10420, Wellington 6143, New Zealand. This work is licensed under the Creative Commons Attribution 4.0 International licence. -
Indoor SPIDERS of Colorado (Dysderidae Family)
indoor SPIDERS OF Colorado DYSDERID Spiders (dysderidae Family) Dysdera crocata is a predator of sowbugs and pillbugs (“roly-polies”), which they subdue with very large fangs. Funnel Weavers YELLOWlegged sac SPIDERS In homes they are usually found in basements. (Agelenidae Family) (miturgidae Family) Funnel weavers construct dense horizontal silk mats in The yellowlegged sac spider, vegetation and in corners near ground level. Funnel weavers Cheiracanthium mildei, is one of in the genera Agelenopsis and Hololena develop outdoors but the most common spiders that breeds are often the most commonly encountered spiders in homes. in buildings. It is suspected of being They move into buildings as temperatures cool in early autumn. the household spider that is the most common cause of human bites in Funnel weavers in the genera Tegenaria and Eratigena are adapted to reproducing in buildings and are among the most Tegenaria domestica, male Colorado, but effects of the bites are common household spiders in the state. The funnel weaver mild. The yellowlegged sac spider is spiders are harmless to humans. not considered to be a dangerous species. Dysdera crocata, the “roly-poly hunter” Yellowlegged sac spider, Cheiracanthium mildei, female Photograph courtesy of Jim Kalisch of the University of Nebraska Hololena hola, a funnel weaver spider that commonly enters homes in late summer and fall “Hobo spider”, A “grass spider”, Agelenopsis sp., Eratigena agrestis, female female (left) and male (right) Bold jumper, Platycryptus sp., a jumping spider found in homes Phidippus audax cellar Spiders “False black widow”, Parasteatoda tepidariorum, WOLF Spiders Triangulate cobweb spider, Steatoda triangulosa Steatoda grossa, the American house spider (Pholcidae Family) (Lycosidae Family) a species that superficially resemble widow spiders but The cellar spiders are very long-legged Although wolf spiders breed outdoors, they occasionally enter lacks the red markings on the spiders that construct irregular sticky webs homes. -
An Approach to Spider Bites Erroneous Attribution of Dermonecrotic Lesions to Brown Recluse Or Hobo Spider Bites in Canada Robert G
CME An approach to spider bites Erroneous attribution of dermonecrotic lesions to brown recluse or hobo spider bites in Canada Robert G. Bennett, MSC, PHD Richard S. Vetter, MSC ABSTRACT OBJECTIVE To dispel prevalent myths surrounding diagnosis of dermonecrotic and associated conditions supposedly resulting from bites of brown recluse, hobo, or other spiders in Canada. SOURCES OF INFORMATION Worldwide, spider bites are regularly misdiagnosed as the etiologic agents in human dermonecrosis mainly as a result of inaccurate, erroneous, or hyperbolic popular and professional literature based on inference, circumstantial evidence, inferior clinical trials, and misunderstanding of the facts regarding spider-bite envenomation. MAIN MESSAGE A working diagnosis of “spider bite” or publishing a case history should be considered only when a spider is caught in the act of biting or otherwise reliably associated with a lesion. Accurate identifi cation of the spider could be critical for correct diagnosis and subsequent treatment. CONCLUSION Brown recluse spiders are not found in Canada. Hobo spiders have not been reliably implicated in dermonecrosis. Worldwide, spider-bite envenomation is an unlikely cause of dermonecrosis. Canadian physicians should give priority consideration to other, more likely, causes. RÉSUMÉ OBJECTIF Dissiper le mythe entourant les lésions dermonécrosantes et les conditions analogues attribuées au Canada à la piqûre d’une araignée comme la recluse brune ou la tégénaire t. campestris (hobo spider). SOURCE DE L’INFORMATION À l’échelle mondiale, des lésions dermonécrosantes chez l’humain sont régulièrement attribuées à tort à des piqûres d’araignées, à cause surtout d’articles populaires ou professionnels inexacts, erronés ou exagérés, fondés sur des conclusions, des preuves circonstancielles, des essais cliniques peu fi ables et sur une méconnaissance des faits concernant les empoisonnements causés par les araignées.