Diss V8 Press 1

Total Page:16

File Type:pdf, Size:1020Kb

Diss V8 Press 1 The Uses of Molecular Dating Analyses in Evolutionary Studies, with Examples from the Angiosperms Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Frank Kaspar Rutschmann von Zürich ZH Promotionskomitee: Prof. Dr. Elena Conti (Vorsitz) Prof. Dr. Peter Linder Dr. Torsten Eriksson Zürich 2006 Acknowledgements First of all, I would like to express my gratitude towards my supervisor, Elena Conti. The last four years would not have been as exciting and fruitful without your full support. I really appreciate your style of supervision which gave me the freedom to explore the things I was fascinated about. I am very impressed by your enthusiasm and your dedication to all sorts of biological questions, but especially by your social empathy. Your office door was always open for all kinds of questions - even beyond biology. I would also like to thank Peter Linder - it was a great pleasure to collaborate with you, and your sense of humor made the struggle with statistics and manuscripts much more fun. A great deal of laughter was also initiated by my fantastic and very patient office mates Merran Matthews, Josephine Jacksch and Gabriele Salvo, who often supplied me with mental and physical calories. But also Timo van der Niet, Sandro Wagen, Zsófia Hock and Péter Szövényi, Evelin Pfeifer, Urs Landergott, Brigitte Marazzi, Claudia Winteler, Chloé Galley, Rolf Rutishauser, Niklaus Müller, Alex Bernhard, Jakob Schneller, Burgi Liebst, Melanie Ranft, Rosemarie Sigrist, Reto Nyffeler, Daniel Heinzmann, Jürg Schönenberger, Maria von Balthazar, and many other members of the institute contributed to an enjoyable atmosphere and many cheerful discussions. The staff of the secretariat, the library, and the botanical garden made every journey outside the office a pleasure and provided an efficient working environment, especially Corinne Burlet, Claudio Brun, Barbara Seitz, Elena Benetti, Nadine Kofmehl, Elisabeth Schneeberger, and Daniel Schlagenhauf. Finally, I would like to thank my family and friends, who supported me in many different ways. Thank you so much, Corinne Furrer, Anne and Christian Rutschmann, Dieter Rutschmann, Annette and Jochen Wild, Andri Schläpfer and Linda Zehnder, Renata and Hansjörg Schlaepfer, Philip Moline and Saskia Lampert, Nikolaus Amrhein, Annemarie and Niklaus Kohler-Pfister, Frances Athanasiou, Torsten Eriksson, Stephan Lange, Karen Hilzinger, Christoph Eichenberger, Beat Seiler, Lilo Michel, Lukas and Thomas Furrer, Dominique Sirena, Corsin Müller, Florian Steiner, and Jonas Wittwer. Last but not least I owe much to my parents who have supported me in all conceivable ways. I can sincerely say that without you, this project would not have been possible. I therefore would like to dedicate this work to my mother, Margrit Rutschmann, and my late father, Peter Rutschmann. Table of Contents Publication list ......................................................................................................... 4 General introduction ............................................................................................. 5 Chapters: I. Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergence times .................... 13 II. Did Crypteroniaceae really disperse out-of-India? Molecular dating evidence from rbcL , ndh F, and rpl 16 intron sequences ........ 47 III . Calibration of molecular clocks and the biogeographic history of Crypteroniaceae: A reply to Moyle ............................................................... 85 IV . Tempo and mode of diversification in the African Penaeaceae and related taxa .................................................................................................. 93 V. Assessing calibration uncertainty in molecular dating: The assignment of fossils to alternative calibration points .............................. 137 VI. Taxon sampling effects in molecular clock dating: An example from the African Restionaceae .................................................... 187 General summary .............................................................................................. 219 Zusammenfassung ............................................................................................ 221 Lebenslauf ............................................................................................................ 225 Publication list The following publications stem from my years as a Ph.D. student at the Institute of Systematic Botany, University of Zurich, Switzerland (2002-2006). They represent ten articles, of which I have written five as a first or single author. Four papers are already published. The most recent work is listed first. Rutschmann, F., J. Schönenberger, H.P. Linder, and E. Conti. Tempo and mode of diversification in the African Penaeaceae and related taxa. In preparation. Barker N.P., P.H. Weston, and F. Rutschmann. Molecular dating of the radiation of the Proteaceae is only partially congruent with the breakup of Gondwana. In preparation. Rutschmann F., T. Eriksson, K. Abu Salim, and E. Conti. Assessing calibration uncertainty in molecular dating: The assignment of fossils to alternative calibration points. Submitted to Systematic Biology. Schlaepfer H. and F. Rutschmann. Deriving species responses from vegetation relevés: an iterative approach. Submitted to Botanica Helvetica . Schönenberger, J., E. Conti, F. Rutschmann, and R. Dahlgren. Penaeaceae in K. Kubitzki, ed. The families and genera of vascular plants. Vol. 9. Springer, Berlin. In press. Rutschmann F. 2006. Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergence times. Diversity and Distributions 12 : 35-48. Linder H.P., C. R. Hardy, and F. Rutschmann. 2005. Taxon sampling effects in molecular clock dating: An example from the African Restionaceae. Molecular Phylogenetics and Evolution 35 : 569–582. Conti E., F. Rutschmann, T. Eriksson, K. Sytsma, and D. Baum. 2004. Calibration of molecular clocks and the biogeographic history of Crypteroniaceae: A reply to Robert G. Moyle. Evolution 58 (8): 1874-1876. Rutschmann F. 2005. Bayesian molecular dating using PAML/multidivtime. A step-by-step manual, version 1.5 (July 2005). University of Zurich, Switzerland. Available at http://www.plant.ch . Rutschmann F., T. Eriksson, J. Schönenberger, and E. Conti. 2004. Did Crypteroniaceae really disperse out-of-India? Molecular dating evidence from rbc L, ndh F, and rpl 16 intron sequences. International Journal of Plant Sciences 165 (4 Suppl.): 69-83. 4 General introduction In the quest of understanding evolutionary mechanisms and processes, accurate information about the timing of specific events in the past is needed. For example, it is important to know how fast retroviruses like the human immunodeficiency virus (HIV) change their genotype, in order to design new drugs or vaccines that will work also for future strains (Korber et al. , 2000). Or, to mention another fascinating example, it is of general interest - even beyond the life sciences - to know when the first humans started to diverge from the chimpanzees (between 6.3 and 5.4 million years ago; Patterson et al. , 2006). Until forty years ago, information about the timing of past evolutionary events was only available in the form of fossils. Fossils are usually dated based on age estimates of the stratigraphic layer in which they are found, and they can be assigned to modern taxa by comparing the morphological characters preserved in the fossil with the traits of extant species (Hennig, 1969; Doyle and Donoghue, 1993). However, most organisms that once populated our planet have not been preserved in the fossil record, or their fossils have not been detected so far (Darwin, 1859). This implies that for most organisms, no direct information about their phylogenetic age is available. In 1965, Zuckerkandl and Pauling postulated that the amount of difference between the DNA molecules of two species is a function of the time since their evolutionary separation. This was shown by comparing protein sequences (hemoglobins) from different species and further comparing amino acid substitution rates with ages estimated from fossils. Based on these early findings, standard techniques were developed to infer time information from molecular (DNA or protein) distances among species, giving origin, over time, to a range of different molecular dating methods (Magallón, 2004; Welch and Bromham, 2005; Penny, 2005). In general, a molecular dating study begins with the reconstruction of the phylogenetic relationships among selected taxa. Then, specialized dating methods are used to transform the phylogenetic tree into an ultrametric tree. Whereas branch lengths in the phylogram represent the number of absolute molecular substitutions, they express relative time of lineage persistence in the ultrametric tree. The transformation of relative into absolute time requires some type of calibration, for which external time information – either stemming from fossils or from dated paleogeologic events - is assigned to at least one node of the phylogeny (Sanderson, 1998). The results of such a molecular dating analysis are estimates of divergence times for every lineage, summarized in a chronogram. 5 Under the assumption of a strict molecular clock, all branches of a phylogenetic tree evolve at the same, global substitution rate, which makes the second step, the reconstruction of an ultrametric
Recommended publications
  • Their Botany, Essential Oils and Uses 6.86 MB
    MELALEUCAS THEIR BOTANY, ESSENTIAL OILS AND USES Joseph J. Brophy, Lyndley A. Craven and John C. Doran MELALEUCAS THEIR BOTANY, ESSENTIAL OILS AND USES Joseph J. Brophy School of Chemistry, University of New South Wales Lyndley A. Craven Australian National Herbarium, CSIRO Plant Industry John C. Doran Australian Tree Seed Centre, CSIRO Plant Industry 2013 The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia's international development cooperation program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and developing-country researchers in areas where Australia has special research competence. It also administers Australia's contribution to the International Agricultural Research Centres. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by ACIAR. ACIAR MONOGRAPH SERIES This series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research and development objectives. The series is distributed internationally, with an emphasis on developing countries. © Australian Centre for International Agricultural Research (ACIAR) 2013 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from ACIAR, GPO Box 1571, Canberra ACT 2601, Australia, [email protected] Brophy J.J., Craven L.A. and Doran J.C. 2013. Melaleucas: their botany, essential oils and uses. ACIAR Monograph No. 156. Australian Centre for International Agricultural Research: Canberra.
    [Show full text]
  • Systematics and Relationships of Tryssophyton (Melastomataceae
    A peer-reviewed open-access journal PhytoKeys 136: 1–21 (2019)Systematics and relationships of Tryssophyton (Melastomataceae) 1 doi: 10.3897/phytokeys.136.38558 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Systematics and relationships of Tryssophyton (Melastomataceae), with a second species from the Pakaraima Mountains of Guyana Kenneth J. Wurdack1, Fabián A. Michelangeli2 1 Department of Botany, MRC-166 National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA 2 The New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458, USA Corresponding author: Kenneth J. Wurdack ([email protected]) Academic editor: Ricardo Kriebel | Received 25 July 2019 | Accepted 30 October 2019 | Published 10 December 2019 Citation: Wurdack KJ, Michelangeli FA (2019) Systematics and relationships of Tryssophyton (Melastomataceae), with a second species from the Pakaraima Mountains of Guyana. PhytoKeys 136: 1–21. https://doi.org/10.3897/ phytokeys.136.38558 Abstract The systematics of Tryssophyton, herbs endemic to the Pakaraima Mountains of western Guyana, is re- viewed and Tryssophyton quadrifolius K.Wurdack & Michelang., sp. nov. from the summit of Kamakusa Mountain is described as the second species in the genus. The new species is distinguished from its closest relative, Tryssophyton merumense, by striking vegetative differences, including number of leaves per stem and leaf architecture. A phylogenetic analysis of sequence data from three plastid loci and Melastomata- ceae-wide taxon sampling is presented. The two species of Tryssophyton are recovered as monophyletic and associated with mostly Old World tribe Sonerileae. Fruit, seed and leaf morphology are described for the first time, biogeography is discussed and both species are illustrated.
    [Show full text]
  • REHABILITATION of ALIEN INVADED RIPARIAN ZONES and CATCHMENTS USING INDIGENOUS TREES: an ASSESSMENT of INDIGENOUS TREE WATER-USE Volume 1: Research Report
    REHABILITATION OF ALIEN INVADED RIPARIAN ZONES AND CATCHMENTS USING INDIGENOUS TREES: AN ASSESSMENT OF INDIGENOUS TREE WATER-USE Volume 1: Research Report Report to the WATER RESEARCH COMMISSION and DEPARTMENT OF ENVIRONMENTAL AFFAIRS by C.S. Everson (Editor)a,b,c With Contributions by: Scott-Shaw B.C, Everson C.S, Geldenhuys C.J, Starke, A, Atsame-Edda A, Schutte S, R, Mupemba Mwamba aDepartment of Plant Production and Soil Science, University of Pretoria bSchool of Agriculture, Earth & Environmental Sciences, CWRR, University of KwaZulu-Natal cSAEON, Grasslands-Forests, Wetlands Node, Pietermaritzburg WRC Report No. 2081/1/16 ISBN 978-1-4312-0828-9 August 2016 Obtainable from Water Research Commission Private Bag X03 Gezina, 0031 [email protected] or download from www.wrc.org.za DISCLAIMER This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC nor does mention of trade names or commercial products constitute endorsement or recommendation for use. © Water Research Commission Rehabilitation of Alien Invaded Riparian Zones and Catchments Using VOLUME 1 Indigenous Trees: An Assessment of Indigenous Tree Water-use EXECUTIVE SUMMARY water-use research is based on forest hydrology REPORT STRUCTURE and has focused on exotic tree species and their impacts on streamflow. In order to support the Government’s rural tree programmes, there is a This report is organized in two volumes: need to expand current research to include the water-use of indigenous trees used in forest Volume 1 (Research Report) outlines innovative expansion, the rehabilitation of degraded lands approaches to the rehabilitation of invaded and the restoration of riparian zones.
    [Show full text]
  • Summary: Monitoring for Sustainable Indigenous Forest
    MONITORING FOR SUSTAINABLE INDIGENOUS FOREST MANAGEMENT IN THE GARDEN ROUTE NATIONAL PARK Knysna 2014 ii CONTENTS Page 1 INTRODUCTION 1 2 FOREST DYNAMICS MONITORING 2 2.1 Diepwalle Research Areas 2 2.2 Tsitsikamma strip plots 3 2.3 Permanent Sample Plots (PSPs) in nature reserves 3 2.4 National system of forest plots 3 3 FOREST DISTURBANCE AND RECOVERY 4 3.1 Gap dynamics research 5 3.2 Storms River big tree 5 3.3 Photo-monitoring of burnt forest 6 3.4 Koomansbos fire gap 7 3.5 Forest establishment 7 3.6 Forest succession on a burnt forest margin 7 4 UTILISATION OF FOREST PRODUCTS 8 4.1 Timber utilization 8 Permanent sample plots (PSPs) 9 Post-harvesting audit 11 4.2 Ferns 12 4.3 Bulbine 13 4.4 Bark 13 5 PLANT SPECIES OF CONSERVATION CONCERN 14 6 BLACKWOOD 15 6.1 Incidence of spread monitoring 15 6.2 Success of control action monitoring 16 6.3 Harkerville blackwood plot 16 iii 7 FAUNA 16 7.1 Antelope population monitoring 16 7.2 Rare mammal monitoring 16 7.3 Crowned eagle monitoring 17 7.4 The Knysna elephants 18 8 CULTURAL HERITAGE RESOURCE MANAGEMENT 19 9 SOCIAL MONITORING 19 9.1 Broad Based Black Economic Empowerment 19 9.2 Employment Equity 19 9.3 People and Conservation Park Based Education and Youth Development Programmes 20 9.4 Expanded Public Works Programmes (EPWP’s) 20 10 WASTE DISPOSAL 20 10.1 Hazardous waste 20 10.2 Household waste 21 11 CHEMICAL USAGE 21 12 COSTS, PRODUCTIVITY AND EFFICIENCY OF FOREST MANAGEMENT 21 13 CONCLUSION 22 APPENDIX 1: HARVEST TREE SELECTION CRITERIA APPLIED IN THE INDIGENOUS FORESTS OF THE GARDEN ROUTE NATIONAL PARK 23 APPENDIX 2: TREE LIST FOR THE INDIGENOUS FORESTS OF THE GARDEN ROUTE 24 1 1 INTRODUCTION The Garden Route National Park (GRNP) consists of a mosaic of diverse terrestrial, freshwater, estuarine and marine ecosystems, landscapes, and cultural heritage.
    [Show full text]
  • MOLECULAR DATING EVIDENCE from Rbcl, Ndhf, and Rpl16 INTRON SEQUENCES
    Int. J. Plant Sci. 165(4 Suppl.):S69–S83. 2004. Ó 2004 by The University of Chicago. All rights reserved. 1058-5893/2004/1650S4-0006$15.00 DID CRYPTERONIACEAE REALLY DISPERSE OUT OF INDIA? MOLECULAR DATING EVIDENCE FROM rbcL, ndhF, AND rpl16 INTRON SEQUENCES Frank Rutschmann,1,* Torsten Eriksson,y Ju¨rg Scho¨nenberger,z and Elena Conti* *Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland; yBergius Foundation, Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden; and zDepartment of Botany, Stockholm University, Lilla Frescativa¨gen 5, SE-106 91 Stockholm, Sweden Biogeographical and paleontological studies indicated that some ancient Gondwanan taxa have been carried by the rafting Indian plate from Gondwana to Asia. During this journey, the Indian island experienced dramatic latitudinal and climatic changes that caused massive extinctions in its biota. However, some taxa survived these conditions and dispersed ‘‘out of India’’ into South and Southeast Asia, after India collided with the Asian continent in the Early Tertiary. To test this hypothesis, independent estimates for lineage ages are needed. A published rbcL tree supported the sister group relationship between the South and Southeast Asian Crypteroniaceae (comprising Crypteronia, Axinandra, and Dactylocladus) and a clade formed by the African Oliniaceae, Penaeaceae, and Rhynchocalycaceae and the Central and South American Alzateaceae. Molecular dating estimates indicated that Crypteroniaceae split from their West Gondwanan sister clade in the Early to Middle Cretaceous and reached Asia by rafting on the Indian plate. Here we present molecular evidence from additional chloroplast DNA regions and more taxa to test the validity of the out-of-India hypothesis for Crypteroniaceae.
    [Show full text]
  • Melaleuca (Myrtaceae) of Western Australia: Five New Species, Three New Combinations, One New Name and a New State Record
    L.A.Nuytsia Craven, 20: 27–36 B.J. Lepschi (2010) & K.J. Cowley, Melaleuca (Myrtaceae) of Western Australia 27 Melaleuca (Myrtaceae) of Western Australia: five new species, three new combinations, one new name and a new state record Lyn A. Craven1, Brendan J. Lepschi and Kirsten J. Cowley Australian National Herbarium, CPBR, CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601 1 Corresponding author. Email: [email protected] Abstract Craven, L.A., Lepschi, B.J. & Cowley, K.J. Melaleuca (Myrtaceae) of Western Australia: five new species, three new combinations, one new name and a new state record. Nuytsia 20: 27–36(2010). Recent work has resulted in the recognition of five new species of Melaleuca from the south-west of Western Australia: M. genialis Lepschi, M. ochroma Lepschi, M. protrusa Craven & Lepschi, M. sophisma Lepschi, and M. ulicoides Craven & Lepschi. Reassessment of the taxonomic status of three previously described taxa shows that specific rank is warranted and the following three new combinations are made: M. acutifolia (Benth.) Craven & Lepschi, M. calcicola (Barlow ex Craven) Craven & Lepschi, and M. spectabilis (Barlow ex Craven) Craven & Lepschi. Melaleuca citrina Turcz. is a later homonym of M. citrina (Curtis) Dum.Cours. and the replacement name M. lutea Craven is provided. Melaleuca viminalis (Sol. ex Gaertn.) Byrnes, hitherto known only from eastern Australia has recently been collected from the Kimberley region of northern Western Australia. Introduction Melaleuca L. is one of the larger genera of Myrtaceae and, as it is currently circumscribed, contains about 280 species. The genus is predominantly Australian with indigenous taxa also occurring in Malesia, New Caledonia, Lord Howe Island and Tasmania.
    [Show full text]
  • Charles Darwin, Kadji Kadji, Karara, Lochada Reserves WA
    BUSH BLITZ SPECIES DISCOVERY PROGRAM Charles Darwin Reserve WA 3–9 May · 14–25 September · 7–18 December 2009 Kadji Kadji, Karara, Lochada Reserves WA 14–25 September · 7–18 December 2009 What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz 2 multi-million dollar Summary 3 partnership between the Abbreviations 3 Australian Government, Introduction 4 BHP Billiton, and Earthwatch Reserves Overview 5 Australia to document plants Methods 8 and animals in selected properties across Australia’s Results 10 National Reserve System. Discussion 12 Appendix A: Species Lists 15 Fauna 16 This innovative partnership Vertebrates 16 harnesses the expertise of many Invertebrates 25 of Australia’s top scientists from Flora 48 museums, herbaria, universities, Appendix B: Rare and Threatened Species 79 and other institutions and Fauna 80 organisations across the country. Flora 81 Appendix C: Exotic and Pest Species 83 Fauna 84 Flora 85 2 Bush Blitz survey report Summary Bush Blitz fieldwork was conducted at four National Reserve System properties in the Western Australian Avon Wheatbelt and Yalgoo Bioregions during 2009. This included a pilot study Abbreviations at Charles Darwin Reserve and a longer study of Charles Darwin, Kadji Kadji, Lochada and Karara reserves. Results include 651 species added to those known across the reserves and the discovery of 35 putative species new to science. The majority of ANHAT these new species occur within the heteroptera (plant bugs) and Australian Natural Heritage Assessment lepidoptera (butterflies and moths) taxonomic groups. Tool Malleefowl (Leipoa ocellata), listed as vulnerable under the EPBC Act federal Environmental Protection and Biodiversity Conservation Environment Protection and Biodiversity Act 1999 (EPBC Act), were observed on Charles Darwin Reserve.
    [Show full text]
  • Jane Gibbs BA Gdiped Gdippsych
    Asthma and Plants: Chemotaxonomic Relationships and Patterns of Asthma Incidence and Respiratory Symptoms, in Urban Coastal Versus Rural Highland Areas in South-East Queensland, Australia, with Special Reference to the Family Myrtaceae Author Gibbs, Jane Published 2007 Thesis Type Thesis (PhD Doctorate) School School of Public Health DOI https://doi.org/10.25904/1912/3128 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/366726 Griffith Research Online https://research-repository.griffith.edu.au ASTHMA AND PLANTS: CHEMOTAXONOMIC RELATIONSHIPS AND PATTERNS OF ASTHMA INCIDENCE AND RESPIRATORY SYMPTOMS, IN URBAN COASTAL VERSUS RURAL HIGHLAND AREAS IN SOUTH-EAST QUEENSLAND, AUSTRALIA, WITH SPECIAL REFERENCE TO THE FAMILY MYRTACEAE. Jane Gibbs BA GDipEd GDipPsych School of Public Health Faculty of Health Science Griffith University Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy on 22 December 2006 ii STATEMENT OF ORIGINALITY This work has not been previously submitted for a degree or diploma in a university. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person except where due reference is made in the thesis itself. Jane Gibbs iii Dedication To my daughter Anna, and all the children who live with asthma, for providing the reason to begin this task, and to her grandmother, and my mother, Marie Gibbs (1926-1995), for providing the persistence required to finish it. iv Abstract This thesis represents an exploratory and iterative study into the relationships of Australian native plants from the family Myrtaceae, with respiratory symptoms, specifically asthma.
    [Show full text]
  • Albany Thicket Biome
    % S % 19 (2006) Albany Thicket Biome 10 David B. Hoare, Ladislav Mucina, Michael C. Rutherford, Jan H.J. Vlok, Doug I.W. Euston-Brown, Anthony R. Palmer, Leslie W. Powrie, Richard G. Lechmere-Oertel, Şerban M. Procheş, Anthony P. Dold and Robert A. Ward Table of Contents 1 Introduction: Delimitation and Global Perspective 542 2 Major Vegetation Patterns 544 3 Ecology: Climate, Geology, Soils and Natural Processes 544 3.1 Climate 544 3.2 Geology and Soils 545 3.3 Natural Processes 546 4 Origins and Biogeography 547 4.1 Origins of the Albany Thicket Biome 547 4.2 Biogeography 548 5 Land Use History 548 6 Current Status, Threats and Actions 549 7 Further Research 550 8 Descriptions of Vegetation Units 550 9 Credits 565 10 References 565 List of Vegetation Units AT 1 Southern Cape Valley Thicket 550 AT 2 Gamka Thicket 551 AT 3 Groot Thicket 552 AT 4 Gamtoos Thicket 553 AT 5 Sundays Noorsveld 555 AT 6 Sundays Thicket 556 AT 7 Coega Bontveld 557 AT 8 Kowie Thicket 558 AT 9 Albany Coastal Belt 559 AT 10 Great Fish Noorsveld 560 AT 11 Great Fish Thicket 561 AT 12 Buffels Thicket 562 AT 13 Eastern Cape Escarpment Thicket 563 AT 14 Camdebo Escarpment Thicket 563 Figure 10.1 AT 8 Kowie Thicket: Kowie River meandering in the Waters Meeting Nature Reserve near Bathurst (Eastern Cape), surrounded by dense thickets dominated by succulent Euphorbia trees (on steep slopes and subkrantz positions) and by dry-forest habitats housing patches of FOz 6 Southern Coastal Forest lower down close to the river.
    [Show full text]
  • Diagnostic 1 Location
    Flora and fauna assessment for the Calingiri to Wubin study areas Prepared for Muchea to Wubin Integrated Project Team (Main Roads WA, Jacobs and Arup) Appendix 6 Key to determining presence of the EPBC Act listed TEC Eucalypt woodlands of the Western Australian Wheatbelt Description based on Department of the Environment (2015a): The Eucalypt woodlands of the Western Australian Wheatbelt TEC is composed of eucalypt woodlands dominated by a complex mosaic of eucalypt species with a single tree or mallet form over an understorey that is highly variable in structure and composition. A mallet habit refers to a eucalypt with a single, slender trunk and steep- angled branches that give rise to a dense crown. Many eucalypt species are considered iconic within the Wheatbelt landscape, for example, Eucalyptus salmonophloia (salmon gum), E. loxophleba subsp. loxophleba (York gum), Eucalyptus rudis subsp. rudis, E. salubris (gimlet), E. wandoo (wandoo) and the mallet group of species. Associated species may include Acacia acuminata (jam), Corymbia calophylla (marri) and Eucalyptus marginata (jarrah). The understorey structures are often bare to sparse, herbaceous, shrub of heath, chenopod-dominated, thickets (Melaleuca spp.) and saline areas with Tecticornia spp. The main diagnostic features include location, minimum crown cover of the tree canopy of 10% in a mature woodland, presence of key species and a minimum condition according to scale of Keighery (1994) that depends on size of a patch, weed cover and presence of mature trees. A patch is defined as a discrete and mostly continuous area of the ecological community and may include small-scale variations and disturbances, such as tracks or breaks, watercourses/drainage lines or localised changes in vegetation that do not act as a permanent barrier or significantly alter its overall functionality.
    [Show full text]
  • Molecular Phylogenetics of Melastomataceae and Memecylaceae: Implications for Character Evolution1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Access LMU American Journal of Botany 88(3): 486±498. 2001. MOLECULAR PHYLOGENETICS OF MELASTOMATACEAE AND MEMECYLACEAE: IMPLICATIONS FOR CHARACTER EVOLUTION1 G. CLAUSING2,4 AND S. S. RENNER3,4 2Institut fuÈr Spezielle Botanik, UniversitaÈt Mainz, D-55099 Mainz, Germany; 3Department of Biology, University of Missouri-St. Louis, 8001 Natural Bridge Rd., St. Louis, Missouri 63121 USA; and The Missouri Botanical Garden, St. Louis, Missouri 63166 USA Melastomataceae are among the most abundant and diversi®ed groups of plants throughout the tropics, but their intrafamily rela- tionships and morphological evolution are poorly understood. Here we report the results of parsimony and maximum likelihood (ML) analyses of cpDNA sequences from the rbcL and ndhF genes and the rpl16 intron, generated for eight outgroups (Crypteroniaceae, Alzateaceae, Rhynchocalycaceae, Oliniaceae, Penaeaceae, Myrtaceae, and Onagraceae) and 54 species of melastomes. The sample represents 42 of the family's currently recognized ;150 genera, the 13 traditional tribes, and the three subfamilies, Astronioideae, Melastomatoideae, and Memecyloideae (5 Memecylaceae DC.). Parsimony and ML yield congruent topologies that place Memecy- laceae as sister to Melastomataceae. Pternandra, a Southeast Asian genus of 15 species of which ®ve were sampled, is the ®rst- branching Melastomataceae. This placement has low bootstrap support (72%), but agrees with morphological treatments that placed Pternandra in Melastomatacaeae because of its acrodromal leaf venation, usually ranked as a tribe or subfamily. The interxylary phloem islands found in Memecylaceae and Pternandra, but not most other Melastomataceae, likely evolved in parallel because Pternandra resembles Melastomataceae in its other wood characters.
    [Show full text]
  • TC MF Working Document
    Tokai Cecilia Management Framework: Preliminary guidelines for the Replanting of trees The replanting of trees suitable for the timber industry should be compared with the planting of trees for recreational activities requiring shade. The section on recreational activities will inform what type of trees would be suitable for relevant recreational uses. As for the timber industry, the general view is that relatively non-invasive commercial trees, most probably Pinus radiata, may be planted and managed according to strict environmental guidelines. These are plants with the proven potential of becoming invasive, but which nevertheless have certain beneficial properties that warrant their continued presence in certain circumstances. CARA makes provision for Category 2 plants to be retained in special areas demarcated for that purpose, but those occurring outside demarcated areas have to be controlled. The exception is that Category 2 plants may also be retained or cultivated in biological control reserves, where the plants will serve as host plants for the breeding of biological control agents. The growing of Category 2 plants in a demarcated area qualifies as a water use, and is subject to the requirements of section 21 of the National Water Act, 1998 (Act No. 36 of 1998). (Pinus canariensis, P. elliottii, P. halepensis, P. patula, P. pinaster, P. radiata, P. roxburghii and P. taeda.) The following principles thus have to be met when considering replanting: Purpose: For what purpose are the trees required? Site selection: The conservation priority on a microscale has to be compared with the suitability of the site for the intended purpose. Preference will be given to replanting of indigenous trees i.e.
    [Show full text]