The Uses of Molecular Dating Analyses in Evolutionary Studies, with Examples from the Angiosperms

Dissertation

zur

Erlangung der naturwissenschaftlichen Doktorwürde

(Dr. sc. nat.)

vorgelegt der

Mathematisch-naturwissenschaftlichen Fakultät

der

Universität Zürich

von

Frank Kaspar Rutschmann

von

Zürich ZH

Promotionskomitee:

Prof. Dr. Elena Conti (Vorsitz) Prof. Dr. Peter Linder Dr. Torsten Eriksson

Zürich 2006 Acknowledgements

Firstofall,Iwouldliketoexpressmygratitudetowardsmysupervisor,ElenaConti. Thelastfouryearswouldnothavebeenasexcitingandfruitfulwithoutyourfullsupport.Ireally appreciateyourstyleofsupervisionwhichgavemethefreedomtoexplorethethingsIwas fascinatedabout.Iamveryimpressedbyyourenthusiasmandyourdedicationtoallsortsof biologicalquestions,butespeciallybyyoursocialempathy.Yourofficedoorwasalwaysopen forallkindsofquestionsevenbeyondbiology. IwouldalsoliketothankPeterLinderitwasagreatpleasuretocollaboratewithyou, andyoursenseofhumormadethestrugglewithstatisticsandmanuscriptsmuchmorefun. Agreatdealoflaughterwasalsoinitiatedbymyfantasticandverypatientoffice matesMerranMatthews,JosephineJackschandGabrieleSalvo,whooftensuppliedmewith mentalandphysicalcalories.ButalsoTimovanderNiet,SandroWagen,ZsófiaHockandPéter Szövényi,EvelinPfeifer,UrsLandergott,BrigitteMarazzi,ClaudiaWinteler,ChloéGalley,Rolf Rutishauser,NiklausMüller,AlexBernhard,JakobSchneller,BurgiLiebst,MelanieRanft, RosemarieSigrist,RetoNyffeler,DanielHeinzmann,JürgSchönenberger,MariavonBalthazar, andmanyothermembersoftheinstitutecontributedtoanenjoyableatmosphereandmany cheerfuldiscussions.Thestaffofthesecretariat,thelibrary,andthebotanicalgardenmadeevery journeyoutsidetheofficeapleasureandprovidedanefficientworkingenvironment,especially CorinneBurlet,ClaudioBrun,BarbaraSeitz,ElenaBenetti,NadineKofmehl,Elisabeth Schneeberger,andDanielSchlagenhauf. Finally,Iwouldliketothankmyfamilyandfriends,whosupportedmeinmany differentways.Thankyousomuch,CorinneFurrer,AnneandChristianRutschmann,Dieter Rutschmann,AnnetteandJochenWild,AndriSchläpferandLindaZehnder,Renataand HansjörgSchlaepfer,PhilipMolineandSaskiaLampert,NikolausAmrhein,Annemarieand NiklausKohlerPfister,FrancesAthanasiou,TorstenEriksson,StephanLange,KarenHilzinger, ChristophEichenberger,BeatSeiler,LiloMichel,LukasandThomasFurrer,DominiqueSirena, CorsinMüller,FlorianSteiner,andJonasWittwer. LastbutnotleastIowemuchtomyparentswhohavesupportedmeinallconceivable ways.Icansincerelysaythatwithoutyou,thisprojectwouldnothavebeenpossible.Itherefore wouldliketodedicatethisworktomymother,MargritRutschmann,andmylatefather,Peter Rutschmann.

Table of Contents

Publication list ...... 4

General introduction ...... 5

Chapters:

I. Moleculardatingofphylogenetictrees: Abriefreviewofcurrentmethodsthatestimatedivergencetimes...... 13

II. DidCrypteroniaceaereallydisperseoutofIndia? Moleculardatingevidencefrom rbcL , ndh F,and rpl 16intronsequences...... 47

III . Calibrationofmolecularclocksandthebiogeographichistory ofCrypteroniaceae:AreplytoMoyle...... 85

IV . TempoandmodeofdiversificationintheAfrican andrelatedtaxa...... 93

V. Assessingcalibrationuncertaintyinmoleculardating: Theassignmentoffossilstoalternativecalibrationpoints...... 137

VI. Taxonsamplingeffectsinmolecularclockdating: AnexamplefromtheAfricanRestionaceae...... 187

General summary ...... 219

Zusammenfassung ...... 221

Lebenslauf ...... 225

Publication list

ThefollowingpublicationsstemfrommyyearsasaPh.D.studentattheInstituteofSystematic Botany,UniversityofZurich,Switzerland(20022006).Theyrepresenttenarticles,ofwhichI havewrittenfiveasafirstorsingleauthor.Fourpapersarealreadypublished.Themostrecent workislistedfirst. Rutschmann,F.,J.Schönenberger,H.P.Linder,andE.Conti.Tempoandmodeofdiversification intheAfricanPenaeaceaeandrelatedtaxa. In preparation. BarkerN.P.,P.H.Weston,andF.Rutschmann.Moleculardatingoftheradiationofthe ProteaceaeisonlypartiallycongruentwiththebreakupofGondwana. In preparation. RutschmannF.,T.Eriksson,K.AbuSalim,andE.Conti.Assessingcalibrationuncertaintyin moleculardating:Theassignmentoffossilstoalternativecalibrationpoints. Submitted to Systematic Biology. SchlaepferH.andF.Rutschmann.Derivingspeciesresponsesfromvegetationrelevés:an iterativeapproach. Submitted to Botanica Helvetica . Schönenberger,J.,E.Conti,F.Rutschmann,andR.Dahlgren.Penaeaceae in K.Kubitzki,ed. Thefamiliesandgeneraofvascular.Vol.9.Springer,Berlin.In press. RutschmannF.2006.Moleculardatingofphylogenetictrees:Abriefreviewofcurrentmethods thatestimatedivergencetimes. Diversity and Distributions 12 :3548. LinderH.P.,C.R.Hardy,andF.Rutschmann.2005.Taxonsamplingeffectsinmolecularclock dating:AnexamplefromtheAfricanRestionaceae. Molecular Phylogenetics and Evolution 35 : 569–582. ContiE.,F.Rutschmann,T.Eriksson,K.Sytsma,andD.Baum.2004.Calibrationofmolecular clocksandthebiogeographichistoryofCrypteroniaceae:AreplytoRobertG.Moyle. Evolution 58 (8):18741876. RutschmannF.2005.BayesianmoleculardatingusingPAML/multidivtime.Astepbystep manual,version1.5(July2005).UniversityofZurich,Switzerland.Availableat http://www.plant.ch . RutschmannF.,T.Eriksson,J.Schönenberger,andE.Conti.2004.DidCrypteroniaceaereally disperseoutofIndia?Moleculardatingevidencefrom rbc L, ndh F,and rpl 16intronsequences. International Journal of Sciences 165 (4Suppl.):6983.

4 General introduction

Inthequestofunderstandingevolutionarymechanismsandprocesses,accurate informationaboutthetimingofspecificeventsinthepastisneeded.Forexample,itisimportant toknowhowfastretroviruseslikethehumanimmunodeficiencyvirus(HIV)changetheir genotype,inordertodesignnewdrugsorvaccinesthatwillworkalsoforfuturestrains(Korber et al. ,2000).Or,tomentionanotherfascinatingexample,itisofgeneralinterestevenbeyond thelifesciencestoknowwhenthefirsthumansstartedtodivergefromthechimpanzees (between6.3and5.4millionyearsago;Patterson et al. ,2006). Untilfortyyearsago,informationaboutthetimingofpastevolutionaryeventswasonly availableintheformoffossils.Fossilsareusuallydatedbasedonageestimatesofthe stratigraphiclayerinwhichtheyarefound,andtheycanbeassignedtomoderntaxaby comparingthemorphologicalcharacterspreservedinthefossilwiththetraitsofextantspecies (Hennig,1969;DoyleandDonoghue,1993).However,mostorganismsthatoncepopulatedour planethavenotbeenpreservedinthefossilrecord,ortheirfossilshavenotbeendetectedsofar (Darwin,1859).Thisimpliesthatformostorganisms,nodirectinformationabouttheir phylogeneticageisavailable. In1965,ZuckerkandlandPaulingpostulatedthattheamountofdifferencebetweenthe DNAmoleculesoftwospeciesisafunctionofthetimesincetheirevolutionaryseparation.This wasshownbycomparingproteinsequences(hemoglobins)fromdifferentspeciesandfurther comparingaminoacidsubstitutionrateswithagesestimatedfromfossils.Basedontheseearly findings,standardtechniquesweredevelopedtoinfertimeinformationfrommolecular(DNAor protein)distancesamongspecies,givingorigin,overtime,toarangeofdifferentmolecular datingmethods(Magallón,2004;WelchandBromham,2005;Penny,2005). Ingeneral,amoleculardatingstudybeginswiththereconstructionofthephylogenetic relationshipsamongselectedtaxa.Then,specializeddatingmethodsareusedtotransformthe phylogenetictreeintoanultrametrictree.Whereasbranchlengthsinthephylogramrepresentthe numberofabsolutemolecularsubstitutions,theyexpressrelativetimeoflineagepersistencein theultrametrictree.Thetransformationofrelativeintoabsolutetimerequiressometypeof calibration,forwhichexternaltimeinformation–eitherstemmingfromfossilsorfromdated paleogeologiceventsisassignedtoatleastonenodeofthephylogeny(Sanderson,1998).The resultsofsuchamoleculardatinganalysisareestimatesofdivergencetimesforeverylineage, summarizedinachronogram.

5 Undertheassumptionofastrictmolecularclock,allbranchesofaphylogenetictree evolveatthesame,globalsubstitutionrate,whichmakesthesecondstep,thereconstructionofan ultrametrictree,relativelyeasy(Felsenstein,1981).However,itisknownthatvariationinrates ofnucleotidesubstitution,bothalongalineageandbetweendifferentlineages,ispervasive (Britten,1986;Gillespie,1986),especiallyifsequencesofdistantlyrelatedspeciesareanalyzed. Therefore,new“relaxedclock”moleculardatingmethodshavebeendevelopedduringthelast tenyears,whichtrytomodelratevariationamonglineages(e.g.,PenalizedLikelihood, Sanderson2002;Bayesiandatingwithmultidivtime,ThorneandKishino,2002;relaxedclock modelinBEAST,Drummondetal.2006).Thisisamuchmoredifficulttask,because substitutionratesandtimehavetobedisentangledforeverylineage.Furthermore,suchmodern datingmethodsalsoallowtheincorporationofmultiplecalibrationpoints(ifavailable),and provideerrorestimatesforthecomputedtimesandrates.Inthefirstchapterofthepresentthesis (Rutschmann,2006),Ireviewthemostcommonmoleculardatingmethodsbyclassifyingthem intothreegroups:i)methodsthatuseamolecularclockandoneglobalrateofsubstitution,ii) methodsthatcorrectforrateheterogeneity,andiii)methodsthattrytoincorporaterate heterogeneity.StartingfromarecentreviewbyMagallón(2004),Iexpandtothemostrecent methods,emphasizingpracticalmethodologicaldetails,providingusefulcomparisontables,and addingnewlinkstothemostimportantliteratureonmoleculardating. Duringthelastfifteenyears,moleculardatinghasbecomeanimportantandincreasingly populartoolforevolutionarybiologists.Forexample,thetimingoftheeukaryoticevolution (Douzery et al. ,2004),theEarlyCambrianoriginofthemainphylaofanimals(Cambrian explosion;Wray et al. ,1996;Welch et al. 2005),andthereplacementofdinosaursbymodern birdsandmammalsinthelateTertiary(Madsen,2001)haveallbeeninvestigatedbyestimating divergencetimesbasedonmolecularsequencedata.Alsoinplants,ageestimateshavebeen inferredatalltaxonomiclevels,forexamplefortheplastidcontainingeukaryotes(Yoon et al. , 2004),landplants(Sanderson,2003),tracheophytes(Soltis et al. ,2002),angiosperms(Bell et al. , 2005;MagallónandSanderson,2005),themonocotdicotdivergence(Chaw et al. ,2004), Asterids(Bremer et al. ,2004),Dipsacales(BellandDonoghue,2005),Crypteroniaceae(Conti et al. ,2002),and Fuchsia (Berry et al. ,2004).However,inordertoinvestigateevolutionary processes,ageestimatesexhibittheirfullpotentialonlyincombinationwithotherhistorical evidence,suchasthetimingandsequenceofpaleotectonicevents,climatereconstructions,or knowledgeabouttheevolutionofmorphologicalandecologicaltraits. Forexample,moleculardatingestimatesprovideusefulinformationfortesting biogeographicalhypotheses.Ingeneral,thedispersaloforganismscanbeexplainedeitherby longdistancedispersalacrossexistingbarriers,orbydisjunctionsalongancientpaleotectonic

6 corridorsthatsubsequentlydisappeared(vicariance).Mostprobably,bothdispersaland vicariancehaveplayedmajorrolesinproducingdisjunctdistributionpatterns,andmodern conceptslikegeodispersal(Liebermann,2003;Ree et al .,2005)trytoconnectbothmodelsby focusingonthevariablestrengthofthedispersalbarrierovertime.Ifthetimeframeisknown whentwolineageswithadisjunctdistributiondiverged,itispossibletosearchforcompatible dispersalcorridorsformedbytemporallyreducedbarrierswhichallowedadispersalatthat specifictime.WesearchforsuchpatternsinchaptertwoofthisthesisbytestingtheoutofIndia hypothesisconnectedtothedispersalofCrypteroniaceae,tropicalrainforesttreescurrently occurringinSriLankaandSoutheastAsia(Rutschmann et al. ,2004).Inanearlierstudy,Conti et al. (2002)usedmoleculardatingtotestwhetherCrypteroniaceaewereamongotherGondwanan taxathathavebeencarriedfromGondwanatoAsiabyraftingontheIndianplate.Accordingto thehypothesis,Crypteroniaceaelaterdispersed“outofIndia”intoSouthandSoutheastAsia, afterIndiacollidedwiththeAsiancontinentintheEarlyTertiary.Conti et al. (2002)concluded insupportingthishypothesisforCrypteroniaceae,becauseboththeirphylogenetic reconstructionsandtheirdatingestimatesofrelevantnodeswereconcordantwiththegeologic historyoftheIndianPlate.However,becausetheseconclusionswerebasedonevidencefrom onlyonegeneandlimitedtaxonsampling,werepeatedtheanalyses(seechaptertwo)by expandingboththetaxonandgenesamplingandcomparingtheresultsofthreedifferent moleculardatingmethods(clockdependentLangleyFitch,LangleyandFitch,1974;Non ParametricRateSmoothing,Sanderson,1997;andPenalizedLikelihood,Sanderson,2002). TheoutofIndiahypothesisisagainaddressedinthethirdthesischapter(Conti et al. , 2004),whichrepresentstheanswertoanopinionexpressedbyRobertG.Moyleinthe InternationalJournalofOrganicEvolution(Moyle,2004).Moylereanalyzedthedatasetfrom Conti et al. (2002)byusingadifferenttaxonsamplingandanothercalibrationpoint,criticizing thebiogeographicinterpretationproposedinContietal.(2002).Inourreply,wehighlightsome weaknessesinMoyle’sanalyticalprocedure,atthesametimeofferingsomegeneralreflections onthecontroversialissueofcalibrationinmoleculardatinganalyses. Timeinformationfrommoleculardatingcanalsobeusedtocharacterizediversification patternsstemmingfromperiodsofextraordinarilyhighorlowspeciationand/orextinctionrates, suchasrapidradiations.Forexample,thetempoandmodeofaradiationcanbelinkedtothe simultaneousevolutionofbioticand/orabioticfactors,suchaskeyinnovationsorclimaticand edaphicshifts.Inchapterfourofthepresentthesis,weinvestigatesuchpatternsinarelatively smallgroupoftreesandshrubswhichbelongtotheSouthandEastAfricanPenaeaceae, Oliniaceae,andRhynchocalycaceae,closelyrelatedtotheCrypteroniaceaestudiedinchapters twoandthree(Rutschmann et al. , in prep ).Chronogramsinferredinpreviousstudies(Contiet

7 al. ,2002;Rutschmann et al. ,2004)revealedlongstembranchesforbothPenaeaceaeand Oliniaceae,indicatingalongtimeperiodbetweentheoriginanddiversificationoftheselineages. Thechronogramsalsosuggestedthatthislongphasewasfollowedbyarelativelyshortepisode withrapiddiversification,especiallywithinPenaeaceae.Basedonphylogeneticandmolecular datinganalyses,lineagesthroughtimeplots,andinferencesofancestralstatesbasedon maximumlikelihood,weaimedatreconstructingthetempo,mode,andpossiblereasonsof diversificationinPenaeaceaeandOliniaceae. Despitetheirpopularity,twomainproblemsstillplaguetheuseofmoleculardating methods.First,moleculardatingreliesentirelyonthequalityofcalibration.Amajorsourceof uncertaintypertainstotheassignmentoffossilstospecificnodesinaphylogeny,especiallywhen alternativepossibilitiesexistthatcanbeequallyjustifiedonmorphologicalgrounds(Conti et al. , 2004;Magallón,2004;ReiszandMüller,2004).Whilewidespreadandchallenging,thisproblem isoftenignoredinpublishedpapers.Inthefifthchapterofthisthesis(Rutschmann et al. , submitted ),weusedthefossilcrossvalidationprocedureofNearandSanderson(2004)ina novelwaytoassessuncertaintyinfossilnodalassignment.Morespecifically,weusedthe phylogenyof,sixfossils,and72differentcombinationsofcalibrationpointstoidentify andcharacterizetheassignmentsthatproducethemostinternallyconsistentageestimates. Anadditionalmajorchallengeinmoleculardatingisrelatedtotaxonsamplingeffectson theestimatedages.Inthefinalchapterofthisthesis(Linder et al. ,2005),wetestedthesensitivity ofthreecommonlyusedmoleculardatingmethodstotaxonsampling(NonParametricRate Smoothing,Sanderson,1997;PenalizedLikelihood,Sanderson,2002;Bayesiandatingwith multidivtime,ThorneandKishino,2002).Byusinganearlycompletesampleofthe Restio clade oftheAfricangrasslikeRestionaceae(300species,including26outgroupspecies),weformed nestedsubsetsof35,51,80,120,and150speciesandperformedmoleculardatinganalysesbased onthefulldatasetandallthesubsets.Wethencomparedtheimpactofthedifferentdatasetsizes anddatingmethodsontheageestimates. Thepresentthesiscomprisessixchapters,fourofthemalreadypublished,thatcover variousaspectsrelatedtomoleculardating,rangingfrommoremethodologicalandexperimental worktotheapplicationofdifferentmethodsinthecontextofbiologicalandevolutionary questions.Iwishthereaderaninspiringandpleasurablereadingexperience.

8 References

Bell,C.D.,andM.J.Donoghue.2005.Datingthedipsacales:Comparingmodels,genes,and evolutionaryimplications. American Journal of Botany 92 :284296.

Bell,C.D.,D.E.Soltis,andP.S.Soltis.2005.TheageoftheAngiosperms:Amolecular timescalewithoutaclock. Evolution 59 :12451258.

Berry,P.E.,W.J.Hahn,K.J.Sytsma,J.C.Hall,andA.Mast.2004.Phylogeneticrelationships andbiogeographyof Fuchsia (Onagraceae)basedonnoncodingnuclearandchloroplastDNA data. American Journal of Botany 94 :601614.

Bremer,K.,E.M.Friis,andB.Bremer.2004.Molecularphylogeneticdatingofasteridflowering plantsshowsearlyCretaceousdiversification. Systematic Biology 53 :496505.

Britten,R.J.1986.RatesofDNAsequenceevolutiondifferbetweentaxonomicgroups. Science 231 :13931398.

Chaw,S.M.,C.C.Chang,H.L.Chen,andW.H.Li.2004.Datingthemonocotdicotdivergence andtheoriginofcoreusingwholechloroplastgenomes. Journal of Molecular Evolution 58 :424441.

Conti,E.,T.Eriksson,J.Schönenberger,K.J.Sytsma,andD.A.Baum.2002.EarlyTertiaryout ofIndiadispersalofCrypteroniaceae:evidencefromphylogenyandmoleculardating. Evolution 56 :19311942.

Conti,E.,F.Rutschmann,T.Eriksson,K.J.Sytsma,andD.A.Baum.2004.Calibrationof molecularclocksandthebiogeographichistoryofCrypteroniaceae:AreplytoMoyle. Evolution 58 :18741876.

Darwin,C.1859.Ontheoriginofspeciesbymeansofnaturalselectionorthepreservationof favouredracesinthestruggleforlife.JohnMurray,London.

Douzery,E.J.P.,E.A.Snell,E.Bapteste,F.Delsuc,andH.Philippe.2004.Thetimingof eukaryoticevolution:Doesarelaxedmolecularclockreconcileproteinsandfossils? Proceedings of the National Academy of Sciences USA 101 :1538615391.

Doyle,J.A.,andM.J.Donoghue.1993.Phylogeniesandangiospermdiversification. Paleobiology 19 :141167.

Drummond,A.J.,S.Y.W.Ho,M.J.Phillips,andA.Rambaut.2006.Relaxedphylogeneticsand datingwithconfidence. PLoS Biology 4:e88.

Felsenstein,J.1981.EvolutionarytreesfromDNAsequences:amaximumlikelihoodapproach. Journal of Molecular Evolution 17 :368376.

Gillespie,J.H.1986.Ratesofmolecularevolution. Annual Review of Ecology, Evolution and Systematics 17 :637665.

Hennig,W.1969.DieStammesgeschichtederInsekten.Kramer,Frankfurt,Germany.

9 Korber,B.,M.Muldoon,J.Theiler,F.Gao,R.Gupta,A.Lapedes,B.H.Hahn,S.Wolinsky,and T.Bhattacharya.2000.TimingtheancestoroftheHIV1pandemicstrains. Science 288 :1789 1796.

Langley,C.H.,andW.Fitch.1974.Anestimationoftheconstancyoftherateofmolecular evolution. Journal of Molecular Evolution 3:161177.

Lieberman,B.S.2003.Unifyingtheoryandmethodologyinbiogeography. Evolutionary Biology 33

Linder,H.P.,C.R.Hardy,andF.Rutschmann.2005.Taxonsamplingeffectsinmolecularclock dating:anexamplefromtheAfricanRestionaceae. Molecular Phylogenetics and Evolution 35 :569582.

Madsen,O.,M.Scally,C.J.Douady,D.J.Kao,R.W.Debry,R.Adkins,H.M.Amrine,M.J. Stanhope,W.W.DeJong,andM.S.Springer.2001.Paralleladaptiveradiationsintwomajor cladesofplacentalmammals. Nature 409 :610614.

Magallón,S.A.2004.Datinglineages:molecularandpaleontologicalapproachestothetemporal frameworkofclades. International Journal of Plant Sciences 165 :721.

Magallón,S.A.,andM.J.Sanderson.2005.Angiospermdivergencetimes:Theeffectofgenes, codonpositions,andtimeconstraints. Evolution 59 :16531670.

Moyle,R.G.2004.Calibrationofmolecularclocksandthebiogeographichistoryof Crypteroniaceae. Evolution 58 :18711873.

Near,T.J.,andM.J.Sanderson.2004.Assessingthequalityofmoleculardivergencetime estimatesbyfossilcalibrationsandfossilbasedmodelselection. Philosophical Transactions of the Royal Society of London B: Biological Sciences 359 :14771483.

Patterson,N.,D.J.Richter,S.Gnerre,E.S.Lander,andD.Reich.2006.Geneticevidencefor complexspeciationofhumansandchimpanzees. Nature Advance online publication : doi:10.1038/nature04789.

Penny,D.2005.Relativityformolecularclocks. Nature 436 :183184.

Ree,R.H.,B.R.Moore,C.O.Webb,andM.J.Donoghue.2005.Alikelihoodframeworkfor inferringtheevolutionofgeographicrangeonphylogenetictrees. Evolution 59 :22992311.

Reisz,R.R.,andJ.Müller.2004.Moleculartimescalesandthefossilrecord:apaleontological perspective. TRENDS in Genetics 20 :237241.

Rutschmann,F.2006.Moleculardatingofphylogenetictrees:Abriefreviewofcurrentmethods thatestimatedivergencetimes. Diversity and Distributions 12 :3548.

Rutschmann,F.,T.Eriksson,K.AbuSalim,andE.Conti.Assessingcalibrationuncertaintyin moleculardating:Theassignmentoffossilstoalternativecalibrationpoints. Submitted.

Rutschmann,F.,T.Eriksson,J.Schönenberger,andE.Conti.2004.DidCrypteroniaceaereally disperseoutofIndia?Moleculardatingevidencefrom rbc L, ndh F,and rpl 16sequences. International Journal of Plant Sciences 165 :6983.

10 Rutschmann,F.,J.Schönenberger,H.P.Linder,andE.Conti.Tempoandmodeof diversificationintheAfricanPenaeaceaeandrelatedtaxa. In preparation.

Sanderson,M.J.1997.Anonparametericapproachtoestimatingdivergencetimesintheabsence ofrateconstancy. Molecular Biology and Evolution 14 :12181231.

Sanderson,M.J.1998.Estimatingrateandtimeinmolecularphylogenies:beyondthemolecular clock?Pp.242264 in D.E.Soltis,P.S.SoltisandJ.J.Doyle,eds.Molecularsystematicsof plantsII;DNAsequencing.KluwerAcademicPublishers,Norwell,MA.

Sanderson,M.J.2002.Estimatingabsoluteratesofmolecularevolutionanddivergencetimes:a PenalizedLikelihoodapproach. Molecular Biology and Evolution 19 :101109.

Sanderson,M.J.2003.Moleculardatafrom27proteinsdonotsupportaPrecambrianoriginof landplants. American Journal of Botany 90 :954956.

Soltis,P.S.,D.E.Soltis,V.Savolainen,P.R.Crane,andT.G.Barraclough.2002.Rate heterogeneityamonglineagesoftracheophytes:Integrationofmolecularandfossildataand evidenceformolecularlivingfossils. Proceedings of the National Academy of Sciences USA 99 :44304435.

Thorne,J.L.,andH.Kishino.2002.Divergencetimeandevolutionaryrateestimationwith multilocusdata. Systematic Biology 51 :689702.

Welch,J.J.,andL.Bromham.2005.Moleculardatingwhenratesvary. TRENDS in Ecology and Evolution 20 :320327.

Welch,J.J.,E.Fontanillas,andL.Bromham.2005.Moleculardatesforthe"Cambrian explosion":Theinfluenceofpriorassumptions. Systematic Biology 54 :672678.

Wray,G.A.,J.S.Levinton,andL.S.Shapiro.1996.Molecularevidencefordeepprecambrian divergencesamongmetazoanphyla. Science 274 :568573.

Yoon,H.S.,J.D.Hackett,C.Ciniglia,G.Pinto,andD.Bhattacharya.2004.Amolecular timelinefortheoriginofphotosyntheticEukaryotes. Molecular Biology and Evolution 21 :809 818.

Zuckerkandl,E.,andL.Pauling.1965.Evolutionarydivergenceandconvergenceinproteins.Pp. 97166 in V.BrysonandH.Vogel,eds.EvolvingGenesandProteins.AcademicPress,New York.

11

12

Chapter I. Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergence times

FrankRutschmann Invitedpaperfollowingthemeeting“RecentFloristicRadiationsintheCapeFlora”inZurich, Switzerland,3–5July2004,organizedbyPeterLinder,ChloéGalley,CyrilGuibert,ChrisHardy, TimovanderNiet,andPhilipMoline,UniversityofZurich. Publishedin DiversityandDistributions12:3548.2006.

13 Abstract Thisarticlereviewsthemostcommonmethodsusedtodayforestimatingdivergence timesandratesofmolecularevolution.Themethodsaregroupedintothreemainclasses:a) methodsthatuseamolecularclockandoneglobalrateofsubstitution,b)methodsthatcorrectfor rateheterogeneity,andc)methodsthattrytoincorporaterateheterogeneity.Additionally,links tothemostimportantliteratureonmoleculardatingaregiven,includingarticlescomparingthe performanceofdifferentmethods,papersthatinvestigateproblemsrelatedtotaxon,gene,and partitionsampling,andliteraturediscussinghighlydebatedissueslikecalibrationstrategiesand uncertainties,datingprecisionandthecalculationoferrorestimates. Keywords: Divergencetimeestimation,moleculardatingmethods,rateheterogeneity, review.

14 Introduction TheuseofDNAsequencestoestimatethetimingofevolutionaryeventsisincreasingly popular.Theideaofdatingevolutionarydivergencesusingcalibratedsequencedifferenceswas firstproposedin1965byZuckerkandlandPauling(1965).Theauthorspostulatedthatthe amountofdifferencebetweentheDNAmoleculesoftwospeciesisafunctionofthetimesince theirevolutionaryseparation.Thiswasshownbycomparingproteinsequences(hemoglobins) fromdifferentspeciesandfurthercomparingaminoacidsubstitutionrateswithagesestimated fromfossils.Basedonthiscentralidea,moleculardatinghasbeenusedincountlessstudiesasa methodtoinvestigatemechanismsandprocessesofevolution.Forexample,thetimingofthe eukaryoticevolution(Douzery et al. ,2004),theEarlyCambrianoriginofthemainphylaof animals(Cambrianexplosion;Wray et al. ,1996;SmithandPeterson,2002;ArisBrosouand Yang,2003),thereplacementofdinosaursbymodernbirdsandmammalsinthelateTertiary (Madsen,2001),andtheageofthelastcommonancestorofthemainpandemicstrainofhuman immunodeficiencyvirus(HIV;Korber et al. ,2000)haveallbeeninvestigatedusingmolecular dating.Alsoinplants,therearenumerousstudieswheremoleculardatingmethodshavebeen usedtoinvestigatethetimeframeofevolutionaryevents,e.g.fortestingbiogeographical hypothesesortoinvestigatethecausesofrecentradiations(foramorecompletereviewsee Sanderson et al. ,2004).Forexample,datingtechniqueshavebeenappliedontaxafromvery differenttaxonomiclevels,e.g.toinfertheageofplastidcontainingeukaryotes(Yoon et al. , 2004),landplants(Sanderson,2003a),tracheophytes(Soltis et al. ,2002),angiosperms(Bell et al. ,2005;Wikström et al. ,2001,2003;Magallón,2001;SandersonandDoyle,2001),monocot dicotdivergence(Chaw et al. ,2004),Asterids(Bremer et al. ,2004),Myrtales(Sytsma et al. , 2004),Crypteroniaceae(Conti et al. ,2002),and Fuchsia (Berry et al. ,2004). Thegoalofthisarticleistogiveashortoverviewonthemostcommonlyusedmoleculardating methods.Toallowforeasiercomparisons,thedifferentmethodsforestimatingdivergencetimes arealsosummarizedintables13.

15 The ideal case scenario: A molecular clock and one global rate of substitution

Inthespecialcaseofamolecularclock,allbranchesofaphylogenetictreeevolveatthe same,globalsubstitutionrate.Theclockliketreeisultrametric,whichmeansthatthetotal distancebetweentherootandeverytipisconstant.

Method1:Linearregression(Nei,1987;LiandGraur,1991;Hillis et al. ,1996;Sanderson, 1998) Inanultrametrictree,nodaldepthscanbeconvertedeasilyintodivergencetimes,because themoleculardistancebetweeneachmemberofasisterpairandtheirmostrecentcommon ancestorisonehalfofthedistancebetweenthetwosequences.Ifthedivergencetimeforatleast onenodeisknown(calibrationpoint),theglobalrateofsubstitutioncanbeestimatedand,based onthat,divergencetimesforallnodescanbecalculatedbylinearregressionofthemolecular distances(LiandGraur,1991;Sanderson,1998). Inotherwords:theobservednumberofdifferencesDbetweentwogivensequencesisa functionoftheconstantrateofsubstitutionr[subst.*site 1*millionyears 1]andthetimet [millionyears]elapsedsincethelineageexists.Ifwehaveonecalibrationpoint(e.g.ifwecan assignafossilorgeologicaleventtoonespecificnodeinthetree),wecancalculatetheglobal substitutionrateasfollows:r=D/2t.Inasecondstep,wecanusetheglobalratertocalculate thedivergencetimebetweenanyothertwosequences:T=D/2r. Inthosecaseswherewehavemorethanonecalibrationpoint,wecanplotallcalibration nodesinanagegeneticdistancediagram,builda(weighted)regressionline,whoseslopeisa functionoftheglobalsubstitutionrate,andtheninterpolate(orextrapolate)thedivergencetimes fortheunknownnodes.Thescatterofdatapointsaroundtheregressionlineprovidesthena confidenceintervalaroundestimatedages. Althoughitispossibletoestimatetheglobalsubstitutionrateroveranentirephylogeny (seemethods3and4),pairwisesequencecomparisonshaveprovidedthemostwidelyused approachtomoleculardatinguntilapproximatelyfiveyearsago,probablybecausethe calculationscanbedoneeasilywithanystatisticalorspreadsheetsoftware.

16 Method2:Treebasedmeanpathlengthmethod(BremerandGustafsson,1997;Britton et al. ,2002) The mean path length method estimatesratesanddivergencetimesbasedonthemean pathlength(MPL)betweenanodeandeachofitsterminals.BycalculatingtheMPLbetweena calibrationnodeandallitsterminals,anddividingitbytheknownageofthenode,theglobal substitutionrateisobtained.Tocalculatethedivergencetimeofanode,itsMPLisdividedbythe globalrate.Althoughthecalculationissimpleenoughtobedonebyhand,Britton et al. (2002) provideaPascalprogram,named PATH ,fortheanalysisoflargertrees.

Method3:Treebasedmaximumlikelihoodclockoptimization(LangleyandFitch,1974; Sanderson,2003b) The Langley-Fitch method usesmaximumlikelihood(ML)tooptimizetheglobalrateof substitutions,startingwithaphylogenyforwhichbranchlengthsareknown.Usingthe optimized,constantrate,branchlengthsanddivergencetimesarethenestimated.Finally,the resultsplustheoutcomeofachisquaredtestofrateconstancyarereported.Themethodis implementedin r8s (Sanderson,2003b).

Method4:Characterbasedmaximumlikelihoodclockoptimization(Felsenstein,1981; Swofford et al. ,1996) Undertheassumptionofrateconstancy(andthereforeundertheconstraintsof ultrametricity),theglobalrateofsubstitutioncanalsobeoptimizedbyMLdirectlyfrom sequencedataduringthephylogeneticreconstruction.Thelikelihoodisthenamuchmore complexfunctionofthedatamatrix,andthecomputingtimeismuchhigherthanforthe phylogeneticreconstructionwithoutultrametricconstraints.Oncetheglobalrateofsubstitutionis known,branchlengthsanddivergencetimescanbecalculated. The ML clock optimization method isimplemented,atleastpartially,in PAUP* (Swofford et al. ,2001), DNAMLK (partofthePHYLIPpackage);Felsenstein,1993),baseml (partofthepamlpackage;Yang,1997),andotherphylogeneticpackages.It’sperhapsthemost widespreadstrategycommonlyknownas“enforcingthemolecularclock”.Dependingonthe software,theadditionalconstrainofafixedtreetopologycanbeprovidedbytheuser,which reducesthecomplexityofthelikelihoodfunctionandthecomputingtimesignificantly.

17 The reality (in most cases): Rate heterogeneity, or the relaxed clock Assequencesfrommultiplespeciesbegantoaccumulateduringthe1970’s,itbecame apparentthataclockisnotalwaysagoodmodelfortheprocessofmolecularevolution(Langley andFitch,1974).Variationinratesofnucleotidesubstitution,bothalongalineageandbetween differentlineages,isknowntobepervasive(Britten,1986;Gillespie,1986;Li,1997).Several reasonsaregivenforthesedeviationsfromtheclocklikemodelofsequenceevolution(some peoplecallitrelaxedor“sloppy”clock):a)generationtime:alineagewithshortergeneration timeacceleratestheclockbecauseitshortensthetimetoaccumulateandfixnewmutations duringgeneticrecombination(Ohta,2002;butdisputedbyWhittleandJohnston,2003);b) metabolicrate:organismswithhighermetabolicrateshaveincreasedratesofDNAsynthesisand higherratesofnucleotidemutationsthanspecieswithlowermetabolicrates(Gillooly et al. 2005; MartinandPalumbi,1993);c)mutationrate:speciescharacteristicdifferencesinthefidelityof theDNAreplicationorDNArepairmachinery(OtaandPenny,2003);d)effectofeffective populationsizeontherateoffixationofmutations:thefixationofnearlyneutralallelesis expectedtobethegreatestinsmallpopulations(accordingtothenearlyneutraltheoryofDNA evolution;Ohta,2002).

Becauseitismucheasiertocalculatedivergencetimesundertheclockmodel(withone globalsubstitutionrate),itisworthtestingthedataforclocklikebehavior.Thiscanbedoneby comparinghowcloselytheultrametricandadditivetreesfitthedata.Forexample,thelikelihood scoreofthebestultrametrictreecanbecomparedwiththe(usuallyhigher)likelihoodscoreof thebestadditivetreeandthedifferencebetweenthetwovalues(multipliedbytwo)canbe checkedforsignificanceonachisquaretablewith n-2degreesoffreedom(where nisthe numberofterminalsinthetree;Likelihoodratiotest;Felsenstein,1988,1993,2004;Museand Weir,1992).Otherteststhatcanbeappliedtoidentifypartsofthetreethatshowsignificantrate deviationsaretherelativeratestest(WuandLi,1985)andtheTajimatest(Tajima,1993). However,alltheseclocktestslackpowerforshortersequencesandwilldetectonlyarelatively lowproportionofcasesofratevariationforthetypesofsequencethataretypicallyusedin molecularclockstudies(Bromham et al. ,2000;BromhamandPenny,2003).Failuretodetect clockvariationcancausesystematicerrorinageestimates,becauseundetectedratevariationcan leadtosignificantlyoverorunderestimateddivergencetimes(Bromham et al.,2000).Ifthenull hypothesisofaconstantrateisrejected,orifwehaveevidencesuggestingthattestresultsshould betreatedwithcaution,wemightconcludethatratesvaryacrossthetree;insuchcasestheuseof 18 methodsthattrytomodelratechangesoverthetreeisnecessary.Thisprocedureisalso supportedbythefactthatanincreasingnumberofdivergencetimeanalysesshowsignificant deviationsfromamolecularclock,especiallyifsequencesofdistantlyrelatedspeciesare analyzed(e.g.differentordersorfamilies;Hasegawa et al. ,2003;Springer,2003;Yoderand Yang,2000).Atleasttwogroupsofmethodstrytohandlearelaxedclock:a)Methodsthat correct forrateheterogeneitybeforethedating;andb)methodsthat incorporate rate heterogeneityinthedatingprocess,onthebasisofspecificratechangemodels. 1. Methods that correct for rate heterogeneity Thefirstsetofmethodsdescribedbelowcorrectfortheobservedrateheterogeneityby pruningbranchesordividingtheglobalrateintoseveralrateclasses(localrates).Afterthisfirst step,whichmakesthetrees(atleastpartially)ultrametric,theyestimateratesanddivergence timesusingthemolecularclockasdescribedabove.

Method5:Linearizedtrees(LiandTanimura,1987;Takezaki et al. ,1995;Hedges et al. , 1996) The linearized trees method involvesthreesteps:first,identifyallbranchesina phylogenythatdepartsignificantlyfromrateconstancybyusingastatisticaltest(e.g.relative ratestests,LiandTanimura,1987;ortwoclusterandbranchlength tests,Takezakietal,1995). Then,selectivelyeliminate(prune)thosebranches.Finally,constructatreewiththeremaining branches(thelinearizedtree)undertheassumptionofrateconstancy.Thisprocedurerelieson eliminatingdatathatdonotfittheexpectedglobalratebehavior,andinmanycases,this approachwouldleadtoamassiveeliminationofdata.Cutler(2000),describingtheprocedureas “taxonshopping”,stated:“Ifonebelievesthatrateoverdispersionisintrinsictotheprocessof evolution(Gillespie,1991)(...),thenrestrictingone’sanalysistotaxawhichhappentopass relativeratetestsisinappropriate”.

Method6:Localratesmethods(Hasegawa et al. ,1989;Uyenoyama,1995;Rambautand Bromham,1998;YoderandYang,2000) Applytwoormorelocalmolecularclocksonthetreebyusingacommonmodelthat characterizestherateconstancyoneachpartofthetree.Onesubstantialdifficultyistoidentify correctlythebranchesorregionsofatreeinwhichsubstitutionratessignificantlydifferfromthe others;thisdifficultyexplainswhyseveralmethodsofthe“localratestype”exist.Usually,the

19 useofbiological(e.g.similarlifeform,generationtime,metabolicrate)orfunctional(e.g.gene function)informationisusedfortheirrecognition.Alsoconspicuouspatternsinthe transition/transversionrateofsomebranches(Hasegawa et al. ,1989),theknowndifferential functionofalleles(Uyenoyama,1995),thebranchlengthsobtainedbyMLundertheabsenceofa molecularclock(YoderandYang,2000;YangandYoder,2003),ortherateconstancywithina quartetoftwopairsofsistergroups(RambautandBromham,1998)canbeusedforthedefinition oflocalclockregions. Probablythebestknownexampleofalocalratesmethodisthe ML based local molecular clock approach (Hasegawa et al., 1989; Yoder and Yang, 2000; Yang and Yoder, 2003) .This method preassignsevolutionaryratestosomelineageswhilealltheotherbranchesevolveatthe samerate.Thelocalmolecularclockmodelthereforeliesbetweenthetwoextremesofaglobal clock(assumingthesamerateforalllineages)andthemodelsthatassumeoneindependentrate foreachbranch(describedbelow).Themethodallowsforthedefinitionofratecategoriesbefore thedating,whichisacrucialandsensitivestepforthismethod.Twodifferentstrategiescanbe usedtopreassignindependentrates:a)definitionof rate categories :theuserpreassignsrate categoriestospecificbranchesbasedonthebranchlengthestimatesobtainedwithouttheclock assumption.Forexample,threedifferentratecategoriesaredefined,onefortheoutgrouplineage withlongbranchlengths,anotherforacrowngroupwithshortbranchlengths,andathirdforall otherbranches;b)definitionof rank categories :dividethetaxaintoseveralrategroupsaccording totaxonomicranks,e.g.order,suborder,family,andgenus,basedontheassumptionthatclosely relatedevolutionarylineagestendtoevolveatsimilarrates(Kishino et al. ,2001;Thorneand Kishino,2002).Afterthedefinitionofratecategories,thedivergencetimesandratesforthe differentbranchgroupsareestimatedbyMLoptimization.Thelocalmolecularclockmodelis implementedin baseml (partofthe paml package;Yang,1997)andtheprogramprovides standarderrorsforestimateddivergencetimes. Baseml doesnot(yet)allowforthespecification offossilcalibrationsaslowerorupperlimitsonnodeages,asin r8s or multidivtime (seebelow). Sofar,nodalconstraintsbasedonfossilshavetobespecifiedasfixedages.Thelocalmolecular clockmethodimplementedin baseml isnowabletoanalyzemultiplegenesordatapartitions withdifferentevolutionarycharacteristicssimultaneouslyandallowsthebranchgroupratesto varyfreelyamongdatapartitions(sinceversion3.14).Forexample,themodelsallowsome branchestoevolvefasteratcodonposition1whiletheyevolvesloweratcodonposition2(Yang andYoder,2003). Thequartetmethod(RambautandBromham,1998)implementedin QDate isoneofthe simplestlocalclockmethods.Themethodsworkswithspeciesquartetsbuiltbycombiningtwo pairsofspecies,eachofwhichhasaknowndateofdivergence.Foreachpair,aratecanbe

20 estimated,andthisallowstoestimatethedateofthedivergencebetweenthepairs(ageofthe quartet).Becausegroupswithundisputedrelationshipscanbechosen,themethodsavoids problemsoftopologicaluncertainties.Ontheotherhand,itisdifficulttocombineestimatesfrom multiplequartetsinameaningfulway(Bromham et al. ,1998). Anotherprogramthatallowstheusertoassigndifferentratesandsubstitutionmodelsto differentpartsofatreeis Rhino byRambaut(2001).ThisMLlocalclockimplementationhas beenusedsofarmainlyforcomparingsubstitutionratesofdifferentlineagesbyusinglikelihood ratiotests(e.g.BromhamandWoolfit,2004). Afourthimplementationofthelocalmolecularclockapproachhasbeenrealizedinthe software r8s (Sanderson,2003b).ItfollowstheLangley-Fitch method describedabove(Method 3;LangleyandFitch,1974),butinsteadofonlyusingoneconstantrateofsubstitution,the methodpermitstheusertospecifymultiplerateparametersandassignthemtotheappropriate branchesorbranchgroups.Aftersuchadefinitionofratecategories,thedivergencetimesand ratesforthedifferentbranchgroupsareestimatedbyMLoptimization. Afifthprogram, BEAST (DrummondandRambaut,2003),usesBayesianinferenceand theMarkovchainMonteCarlo(MCMC)proceduretoderivetheposteriordistributionoflocal ratesandtimes.Asthesoftwaredoesnotrequireastartingtreetopology,itisabletoaccountfor phylogeneticuncertainty.Additionally,itpermitsthedefinitionofcalibrationdistributions(such asnormal,lognormal,exponentialorgamma)insteadofsimplepointestimatesorageintervals. 2. Methods that estimate divergence times by incorporating rate heterogeneity Methodsthatrelaxrateconstancymustnecessarilybeguidedbyspecificationsabouthow ratesareexpectedtochangeamonglineages.Becauseratesanddivergencetimesareconfounded, itisnotpossibletoestimateonewithoutmakingassumptionsregardingtheother(ArisBrosou andYang,2002).Recently,ithasbeenquestionedthatdivergencetimeswithoutamolecular clockcanbeestimatedconsistentlyjustbyincreasingthesequencelengths(Britton,2005). However,availablemethodstrytointroducerateheterogeneityonthebasisofthreedifferent approaches:oneistheconceptof temporal autocorrelation in rates (seebelow2a;Gillespie, 1991),anotheristhe stationary processofratechange(seebelow2b;Cutler,2000),andathirdis the compound Poisson processofratechange(seebelow2c;Huelsenbecket al. ,2000).All methodsestimatebranchlengthswithoutassumingrateconstancy,andthenmodelthe distributionofdivergencetimesandratesbyminimizingthediscrepanciesbetweenbranch

21 lengthsandtheratechangesoverthebranches.Themethodsdiffernotonlyintheirmodels,but alsointheirstrategytoincorporateageconstraints(calibrationpoints)intotheanalysis. 2a. Methods that model rate change according to the standard Poisson process and the concept of rate autocorrelation Anautocorrelationlimitsthespeedwithwhicharatecanchangefromanancestral lineagetoadescendantlineage(Sanderson,1997).Astherateofsubstitutionevolvesalong lineages,daughterlineagesmightinherittheirinitialratefromtheirparentallineageandevolve newratesindependently(Gillespie,1991).Temporalautocorrelationisanexplicit a priori criteriontoguideinferenceofamonglineageratechangeandisimplementedinseveralmethods (Magallón,2004).Readerswhowanttolearnmoreaboutthetheoryoftemporalautocorrelation arereferredtopublicationsbyTakahata(1987),Gillespie(1991),Sanderson(1997),andThorne et al. (1998).

Method7:Nonparametricratesmoothing(Sanderson,1997,2003) Byanalogytosmoothingmethodsinregressionanalysis,the nonparametric rate smoothing (NPRS) method attemptstosimultaneouslyestimateunknowndivergencetimesand smooththerapidityofratechangealonglineages(Sanderson,1997,2003).Tosmoothrate changes,themethodcontainsanonparametricfunctionthatpenalizesratesthatchangetoo quicklyfrombranchtoneighboringbranch,whichreflectstheideaofautocorrelationofrates.In otherwords:thelocaltransformationsinratearesmoothedastherateitselfchangesoverthetree byminimizingtheancestraldescendantchangesofrate.Sincethepenaltyfunctionincludes unknowntimes,anoptimalitycriterionbasedonthispenalty(thesumofsquareddifferencesin localrateestimatescomparedfrombranchtoneighboringbranch;leastsquaresmethod)permits anestimationofthedivergencetimes.NPRSisimplementedin r8s (Sanderson,2003b)and TreeEdit (RambautandCharleston,2002).With r8s ,butnotwithTreeEdit,theuserisabletoadd oneormorecalibrationconstraintstopermitscalingofratesandtimestoabsolutetemporalunits. AseriouslimitationofNPRSisthatittendstooverfitthedata,leadingtorapidfluctuationsin rateinregionsofatreethathaveshortbranches(Sanderson,2003b).In r8s ,butnotinTreeEdit, twostrategiestoprovideconfidenceintervalsontheestimatedparametersareavailable:a)a builtinprocedurethatusesthecurvatureofthelikelihoodsurfacearoundtheparameterestimate (afterCutler,2000);andb)thecalculationofanagedistributionbasedonchronogramsgenerated fromalargenumberofbootstrappeddatasets.Thecentral95%oftheagedistributionprovidethe confidenceinterval(EfronandTibshirani,1993;BaldwinandSanderson,1998;Sanderson,

22 2003b).Thisrobust,buttimeconsumingprocedurecanbefacilitatedbyusingacollectionofPerl scriptswrittenbyEriksson(2002)calledthe r8s-bootstrap-kit .

Method8:PenalizedLikelihood(Sanderson,2002,2003) Penalized likelihood (PL) combineslikelihoodandthenonparametricpenaltyfunction usedinNPRS.Thissemiparametrictechniqueattemptstocombinethestatisticalpowerof parametricmethodswiththerobustnessofnonparametricmethods.Ineffect,itpermitsthe specificationoftherelativecontributionoftheratesmoothingandthedatafittingpartsofthe estimationprocedure:aroughnesspenaltycanbeassignedassmoothingparameterintheinput file.Thesmoothingparametercanbeestimatedbyrunningacrossvalidationprocedure,whichis adatadrivenmethodforfindingtheoptimallevelofsmoothing.Ifthesmoothingparameteris large,thefunctionisdominatedbytheroughnesspenalty,andthisleadstoaclocklikemodel.If itislow,thesmoothingwillbeeffectivelyunconstrained(similartoNPRS).Sofar,PLisonly implementedin r8s (Sanderson,2003b).AswithNPRSin r8s ,theuserisabletoaddoneormore calibrationconstraintstopermitscalingofratesandtimestorealunits.Thesametwostrategies forprovidingconfidenceintervalsontheestimatedparametersasfortheNPRSmethodarealso availablefor PL . Method9:Heuristicratesmoothing(AHRS)forMLestimationofdivergencetimes(Yang, 2004) The heuristic rate-smoothing (AHRS) algorithmforMLestimationofdivergencetimes (Yang,2004)hasanumberofsimilaritieswith PL andthetwoBayesiandatingmethods describedabove.Itinvolvesthreesteps:a)estimationofbranchlengthsintheabsenceofa molecularclock;b)heuristicratesmoothingtoestimatesubstitutionratesforbranchestogether withdivergencetimes,andclassificationofbranchesintoseveralrateclasses;andc)ML estimationofdivergencetimesandratesofthedifferentbranchgroups.The AHRS algorithm differsslightlyfromPL:whereSanderson(2002)usesaPoissonapproximationtofitthebranch lengths,the AHRS algorithmusesanormalapproximationoftheMLestimatesofbranchlengths. Furthermore,theratesmoothingalgorithmin AHRS isusedonlytopartitionbranchesoneach genetreeintodifferentrategroups,andplaysthereforealesssignificantroleinthismethodthan in PL .IncontrasttotheBayesianapproachesdescribedabove, AHRS optimizesrates,together withdivergencetimes,ratherthanaveragingovertheminanMCMCprocedure.Another differencetotheBayesiandatingmethodsisthatthe AHRS algorithmdoesnotneedanypriorfor divergencetimes,whichcanbeanadvantage.Ontheotherhand,itisnotpossibletospecify

23 fossilcalibrationsaslowerorupperboundsonnodeages,asin r8s or multidivtime sofar,nodal constraintsbasedonfossilshavetobespecifiedasfixedages.The AHRS algorithmis implementedinthe baseml and codeml programs,whicharepartsofthe paml package(since version3.14final;Yang,1997).Thoseprogramsprovidestandarderrorsforestimateddivergence times.As multidivtime, the AHRS algorithmimplementedin baseml isabletoanalyzemultiple genes/lociwithdifferentevolutionarycharacteristicssimultaneously.

Method10:Bayesianimplementationofrateautocorrelationinmultidivtime(Thorne et al. , 1998;Kishino et al. ,2001;ThorneandKishino,2002) The Bayesian dating method implementedinmultidivtime (Thorne et al. ,1998;Kishino et al. ,2001;ThorneandKishino,2002)usesafullyprobabilisticandhighparametricmodelto describethechangeinevolutionaryrateovertimeandusestheMarkovchainMonteCarlo (MCMC)proceduretoderivetheposteriordistributionofratesandtimes.Ineffect,thevariation ofratesisaddressedbylettingtheMCMCalgorithmassignratestodifferentpartsofthetree,and thensamplingfromthepatternsthatarepossible.Bythisway,theMCtechniquesaverageover variouspatternsofratesalongthetree.Theresultisaposteriordistributionofratesandtimes derivedfromapriordistribution.Fortheassignmentsofratestodifferentbranchesinthetree, ratesadrawnfromalognormaldistribution,andahyperparameterν(alsocalledBrownian motionconstant)describestheamountofautocorrelation.Theinternalnodeageproportionsare describedasadirichletdistribution,whichrepresentstheideatomodelevolutionarylineagesdue tospeciation,butisnotintendedasadetailedmodelofspeciationandextinctionprocesses.In practice,themostcommonlyusedprocedureisdividedintothreedifferentstepsandprograms, andisdescribedinmoredetailinastepbystepmanual(Rutschmann,2005).1)Inthefirststep, modelparametersfortheF84+Gmodel(KishinoandHasegawa,1989;Felsenstein,1993)are estimatedbyusingtheprogram baseml ,whichispartofthe PAML package(Yang,1997).2)By usingtheseparameters,theMLofthebranchlengthsisestimated,togetherwithavariance covariancematrixofthebranchlengthestimatesbyusingtheprogram estbranches (Thorne et al. ,1998).3)Thethirdprogram, multidivtime (Kishino et al. ,2001;ThorneandKishino,2002), isthenabletoapproximatetheposteriordistributionsofsubstitutionratesanddivergencetimes byusingamultivariatenormaldistributionofestimatedbranchlengthsandrunninganMCMC procedure. Multidivtime askstheusertospecifyseveralpriors,suchasthemeanandthevarianceof thedistributionsfortheinitialsubstitutionrateattherootnodeortheprospectiveageoftheroot node.Additionally,constraintsonnodalagescanbespecifiedasageintervals.Theprogram

24 providesBayesiancredibilityintervalsforestimateddivergencetimesandsubstitutionrates.In contrastto NPRS and PL (implementedin r8s ), multidivtime isabletoaccountformultiple genes/lociwithdifferentevolutionarycharacteristics.Suchasimultaneousanalysisofmultiple genesmayimprovetheestimatesofdivergencetimeswhicharesharedacrossgenes.

Method11:Phybayes(ArisBrosouandYang,2001,2002) The Phybayes program(ArisBrosouandYang,2001,2002)issimilartothe multidivtime Bayesianapproachdescribedabove.Italsousesafullyprobabilisticandhighparametricmodel todescribethechangeinevolutionaryrateovertimeandusestheMCMCproceduretoderivethe posteriordistributionofratesandtimes.Butthemethodismoreversatileintermsofpossibilities ofdefiningthepriordistributions,asitallowsfortheusageofmodelsthatexplicitlydescribethe processesofspeciationandextinction.Fortheratesofevolution,itoffersachoiceofsixdifferent ratedistributionstomodeltheautocorrelatedratechangefromanancestortoadescendentbranch (lognormal,„stationarized“lognormal,truncatednormal,OrnsteinUhlenbeckprocess,gamma, andexponential,plusthedefinitionoftwomodelrelatedhyperparameters),whereasin multidivtime ,ratesarealwaysdrawnfromalognormaldistribution.Thepriordistributionof divergencetimesisgeneratedbyaprocessofcladogenesis,thegeneralizedbirthanddeath processwithspeciessampling(YangandRannala,1997),amodelthatassumesaconstant speciationandextinctionrateperlineage( multidivtime usesadirichletdistributionofallinternal nodeageproportionstogeneralizetherootedtreestructure;Kishino et al. ,2001).Incontrastto multidivtime,it’snotpossibletoanalyzemultiplegenessimultaneouslywith Phybayes ,andthe programdoesnotallowforan a priori integrationofnodalconstraints(calibrationpoints). 2b. Methods that model rate change with other concepts than rate autocorrelation

Method12:BayesianimplementationofratevariationinBEAST(Drummond et al. ,2006) Similarto Phybayes ,thevariableratemethodsimplementedin BEAST useBayesian inferenceandtheMarkovchainMonteCarlo(MCMC)procedurestoderivetheposterior distributionofratesandtimes.Incontrast,inadditiontotheautocorrelatedmodelsliketheone implementedin multidivtime ,arangeofdifferent,novelmodelshavebeenimplemented,where theratesaredrawnfromadistribution(withvariousdistributionsonoffer;Drummond et al. , 2006).Thesemodelshaveacoupleofinterestingfeatures:a)theparametersofthedistributions canbeestimated(insteadofbeingspecified),andb)thecorrelationofratesbetweenadjacent branchescanbetested(if>0,thiswouldindicatesomeinherenceofrates).Anotherunique 25 featureofthesoftwareisthatitdoesnotrequireastartingtreetopology,whichallowsitto accountforphylogeneticuncertainty.Additionally, BEAST permitsthedefinitionofcalibration distributions(suchasnormal,lognormal,exponentialorgamma)tomodelcalibration uncertaintyinsteadofsimplepointestimatesorageintervals.Fortheother,noncalibratednodes, thereisnospecificprocessthatdescribesthepriordistributionofdivergencetimes(theyare uniformoverarangefrom0toverylarge). BEAST allowstheusertosimultaneouslyanalyze multipledatasets/partitionswithdifferentsubstitutionmodels,andprovidesBayesiancredibility intervals.

Method13:Overdispersedclockmethod(Cutler,2000) Whileallmethodsdescribedsofarassumefundamentallythatthenumberofsubstitutions inalineageisPoissondistributed,the overdispersed clock model (Cutler,2000)assumesthatthe numberofsubstitutionsinalineageisstationary.UnlikeaPoissonprocess,thevarianceinthe numberofsubstitutionswillnotnecessarilybeequaltothemean.Underthismodel,whichtreats ratechangesaccordingtoastationaryprocess,MLestimatesofdivergencetimescanbe calculated.Themethodisimplementedinacprogram,whichisavailabledirectlyfromthe author(Cutler,2000).Itispossibletoincorporatemultiplecalibrationpoints.

Method14:CompoundPoissonprocessmethod(Huelsenbeck et al. ,2000) Asallmethodsdescribedabove(withtheexceptionofthe overdispersed clock model ; Cutler,2000),the compound Poisson process method usesamodelthatassumesthatnucleotide substitutionsoccuralongbranchesofthetreeaccordingtoaPoissonprocess.Butinadditionto theothermodels,itassumesthatanother,independentPoissonprocessgenerateseventsof substitutionratechange.Therefore,thissecondPoissonprocessissuperimposedontheprimary Poissonprocessofmolecularsubstitution(hencethename compound Poisson process),and introduceschanges(informofdiscretejumps)intherateofsubstitutionindifferentbranchesof thephylogeny.Ratesonthetreearethendeterminedbythenumberofratechangeevents,the pointinthetreewheretheyoccur,andthemagnitudeofchangeateachevent(Huelsenbeck et al. , 2000;Magallón,2004).TheseparametersareestimatedbyusingBayesianinference(MCMC integration).Oneofthemainadvantagesoftreatingratevariationasa compound Poisson process isthatthemodelcanintroduceratevariationatanypointofthephylogenetictree;allother methodsassumethatsubstitutionrateschangeonlyatspeciationevents(nodes;Huelsenbeck et al. ,2000).Themethodisimplementedinacprogram,butit’snotmeantforbeingavailablefor thecommunitysofarasthereisnodocumentation(yet). 26 Conclusions Moleculardatingisarapidlydevelopingfield,andthemethodsgeneratedsofararestill farfrombeingperfect(Sanderson et al. ,2004).Moleculardatingestimatesderivedfromdifferent inferencemethodscanbeinconflict,andsocantheresultsobtainedwithdifferenttaxon sampling,genesampling,andcalibrationstrategies(seebelow). Itshouldbeclearthatthereisnosingle“best”moleculardatingmethod;rather,all approacheshaveadvantagesanddisadvantages.Forexample,themethodsreviewedheredifferin thetypeofinputdatatheyuseandprocess:Thefirstgroupofmethods( NPRS and r8s )basetheir analysisoninputphylogramswithbranchlengths.Therefore,theyarenotabletoincorporate branchlengtherrorsorparametersofthesubstitutionmodelintothedatinganalysis(thishasto bedonepriortothedating).Ontheotherhand,thesemethodsarefastandversatile,becausethey canprocessphylogeniesgeneratedfromparsimony,likelihoodorBayesiananalyses.Thesecond groupofmethods( multidivtime , Phybayes , AHRS )useone“true”treetopologytoassessrates anddivergencetimesandestimatethebranchlengthsthemselves.Therefore,theyareableto accountforthebranchlengtherrorsdescribedabove,butstillbasetheiranalysesonafixed,user suppliedtreetopology.Thethirdgroupofmethods( ML with clock and BEAST )directlycalculate ultrametricphylogeniesbasedonlyonsequencedataandmodelparameters,aprocedurethatalso allowsthemtoincorporatetopologicaluncertainties.Computationally,thiscanbevery expensive,especiallyinthecaseofavariableratemodel,andwithahighnumberoftaxa. AsIhavenottestedallsoftwarepackagesandmethodsdescribedheremyself,thisreview isnotacomparisonbasedonpracticalexperiments.However,thepapersthatfirstdescribedthese approachesalwaysreportontheirperformanceonsimulatedandrealdata.Threepapersthat reallycomparesomeofthedescribedmethodsonoriginaldatasetsorsimulateddatahavebeen publishedrecently:YangandYoder(2003)comparedmethods3,5and8(seeTables13)by analyzingaMouseLemurdatasetusingmultiplegenelociandcalibrationpoints,PérezLosada et al. (2004)comparedmethods5,7,8,and9intheiranalysisofanuclearribosomal18Sdataset totesttheevolutionaryradiationoftheThoracianBarnaclesbycomparingdifferentcalibration pointsindependently,andHo et al. (2005b)comparedtheperformanceofmethods8,10,and11 byusingsimulateddata.Currently,softwaredevelopersarestartingtointegratedifferentmethods inthesamesoftware(e.g. baseml ,Yang,1997; BEAST ,Drummond et al. ,2006;andfuture versionsof MrBayes >v3.1,HuelsenbeckandRonquist,2001).Thisrecenttrendisthusallowing userstotryoutdifferentmethodsbasedontheirowndatasets,andthencomparetheresults. Althoughthisreviewfocusesonthedatingmethodsthemselves,atleastafewlinkstokey articlesaboutmoregeneralorveryspecificissuesrelatedtomoleculardatingaregivenhere:1) 27 generalreviews:Magallón(2004)wroteacomprehensivereviewofthetheoryofmolecular dating,whichalsodiscussespaleontologicaldatingmethodsandtheuncertaintiesofthe paleontologicalrecord.Theclassificationofthemolecularmethodsdescribedhereisbasedon herpublication.AnotherrecentreviewhasbeenwrittenbySanderson et al. (2004),which discussestheadvantagesanddisadvantagesofBayesianvs.smoothingmoleculardatingmethods, summarizestheinferredagesofthemajorcladesofplants,andlistsmanypublisheddating applicationsthatinvestigatedrecentplantradiationsand/ortestedbiogeographicalhypotheses. Finally,WelchandBromham(2005),BromhamandPenny(2003),Arbogast et al. (2002),Wray (2001)wrotemoregeneralreviewsontheissueofestimatingdivergencetimes.2)Forspecific discussionsaboutthecrucialandcontroversialroleofcalibration,refertothefollowingpapers: Whereonthetreeandhowshouldweassignagesfromfossilsorgeologicevents?:Nearand Sanderson(2004),Conti et al. (2004)andRutschmann et al. (2004).Howcanwedealwiththe incompletenessofthefossilrecord?:Tavaré et al. (2002),Foote et al. (1999),andFooteand Sepkoski(1999).Howshouldweconstraintheageoftherootanddealwiththemethodological handicapofasymmetricrandomvariablesinmoleculardating?:RodríguezTrelles et al. (2002) andSandersonandDoyle(2001).3)Fortherecentdebateabouttheprecisionofdivergencetime estimates,refertothefollowingpapers:Shouldweextrapolatesubstitutionratesaccrossdifferent evolutionarytimescales?:Ho et al. (2005a).Howcanweaccountforthevariousuncertainties relatedtothecalibrationandthedatingprocedure,howshouldwereportandinterpreterror estimates,andshouldweusesecondarycalibrationpoints?:HedgesandKumar(2003),Graur andMartin(2004),ReiszandMüller(2004),andHedgesandKumar(2004).4)Forquestions relatedtotheinfluenceoftaxonsamplingonestimatingdivergencetimesundervariousdating methods,seeLinder et al. (2005)andSandersonandDoyle(2001).5)Fortheinfluenceofgene samplingreadHeckman et al. (2001).6)Theoreticalproblemsandstrategiesconnectedtothe moleculardatingofsupertreesarediscussedinVosandMooers(2004)andBryant et al. (2004). 6)For“special”datingproblemslikeestimatingthesubstitutionratewhentheagesofdifferent terminalsareknown(e.g.fromvirussequencesthatwereisolatedatdifferentdates;implemented inthesoftware TipDate andalsoin BEAST ),refertoRambaut(2000). Finally,Iwouldliketoaddasuggestiontothoseamonguswhowritesoftware:although thedevelopmentofgraphicaluserinterfaces(GUI’s)iscertainlynotafirstpriority,GUI’swould simplifysignificantlymoleculardatinganalysesfortheaveragebiologist.Moderntools(likethe OpenSourceQt 4 C++classlibraryby Trolltech ; http://www.trolltech.com )makethe developmentoffast,native,andmultiplatformGUIapplicationseasierthaneverbefore.Idonot sharethewidespreadconcernsaboutstupid“analysebyclick”users.Onthecontrary:

28 comprehensiveuserinterfacesallowtheusertoexploreanddetectalltheimportantfeaturesa methodoffers.

29 References Arbogast,B.S.,S.V.Edwards,J.Wakeley,P.Beerli,andJ.B.Slwinski.2002.Estimating divergencetimesfrommoleculardataonphylogeneticandpopulationgenetictimescales. Annual Review of Ecology, Evolution and Systematics 33 :707740.

ArisBrosou,S.2001.Phybayes:aprogramforphylogeneticanalysesinaBayesianframework. DepartmentofBiology(GaltonLaboratory),UniversityCollegeLondon,London,UK.

ArisBrosou,S.,andZ.Yang.2002.Effectsofmodelsofrateevolutiononestimationof divergencedateswithspecialreferencetothemetazoan18SribosomalRNAPhylogeny. Systematic Biology 51 :703714.

ArisBrosou,S.,andZ.Yang.2003.BayesianmodelsofepisodicevolutionsupportaLate PrecambrianexplosivediversificationofMetazoa. Molecular Biology and Evolution 20 :1947 1954.

Baldwin,B.G.,andM.J.Sanderson.1998.Ageandrateofdiversificationofthehawaiian silverswordalliance(Compositae). Proceedings of the National Academy of Sciences USA 95 :94029406.

Bell,C.D.,D.E.Soltis,andP.S.Soltis.2005.TheageoftheAngiosperms:Amolecular timescalewithoutaclock. Evolution 59 :12451258.

Berry,P.E.,W.J.Hahn,K.J.Sytsma,J.C.Hall,andA.Mast.2004.Phylogeneticrelationships andbiogeographyof Fuchsia (Onagraceae)basedonnoncodingnuclearandchloroplastDNA data. American Journal of Botany 94 :601614.

Bremer,K.,E.M.Friis,andB.Bremer.2004.Molecularphylogeneticdatingofasteridflowering plantsshowsearlyCretaceousdiversification. Systematic Biology 53 :496505.

Bremer,K.,andM.H.G.Gustafsson.1997.EastGondwanaancestryofthesunflowerallianceof families. Proceedings of the National Academy of Sciences USA 94 :91889190.

Britten,R.J.1986.RatesofDNAsequenceevolutiondifferbetweentaxonomicgroups. Science 231 :13931398.

Britton,T.2005.Estimatingdivergencetimesinphylogenetictreeswithoutamolecularclock. Systematic Biology 54 :500507.

Britton,T.,B.Oxelman,A.Vinnersten,andK.Bremer.2002.Phylogeneticdatingwith conficenceintervalsusingmeanpathlengths. Molecular Phylogenetics and Evolution 24 :5865.

Bromham,L.,andD.Penny.2003.Themodernmolecularclock. Nature Reviews Genetics 4:216224.

Bromham,L.,A.Rambaut,R.Fortey,A.Cooper,andD.Penny.1998.TestingtheCambrian explosionhypothesisbyusingamoleculardatingtechnique. Proceedings of the National Academy of Sciences USA 95 :1238612389.

Bromham,L.,andM.Woolfit.2004.Explosiveradiationsandthereliabilityofmolecularclocks: islandendemicradiationsasatestcase. Systematic Biology 53 :758766.

30 Bromham,L.D.,A.Rambaut,M.D.Hendy,andD.Penny.2000.Thepowerofrelativeratestest dependsonthedata. Journal of Molecular Evolution 50 :296301.

Bryant,D.,C.Semple,andM.Steel.2004.Supertreemethodsforancestraldivergencedatesand otherapplications.Pp.129150 in O.R.P.BinindaEmonds,ed.Phylogeneticsupertrees: Combininginformationtorevealthetreeoflife.KluwerAcademic,Dordrecht,TheNetherlands.

Chaw,S.M.,C.C.Chang,H.L.Chen,andW.H.Li.2004.Datingthemonocotdicotdivergence andtheoriginofcoreeudicotsusingwholechloroplastgenomes. Journal of Molecular Evolution 58 :424441.

Conti,E.,T.Eriksson,J.Schönenberger,K.J.Sytsma,andD.A.Baum.2002.EarlyTertiaryout ofIndiadispersalofCrypteroniaceae:evidencefromphylogenyandmoleculardating. Evolution 56 :19311942.

Conti,E.,F.Rutschmann,T.Eriksson,K.J.Sytsma,andD.A.Baum.2004.Calibrationof molecularclocksandthebiogeographichistoryofCrypteroniaceae:AreplytoMoyle. Evolution 58 :18741876.

Cutler,D.J.2000.Estimatingdivergencetimesinthepresenceofanoverdispersedmolecular clock. Molecular Biology and Evolution 17 :16471660.

Douzery,E.J.P.,E.A.Snell,E.Bapteste,F.Delsuc,andH.Philippe.2004.Thetimingof eukaryoticevolution:Doesarelaxedmolecularclockreconcileproteinsandfossils? Proceedings of the National Academy of Sciences USA 101 :1538615391.

Drummond,A.J.,S.Y.W.Ho,M.J.Phillips,andA.Rambaut.2006.Relaxedphylogeneticsand datingwithconfidence. PLoS Biology 4:e88.

Drummond,A.J.,andA.Rambaut.2003.BEASTv1.0.Availableat http://evolve.zoo.ox.ac.uk/beast/ .

Efron,B.,andR.J.Tibshirani.1993.Anintroductiontothebootstrap.ChapmanandHall,New York.

Eriksson,T.2002.Ther8sbootstrapkit.BergianskaUniversity,Stockholm,Sweden.

Felsenstein,J.1981.EvolutionarytreesfromDNAsequences:amaximumlikelihoodapproach. Journal of Molecular Evolution 17 :368376.

Felsenstein,J.1988.Phylogeniesfrommolecularsequences:inferenceandreliability. Annual Review of Genetics 22 :521265.

Felsenstein,J.1993.PhylogeneticInferencePackage(PHYLIP),version3.5.Universityof Washington,Seattle,WA.

Felsenstein,J.2004.Inferringphylogenies.SinauerAssociates,Inc.,Sunderland,MA.

Foote,M.,J.P.Hunter,C.M.Janis,andJ.J.SepkoskiJr.1999.Evolutionaryandpreservational constraintsonoriginsofbiologicgroups:divergencetimesofEutherianmammals. Science 283 :13101314.

Foote,M.,andJ.J.SepkoskiJr.1999.Absolutemeasuresofthecompletenessofthefossil record. Nature 398 :415417.

31 Gillespie,J.H.1986.Ratesofmolecularevolution. Annual Review of Ecology, Evolution and Systematics 17 :637665.

Gillespie,J.H.1991.Thecausesofmolecularevolution.OxfordUniversityPress,Oxford,GB.

Gillooly,J.F.,A.P.Allen,G.B.West,andJ.H.Brown.2005.TherateofDNAevolution: Effectsofbodysizeandtemperatureonthemolecularclock. Proceedings of the National Academy of Sciences USA 102 :140145.

Graur,D.,andW.Martin.2004.Readingtheentrailsofchickens:moleculartimescalesof evolutionandtheillusionofprecision. TRENDS in Genetics 20 :8086.

Hasegawa,M.,H.Kishino,andT.Yano.1989.Estimationofbranchingdatesamongprimatesby molecularclocksofnuclearDNAwhichsloweddowninHominoidea. Journal of Human Evolution 18 :461476.

Hasegawa,M.,J.L.Thorne,andH.Kishino.2003.Timescaleofeutherianevolutionestimated withoutassumingaconstantrateofmolecularevolution. Genes & Genetic Systems 78 :267283.

Heckman,D.S.,D.M.Geiser,B.R.Eidell,R.L.Stauffer,N.L.Kardos,andS.B.Hedges.2001. MolecularEvidencefortheEarlyColonizationofLandbyFungiandPlants. Science 293 :1129 1133.

Hedges,S.B.,andS.Kumar.2003.Genomicclocksandevolutionarytimescales. TRENDS in Genetics 19 :200206.

Hedges,S.B.,andS.Kumar.2004.Precisionofmoleculartimeestimates. TRENDS in Genetics 20 :242247.

Hedges,S.B.,P.H.Parker,C.G.Sibley,andS.Kumar.1996.Continentalbreakupandthe ordinaldiversificationofbirdsandmammals. Nature 381 :226229.

Hillis,D.M.,B.K.Mable,andC.Moritz.1996.Applicationsofmolecularsystematics:thestate ofthefieldanalooktothefuture.Pp.515543 in D.M.Hillis,C.MoritzandB.K.Mable,eds. MolecularSystematics.Sinauer,Sunderland,MA.

Ho,S.Y.W.,M.J.Phillips,A.Cooper,andA.J.Drummond.2005a.Timedependencyof molecularrateestimatesandsystematicoverestimationofrecentdivergencetimes. Molecular Biology and Evolution 22 :15611568.

Ho,S.Y.W.,M.J.Phillips,A.J.Drummond,andA.Cooper.2005b.Accuracyofrateestimation usingrelaxedclockmodelswithacriticalfocusontheearlymetazoanradiation. Molecular Biology and Evolution 22 :13551363.

Huelsenbeck,J.P.,B.Larget,andD.Swofford.2000.AcompoundPoissonprocessforrelaxing themolecularclock. Genetics 154 :18791892.

Huelsenbeck,J.P.,andF.Ronquist.2001.MrBayes:Bayesianinferenceofphylogeny. Bioinformatics 17 :754.

Kishino,H.,andM.Hasegawa.1989.Evaluationofthemaximumlikelihoodestimateofthe evolutionarytreetopologiesfromDNAsequencedata,andthebranchingorderinHominoidea. Journal of Molecular Evolution 170179 :170179.

32 Kishino,H.,J.L.Thorne,andW.J.Bruno.2001.Performanceofadivergencetimeestimation methodunderaprobabilisticmodelofrateevolution. Molecular Biology and Evolution 18 :352 361.

Korber,B.,M.Muldoon,J.Theiler,F.Gao,R.Gupta,A.Lapedes,B.H.Hahn,S.Wolinsky,and T.Bhattacharya.2000.TimingtheancestoroftheHIV1pandemicstrains. Science 288 :1789 1796.

Langley,C.H.,andW.Fitch.1974.Anestimationoftheconstancyoftherateofmolecular evolution. Journal of Molecular Evolution 3:161177.

Li,W.H.1997.MolecularEvolution.SinauerPress,SunderlandMA,USA.

Li,W.H.,andD.Graur.1991.Fundamentalsofmolecularevolution.SinauerAssociates, Sunderland,MA.

Li,W.H.,andM.Tanimura.1987.Themolecularclockrunsmoreslowlyinmanthaninapes andmonkeys. Nature 326 :9396.

Linder,H.P.,C.R.Hardy,andF.Rutschmann.2005.Taxonsamplingeffectsinmolecularclock dating:anexamplefromtheAfricanRestionaceae. Molecular Phylogenetics and Evolution 35 :569582.

Madsen,O.,M.Scally,C.J.Douady,D.J.Kao,R.W.Debry,R.Adkins,H.M.Amrine,M.J. Stanhope,W.W.DeJong,andM.S.Springer.2001.Paralleladaptiveradiationsintwomajor cladesofplacentalmammals. Nature 409 :610614.

Magallón,S.A.2004.Datinglineages:molecularandpaleontologicalapproachestothetemporal frameworkofclades. International Journal of Plant Sciences 165 :721.

Magallón,S.A.,andM.J.Sanderson.2001.AbsolutediversificationratesinAngiospermclades. Evolution 55 :17621780.

Martin,A.P.,andS.R.Palumbi.1993.Bodysize,metabolicrate,generationtimeandthe molecularclock. Proceedings of the National Academy of Sciences USA 90 :40874091.

Muse,S.V.,andB.S.Weir.1992.Testingforequalityofevoltuionaryrates. Genetics 132 :269 276.

Near,T.J.,andM.J.Sanderson.2004.Assessingthequalityofmoleculardivergencetime estimatesbyfossilcalibrationsandfossilbasedmodelselection. Philosophical Transactions of the Royal Society B: Biological Sciences 359 :14771483.

Nei,M.1987.MolecularEvolutionaryGenetics.ColumbiaUniversityPress,NewYork.

Ohta,T.2002.Nearneutralityinevolutionofgenesandingeneregulation. Proceedings of the National Academy of Sciences USA 99 :1613416137.

Ota,R.,andD.Penny.2003.Estimatingchangesinmutationalmechanismsofevolution. Journal of Molecular Evolution 57 :S233–S240.

PérezLosada,M.,J.T.Høeg,andK.A.Crandall.2004.Unravelingtheevolutionaryradiationof theThoracianBarnaclesusingmolecularandmorphologicalevidence:acomparisonofseveral divergencetimeestimationapproaches. Systematic Biology 53 :244264.

33 Rambaut,A.2000.Estimatingtherateofmolecularevolution:incorporatingnon contemporaneoussequencesintomaximumlikelihoodphylogenies. Bioinformatics 16 :395399.

Rambaut,A.2001.Rhinov1.1.Availableat http://evolve.zoo.ox.ac.uk/ .

Rambaut,A.,andL.Bromham.1998.Estimatingdivergencedatesfrommolecularsequences. Molecular Biology and Evolution 15 :442448.

Rambaut,A.,andM.Charleston.2002.PhylogeneticTreeEditorandManipulatorv1.0alpha10. DepartmentofZoology,UniversityofOxford,Oxford,UK.

Reisz,R.R.,andJ.Müller.2004.Moleculartimescalesandthefossilrecord:apaleontological perspective. TRENDS in Genetics 20 :237241.

RodríguezTrelles,F.,R.Tarrío,andF.J.Ayala.2002.Amethodologicalbiastoward overestimationofmolecularevolutionarytimescales. Proceedings of the National Academy of Sciences USA 99 :81128115.

Rutschmann,F.2005.Bayesianmoleculardatingusingpaml/multidivtime.Astepbystep manual.Version1.5(July2005).InstituteofSystematicBotany,UniversityofZurich,Zurich, Switzerland.Availablefrom http://www.plant.ch .

Rutschmann,F.,T.Eriksson,J.Schönenberger,andE.Conti.2004.DidCrypteroniaceaereally disperseoutofIndia?Moleculardatingevidencefrom rbc L, ndh F,and rpl 16sequences. International Journal of Plant Sciences 165 :6983.

Sanderson,M.J.1997.Anonparametericapproachtoestimatingdivergencetimesintheabsence ofrateconstancy. Molecular Biology and Evolution 14 :12181231.

Sanderson,M.J.1998.Estimatingrateandtimeinmolecularphylogenies:beyondthemolecular clock?Pp.242264 in D.E.Soltis,P.S.SoltisandJ.J.Doyle,eds.Molecularsystematicsof plantsII;DNAsequencing.KluwerAcademicPublishers,Norwell,MA.

Sanderson,M.J.2002.Estimatingabsoluteratesofmolecularevolutionanddivergencetimes:a PenalizedLikelihoodapproach. Molecular Biology and Evolution 19 :101109.

Sanderson,M.J.2003a.Moleculardatafrom27proteinsdonotsupportaPrecambrianoriginof landplants. American Journal of Botany 90 :954956.

Sanderson,M.J.2003b.r8s:inferringabsoluteratesofmolecularevolutionanddivergencetimes intheabsenceofamolecularclock. Bioinformatics 19 :301302.

Sanderson,M.J.,andJ.A.Doyle.2001.Sourcesoferrorandconfidenceintervalsinestimating theageofAngiospermsfrom rbc Land18SrDNAdata. American Journal of Botany 88 :1499 1516.

Sanderson,M.J.,J.L.Thorne,N.Wikström,andK.Bremer.2004.Molecularevidenceonplant divergencetimes. American Journal of Botany 91 :16561665.

Smith,A.B.,andJ.J.Peterson.2002.Datingthetimeoforiginofmajorclades:molecularclocks andthefossilrecord. Annual Review of Earth and Planetary Sciences 30 :6588.

Soltis,P.S.,D.E.Soltis,V.Savolainen,P.R.Crane,andT.G.Barraclough.2002.Rate heterogeneityamonglineagesoftracheophytes:Integrationofmolecularandfossildataand

34 evidenceformolecularlivingfossils. Proceedings of the National Academy of Sciences USA 99 :44304435.

Springer,M.S.,W.J.Murphy,E.Eizirik,andS.J.O'Brien.2003.Placentalmammal diversificationandtheCretaceousTertiaryboundary. Proceedings of the National Academy of Sciences USA 100 :10561061.

Swofford,D.L.2001.PAUP*4.0b10:PhylogeneticAnalysisUsingParsimony(*andother methods).Sinauer,Sunderland,MA.

Swofford,D.L.,G.J.Olsen,P.J.Waddell,andD.M.Hillis.1996.Phylogeneticinference.Pp. 407514 in D.M.Hillis,C.MoritzandB.K.Mable,eds.MolecularSystematics.Sinauer Associates,Sunderland,Massachusetts.

Sytsma,K.J.,A.Litt,M.L.Zjhra,J.C.Pires,M.Nepokroeff,E.Conti,J.Walker,andP.G. Wilson.2004.Clades,clocks,andcontinents:historicalandbiogeographicalanalysisof ,Vochysiaceae,andrelativesinthesouthernhemisphere. International Journal of Plant Sciences 165 :85105.

Tajima,F.1993.Simplemethodsfortestingthemolecularevolutionaryclockhypothesis. Genetics 135 :599607.

Takahata,N.1987.Ontheoverdispersedmolecularclock. Genetics 116 :169179.

Takezaki,N.,A.Rzhetsky,andM.Nei.1995.Phylogenetictestofthemolecularclockand linearizedtrees. Molecular Biology and Evolution 12 :823833.

Tavaré,S.,C.R.Marshall,O.Will,C.Soligo,andR.D.Martin.2002.Usingthefossilrecordto estimatetheageofthelastcommonancestorofextantprimates. Nature 416 :726729.

Thorne,J.L.,andH.Kishino.2002.Divergencetimeandevolutionaryrateestimationwith multilocusdata. Systematic Biology 51 :689702.

Thorne,J.L.,H.Kishino,andI.S.Painter.1998.Estimatingtherateofevolutionoftherateof molecularevolution. Molecular Biology and Evolution 15 :16471657.

Uyenoyama,M.1995.Ageneralizedleastsquaresestimatefortheoriginofsporophyticself incompatibility. Genetics 139 :975992.

Vos,R.A.,andA.Ø.Mooers.2004.Reconstructingdivergencetimesforsupertrees.Pp.281299 in O.R.P.BinindaEmonds,ed.Phylogeneticsupertrees:Combininginformationtorevealthe treeoflife.KluwerAcademic,Dordrecht,TheNetherlands.

Welch,J.J.,andL.Bromham.2005.Moleculardatingwhenratesvary. TRENDS in Ecology and Evolution 20 :320327.

Whittle,C.A.,andM.O.Johnston.2003.Broadscaleanalysiscontradictsthetheorythat generationtimeaffectsmolecularevolutionaryratesinplants. Journal of Molecular Evolution 56 :223233.

Wikström,N.,V.Savolainen,andM.W.Chase.2001.Evolutionoftheangiosperms:calibrating thefamilytree.Proceedings of the Royal Society B: Biological Sciences268 :22112220.

35 Wikström,N.,V.Savolainen,andM.W.Chase.2003.Angiospermdivergencetimes: congruenceandincongruencebetweenfossilsandsequencedivergenceestimates.Pp.142165 in P.C.J.DonoghueandM.P.Smith,eds.Tellingtheevolutionarytime:molecularclocksandthe fossilrecord.Taylor&Francis,London,UK.

Wray,G.A.2001.DatingbranchesontheTreeofLifeusingDNA. Genome Biology 3:1.11.7.

Wray,G.A.,J.S.Levinton,andL.S.Shapiro.1996.Molecularevidencefordeepprecambrian divergencesamongmetazoanphyla. Science 274 :568573.

Wu,C.I.,andW.H.Li.1985.Evidenceforhigherratesofnucleotidesubstitutioninrodents thaninman. Proceedings of the National Academy of Sciences USA 82 :17411745.

Yang,Z.1997.PAML:aprogrampackageforphylogeneticanalysisbymaximumlikelihood. Computer Applications in the Biosciences CABIOS 13 :555556.

Yang,Z.2004.Aheuristicratesmoothingprocedureformaximumlikelihoodestimationof speciesdivergencetimes. Acta Zoologica Sinica 50 :645656.

Yang,Z.,andB.Rannala.1997.BayesianphylogeneticinferenceusingDNAsequences:A MarkovChainMonteCarlomethod. Molecular Biology and Evolution 14 :717724.

Yang,Z.,andA.D.Yoder.2003.ComparisonoflikelihoodandBayesianmethodsforestimating divergencetimesusingmultiplelociandcalibrationpoints,withapplicationtoaradiationof cutelookingmouselemurspecies. Systematic Biology 52 :705716.

Yoder,A.D.,andZ.H.Yang.2000.Estimationofprimatespeciationdatesusinglocalmolecular clocks. Molecular Biology and Evolution 17 :10811090.

Yoon,H.S.,J.D.Hackett,C.Ciniglia,G.Pinto,andD.Bhattacharya.2004.Amolecular timelinefortheoriginofphotosyntheticEukaryotes. Molecular Biology and Evolution 21 :809 818.

Zuckerkandl,E.,andL.Pauling.1965.Evolutionarydivergenceandconvergenceinproteins.Pp. 97166 in V.BrysonandH.Vogel,eds.EvolvingGenesandProteins.AcademicPress,New York.

36 Tables

Table1.Moleculardatingmethodsthatusea molecularclockandoneglobalrateofsubstitution.Thespecificationsabouteaseofuseand popularityrepresentonlytheauthor’spersonalviewandarethereforehighlysubjective.1)Exceptmodelparameters,priors,orcalibration constraints,2)SE:standarderror;CI:95%confidenceinterval;CrI:95%Bayesiancredibilityinterval,3)UnixsoftwarealsorunsunderMac OSX,asthisoperatingsystembasesonDarwin,anopensourceUNIXenvironment.4)PAUP*(Swofford et al. ,2001),DNAMLK(partofthe PHYLIPpackage;Felsenstein,1993),baseml(partofthepamlpackage;Yang,1997),MrBayes(HuelsenbeckandRonquist,2001),BEAST (DrummondandRambaut,2003)etc.5)Iftheuserprovidesatreetopologyinadditiontothesequences,theoptimizationrunsmuchfaster.

# 1 2 3 Method Linearregression Meanpathlength LangleyFitch Author(s) Nei(1987);LiandGraur BremerandGustafsson(1997) LangleyandFitch(1974) (1991) Softwarewhereit'simplemented PATH(Britton2002) r8s(Sanderson2003) Currentversion 1.7 Runsonoperatingsystem(s) Unix 3) /LinuxwithGpc1999 Unix 3) /Linux Optimizationstrategy Maximumlikelihood Inputdata 1) distancematrix phylogram(withbl) phylogram(withbl) Allowsmultiplecalibrationpoints yes no yes Accountsformultiple no no no datasets/partitions Provideserrorestimates yes,CI yes,meanpathlengthCI yes,internalandbootstrapCI's (SE/CI/CrI) 2) Easeofuse easy easy medium Popularityaccordingtoliterature verypopularuntilabout10 popular lesspopular yearsago 37 Table1,continued... # 4 Method MLwithclock Author(s) Felsenstein(1981) Softwarewhereit'simplemented manyphylogeneticpackages 4) Currentversion Runsonoperatingsystem(s) dependsonprogram Optimizationstrategy Maximumlikelihood Inputdata 1) sequencedata(+treetopology 5) ) Allowsmultiplecalibrationpoints dependsonprogram Accountsformultipledatasets/partitions no Provideserrorestimates(SE/CI/CrI) 2) dependsonprogram Easeofuse dependsonprogram Popularityaccordingtoliterature verypopular

38 Table2. Moleculardatingmethodsthatthat correctforrateheterogeneity .Thespecificationsabouteaseofuseandpopularityrepresent onlytheauthor’spersonalviewandarethereforehighlysubjective.1)Exceptmodelparameters,priors,orcalibrationconstraints.2)SE: standarderror;CI:95%confidenceinterval;CrI:95%Bayesiancredibilityinterval.3)UnixsoftwarealsorunsunderMacOSX,asthis operatingsystembasesonDarwin,anopensourceUNIXenvironment. # 5 Method Linearizedtrees Author(s) LiandTanimura(1987) Softwarewhereit'simplemented Currentversion Runsonoperatingsystem(s) Optimizationstrategy dependsonclockmethod Inputdata 1) phylogram(withbl) Allowsmultiplecalibrationpoints dependsonclockmethod Accountsformultipledatasets/partitions no Provideserrorestimates(SE/CI/CrI) 2) dependsonclockmethod Easeofuse easy Popularityaccordingtoliterature lesspopular

39 Table2 ,continued... # 6 Method Localmolecularclock Author(s) Hasegawa et al. (1989);Uyenoyama(1995);RambautandBromham(1998);YoderandYang(2000) Softwarewhereit'simplemented baseml(paml;Yang,1997) QDate(RambautandBromham, Rhino(Rambaut,2001) 1998) Currentversion 3.14 1.1 1.2 Runsonoperatingsystem(s) Unix 3) /Linux/Windows MacOS9.x/Unix 3) /Linux/Windows MacOS 9.x/Unix 3) /Linux/Windows Optimizationstrategy Maximumlikelihood Maximumlikelihood Maximumlikelihood Inputdata 1) phylogram(withbl) sequencedata+quartetdefinition sequencedata+treetopology Allowsmultiplecalibrationpoints yes yes yes Accountsformultiple yes no onlycodonpositionpartitions datasets/partitions Provideserrorestimates yes,SE yes,CI yes,CI (SE/CI/CrI) 2) Easeofuse medium easy medium Popularityaccordingtoliterature popular lesspopular popular,butmoreforrate comparisons

40 Table2 ,continued... # 6,continued... Method Localmolecularclock Author(s) Hasegawa et al. (1989);Uyenoyama(1995);RambautandBromham(1998);Yoderand Yang(2000) Softwarewhereit’simplemented r8s(Sanderson,2003b) BEAST(DrummondandRambaut,2003) Currentversion 1.7 1.3 Runsonoperatingsystem(s) Unix 3) /Linux Unix 3) /Linux/Windows,requiresJava1.4 Optimizationstrategy smoothing/minimizingoptimalityfunction BayesianMCMC Inputdata 1) phylogram(withbl) sequencedata Allowsmultiplecalibrationpoints yes yes Accountsformultiple no yes datasets/partitions Provideserrorestimates yes,CI,butseparatebootstrappingisrequired yes,CrI (SE/CI/CrI) 2) Easeofuse medium medium Popularityaccordingtoliterature popular,butmoreforNPRSandPLmethods becomingincreasinglypopular

41 Table3(seenextpage).Moleculardatingmethodsthatthat incorporaterateheterogeneity .Thespecificationsabouteaseofuseand popularityrepresentonlytheauthor’spersonalviewandarethereforehighlysubjective 1)Exceptmodelparameters,priors,orcalibrationconstraints. 2)SE:standarderror;CI:95%confidenceinterval;CrI:95%Bayesiancredibilityinterval. 3)UnixsoftwarealsorunsunderMacOSX,asthisoperatingsystembasesonDarwin,anopensourceUNIXenvironment. 4)Plusonehyperparameter(autocorrelationvalueν). 5)Plusseveralhyperparameters(describingspeciationandextinctionrate). 6)ImplementsarangeofrelaxedclockmodelsbyDrummond et al. (2006),butalsothemodelsbyThorneandKishino(2002)andAris BrosouandYang(2002). 7)Additionally,twographicaluserinterfacescalledBEAUtiandTRACERfacilitatedatasetupandoutputanalysis. 8)Themethodisimplementedinacprogram,butitisnotmeantforpublicaccess(asthereisnodocumentation). 9)Fordefiningtheageofcalibrationpoints,differentpriordistributionsareavailable,suchasnormal,lognormal,exponential,orgamma.

42 Table3 ,continued ...

# 7 8 Method NPRS PL Author(s) Sanderson(1997) Sanderson(2002) Softwarewhereit’s r8s(Sanderson,2003b) TreeEdit(RambautandCharleston, r8s(Sanderson,2003b) implemented 2002) Currentversion 1.7 1.0a10 1.7 Runsonoperatingsystem(s) Unix 3) /Linux MacOS8.6orlater,includingMac Unix 3) /Linux OSX Optimizationstrategy smoothing/minimizingoptimality smoothing/minimizingoptimality smoothing/minimizingoptimality function function function Inputdata1) phylogram(withbl) phylogram(withbl) phylogram(withbl) Modelofrateevolution rateautocorrelation rateautocorrelation rateautocorrelation Allowsmultiplecalibration yes no yes points Accountsformultiple no no no datasets/partitions Provideserrorestimates yes,internalandbootstrapCI’s no yes,CI,butseparatebootstrapping (SE/CI/CrI) 2) isrequired Accountsforphylogenetic no no no uncertainty Easeofuse medium easy(graphicaluserinterface) medium Popularityaccordingto popular popular becomingincreasinglypopular literature

43 Table3 ,continued ... # 9 10 11 Method AHRS multidivtime Phybayes Author(s) Yang(2004) Thorne et al. (1998),Kishino et al. ArisBrosouandYang(2002) (2001) Softwarewhereit's baseml(paml;Yang,1997) multidivtime(ThorneandKishino, Phybayes(ArisBrosouandYang, implemented 2002) 2001) Currentversion 3.14(since3.14beta5) 9/25/03 0.2e Runsonoperatingsystem(s) Unix 3) /Linux/Windows Unix 3) /Linux/Windows Unix 3) /Linux/Windows Optimizationstrategy Maximumlikelihood BayesianMCMC BayesianMCMC Inputdata 1) sequencedata+treetopology sequencedata+treetopology sequencedata+treetopology Modelofrateevolution rateautocorrelation rateautocorrelation rateautocorrelation Ratesaredrawnfrom lognormaldistribution sixdifferentdistributions Priordistributionof describedasdirichletdistribution 4) describedasgeneralizedbirthdeath divergencetime process 5) Allowsmultiplecalibration yes yes,asuserspecifiedintervals no points Accountsformultiple yes yes no datasets/partitions Provideserrorestimates yes,CI yes,CrI yes,CrI,butmustbecalculatedby (SE/CI/CrI) 2) theuser Accountsforphylogenetic no no,butacceptspolytomiesininput no uncertainty tree Easeofuse medium medium(usestepbystepmanual; medium Rutschmann,2005) Popularityaccordingto notyetverypopular becomingincreasinglypopular notyetverypopular literature

44 Table3 ,continued... # 12 13 14 Method variableratemodelsinBEAST overdispersedclock compoundpoisson Author(s) Drummond et al. (2006) Cutler(2000) Huelsenbeck et al. (2000) Softwarewhereit's BEAST(Drummond et al. ,2006) cprogram(Cutler,2000) cprogram(Huelsenbeck et al. , implemented 2000) Currentversion 1.3 dating5.c 8) Runsonoperatingsystem(s) Unix 3) /Linux/Windows,requiresJava Unix 3) /Linux/Windows 8) 1.4 Optimizationstrategy BayesianMCMC Maximumlikelihood BayesianMCMC Inputdata 1) sequencedata phylogram(withbl) 8) Modelofrateevolution variousmodelsimplemented 6) doublystochasticpoissonprocess compoundpoissonprocess Ratesaredrawnfrom differentdistributions,suchaslogor 8) lognormal Priordistributionof nospecificdescription,priorsare 8) divergencetime uniform 9) Allowsmultiplecalibration yes yes 8) points Accountsformultiple yes no 8) datasets/partitions Provideserrorestimates yes,CrI yes,CI 8) (SE/CI/CrI) 2) Accountsforphylogenetic yes no 8) uncertainty Easeofuse medium,arangeoftutorialsis medium 8) available 7) Popularityaccordingto becomingincreasinglypopular notyetverypopular 8) literature 45 46

Chapter II. Did Crypteroniaceae really disperse out-of-India? Molecular dating evidence from rbc L, ndh F, and rpl16 intron sequences

FrankRutschmann,TorstenEriksson 1,JürgSchönenberger 2,andElenaConti 3 1Bergius Foundation, Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden 2Department of Botany, Stockholm University, Lilla Frescativägen 5, SE-106 91 Stockholm, Sweden 3Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland Publishedin InternationalJournalofPlantSciences165(4Suppl.):S69S83.2004.

47 Abstract BiogeographicalandpaleontologicalstudiessuggestedthatsomeancientGondwanantaxa havebeencarriedbytheraftingIndianplatefromGondwanatoAsia.Duringthisjourney,the Indianislandexperienceddramaticlatitudinalandclimaticchangesthatcausedmassive extinctionsinitsbiota.However,sometaxasurvivedtheseconditionsanddispersed"outof India"intoSouthandSouthEastAsia,afterIndiacollidedwiththeAsiancontinentintheEarly Tertiary.Totestthishypothesis,independentestimatesforlineageagesareneeded.Apublished rbc LtreesupportedthesistergrouprelationshipbetweentheSouthandSouthEastAsian Crypteroniaceae(comprising Crypteronia , Axinandra and Dactylocladus )andacladeformedby theAfricanOliniaceae,Penaeaceae,andRhynchocalycaceaeandtheCentralandSouthAmerican Alzateaceae.MoleculardatingestimatessuggestedthatCrypteroniaceaesplitfromtheirWest GondwanansistercladeintheEarlytoMiddleCretaceous,andreachedAsiaraftingontheIndian plate.HerewepresentmolecularevidencefromadditionalchloroplastDNAregionsandmore taxatotestthevalidityoftheoutofIndiahypothesisforCrypteroniaceae.Bothclockbased (LangleyFitch)andclockindependentageestimates(NPRSandPenalizedLikelihood),basedon maximumlikelihoodanalysesofthreechloroplastDNAregions( rbc L, ndh F,and rpl 16intron), wereusedtoinfertheageofCrypteroniaceae.OurdatingresultssuggestanancientGondwanan originofCrypteroniaceaeintheEarlytoMiddleCretaceous,followedbydiversificationonthe IndianplateintheEarlyTertiaryandsubsequentdispersaltoSouthEastAsia.Thesefindingsare congruentwithrecentmolecular,paleontological,andbiogeographicresultsinvertebrates. Withinthebiogeographiccontextofthisstudy,weexplorethecriticalassignmentofpaleobotanic andgeologicalconstraintstocalibrateultrametrictrees. Keywords:Moleculardating,molecularclock,r8s,ratesofsubstitution,penalized likelihood,nprs,clockcalibration,biogeography,Gondwana,vicariance,Crypteroniaceae, Myrtales.

48 Introduction Crypteroniaceaesensustricto(Myrtales;Candolle1857)areasmallgroupofevergreen tropicalshrubsandtreescomprisingthreegenera:Crypteronia Bl.,withsevenspecies,isthe genuswiththebroadestdistributioninSouthEastAsia,includingtheMalayPeninsula,Sumatra, Java,Borneo,Philippines,Thailand,Vietnam,Myanmar,andNewGuinea; Dactylocladus Oliv. hasonlyonespecies, Dactylocladus stenostachys ,endemictoBorneo; Axinandra Thw.includes onespecies, Axinandra zeylanica ,endemictoSriLanka,andthreeotherspecieswithrestricted distributionintheMalaypeninsulaandthenorthernpartofBorneo(vanBeusekomOsingaand vanBeusekom,1975;JohnsonandBriggs,1984;PereiraandWong,1995;Conti et al. ,2002; Figure1). SouthEastAsiaandSriLankaareamongthetaxonomicallymostdiverseregionson earth.Inaddition,theyharbourhighproportionsofendemicspecies.Forthesereasons,bothareas havebeenincludedamongthe25hotspotsofbiologicaldiversityidentifiedinarecentworldwide survey(Myers et al. ,2000).Thisremarkablespeciesrichnesscanbepartiallyexplainedbythe geologicalhistoryofSriLankaandSouthEastAsia.TheupliftoftheHimalayanchaincausedby thecollisionoftheDeccanplate(comprisingIndia,SriLanka,andtheSeychelles)withLaurasia duringtheEocene(between55and40millionyears[mys]ago)andthegeneralizedLateTertiary aridification(Partridge,1997;WillisandMcElwain,2002,pp.197198)ledtoan impoverishmentofthetropicalbiomeinAsia.Pocketsofthisbiome,however,survivedin refugialareascharacterizedbyconstant,tropicalconditions,forexample,inSriLankaandSouth EastAsia.Onlyintheserefugialareas,didtropicalplantshaveachancetosurvivethe detrimentaleffectsofQuaternaryclimateoscillationsontheIndiansubcontinent(Ravenand Axelrod,1974).TherelictualnatureoftheSouthEastAsianfloraisalsoreflectedinthegreat concentrationofearlydivergingangiospermcladesinthefossilrecordsofthesubtropicalforests ofAsiaAustralasia(Morley,2001). Crypteroniaceaehadbeenproposedasbeinganancientandrelictualgrouponthebasisof theirdistributionandmorphology(vanVlietandBaas,1975;vanBeusekomOsinga,1977,p. 189).Theyrepresentaninterestingcasestudytoinvestigatetherelativecontributionsof LaurasianandGondwananelementstotheSouthAsianflora,becausetheirmembershadbeen alternativelysuggestedasbeingofLaurasianorGondwananorigin.Forexample,Meijer(1972) postulatedaGondwananoriginfor Axinandra ,agenusthatheinterpretedasbeing morphologicallysimilartotheancestoroftheentireorderMyrtales.Furthermore,Ashtonand Gunatilleke(1987,p.263),referringtothebiogeographichistoryof Axinandra ,stated:"The disjunctdistributionandgeneralizedmorphologyofthislowlandrainforestgenussuggest 49 considerableantiquityandpossiblespreadintoAsiabywayoftheDeccanPlate".Thesame authorssuggestedthat Axinandra andothertaxawerecarriedbytheraftingIndianplatefrom GondwanatoLaurasia.AfterIndiacollidedwiththeAsiancontinentintheEarlyTertiary,afew survivingGondwananelementsdispersed"outofIndia"intoSouthandSouthEastAsia,which atthetimelayinthesamelatitudinalandclimaticzone(Morley,2000).TheoutofIndiaorigin ofCrypteroniaceaewasalsosupportedinrecentbiogeographicstudiesbasedonmoleculardating estimates(Conti et al. ,2002;MorleyandDick,2003). Theideathatsplittingplatesmaycarrybioticelementsfromonecontinenttotheother hadalreadybeenproposedbyAxelrod(1971)andMcKenna(1973).However,Ravenand Axelrod(1974)notedthatitisdifficulttofindevidenceforoutofIndiadispersal,becauseofthe dramaticlatitudinalandclimaticchangesthataffectedtheDeccanplateduringitsjourneyfrom GondwanatoLaurasiaandtheensuingmassiveextinctionsinitsbiota.Thesameauthors suggestedaLaurasianoriginforCrypteroniaceae(RavenandAxelrod,1974).Recentmolecular phylogeneticanalysesof rbc LsequencesinMyrtales(Conti et al. ,2002)supportedthat Crypteroniaceaeformamonophyleticgroupcomprising Axinandra , Dactylocladus and Crypteronia andidentifiedasistercladecomprising:1)Penaeaceae,asmallgroupof23species in7generaendemictotheCapeProvinceofSouthAfrica;2)Oliniaceae,comprisingasingle genuswith8speciesrestrictedtoEasternandSouthernAfrica;3)Rhynchocalycaceae,withthe singlespecies Rhynchocalyx lawsonioides ,arare,evergreentreeendemictoEasternCapeand KwaZuluNatalinSouthAfrica(JohnsonandBriggs,1984);and4)Alzateaceae,withthesingle species Alzatea verticillata ,atreerestrictedtothesubmontanetropicalforestsofBolivia,Peru, Panama,andCostaRica(Graham,1984). ToinvestigatethebiogeographichistoryofCrypteroniaceae,Conti et al. (2002)inferred theageofCrypteroniaceaebyusingthreedifferentmoleculardatingapproachesappliedto rbc L sequences.Becausebothphylogeneticrelationshipsanddatingestimatesofrelevantnodeswere concordantwiththegeologicalhistoryoftheDeccanPlateinrelationtoWestGondwanan continents,theauthorssuggestedaWestGondwananoriginforCrypteroniaceaeandrelated families,withsubsequentdispersalofCrypteroniaceaetotheAsiancontinentviaIndia.However, theseconclusionswerebasedonevidencefromonlyonegene( rbc L)andlimitedtaxonsampling fromCrypteroniaceaeandrelatedfamilies. Inthispaper,wetestthevalidityofpreviousconclusionsontheoutofIndiaoriginof Crypteroniaceaebyexpandingthetaxonsamplingtoincludefouroutof12describedspeciesof Crypteroniaceaeand13outof33describedspeciesoftheirsisterclade.Furthermore,weperform ouranalysesonDNAsequencesofthreechloroplastregions( rbc L, ndh F, rpl 16intron)anda combineddataset,comparetheresultsofclockdependent(LangleyFitch,LF:LangleyandFitch,

50 1974)andclockindependentmoleculardatingmethods(nonparametricratesmoothing,NPRS: Sanderson,1997;andPenalizedLikelihood,PL:Sanderson,2002),andevaluatetheleveloferror inourdivergencetimeestimatesbyimplementingabootstrapapproach(BaldwinandSanderson, 1998;SandersonandDoyle,2001).Wealsodiscusshowproblemsofcalibrationinmolecular datinganalysesaffectdifferentconclusionsonpossiblebiogeographicscenariosforourstudy system.

51 Materials and Methods Plant material and DNA extractions For Crypteronia paniculata , Crypteronia griffithii , Axinandra zeylanica , Dactylocladus stenostachys ,and emarginata weextractedtotalgenomicDNAfromsilicadriedleaf material.LeaftissuewashomogenizedusingglassbeadsandaMM2000shaker(RetschGmbH,

Haan, Germany) .TheDNAfromthesespecies wasextractedwithamethoddescribedinprotocol DofSmith et al. (1991),whichemploysa2%hexadecyltrimethylammoniumbromide(CTAB) extraction/lysisbuffer.Forallothertaxa,themethodofDNAextractionisgivenin SchönenbergerandConti(2003).Taxonnames,voucherinformation,andGenBankaccession numbersarelistedintable1.

PCR and DNA sequencing AmplificationandsequencingprimersfromZurawskiet al. (1981),OlmsteadandSweere (1994),andBaum et al. (1998)wereusedtogenerateDNAsequencesof rbc L, ndh Fand rpl 16 intron,respectively.PCRamplificationswereperformedinaBiometraTGradientthermocycler, applyingathermalcyclingprogramthatconsistedof34cyclesof0.5minat95°C,1minat49 °Cto52°C,and1.7minat72°C,followedbyaterminalextensionof10minat72°C.Inorder tosuccessfullydetectamplifiedDNAtargetregionsandpossiblecontamination,PCRproducts wereseparatedon1%agarosegels,stainedwithethidiumbromide,andvisualizedunderUV light.SuccessfullyamplifiedPCRproductswerepurifiedwiththeQIAquickPCRPurification Kit(QIAGEN,Basel,Switzerland).CyclesequencingreactionswereperformedusingtheABI PRISMDyeTerminatorCycleSequencingReadyReactionKit(AppliedBiosystems,Applera EuropeB.V.,Rotkreuz,Switzerland).Forafewtaxa,wewereunabletoamplifytheentire rpl 16 intron;inthesecasestwoadditionalinternalprimers,MFandMR,wereused(Schönenbergerand Conti,2003).CyclesequencingreactionswereperformedinaGeneAmpPCRSystem9700 (AppliedBiosystems)byusingatemperaturecycleof10sat96°C,5sat50°C,and4minat60 °C(25cycles).ThesequencingfragmentswerecleanedwithMicroSpinG50columns (AmershamPharmaciaBiotechEuropeGMBH,Dübendorf,Switzerland)toremoveexcessdye terminatorsbeforeloadingthemonanABIPrism3100GeneticAnalyzer(AppliedBiosystems). ThesoftwareSequencher3.1.1(GeneCodes,AnnArbor,MI,USA)wasusedtoeditand assemblecomplementarystrands.Basepositionswereindividuallydoublecheckedforagreement betweenthecomplementarystrands. Rbc Lsequenceswerereadilyalignedbyeye,while ndh F and rpl 16intronsequenceswerefirstalignedusingClustalX1.81(Thompson et al. ,1997)prior

52 toadjustingthealignmentsbyeyeinthesoftwareMacClade4.0(MaddisonandMaddison, 2000).Forthe rpl 16introndataset,thevariableregionbetweennucleotides810and1031was deleted,becausewewereunabletoproduceareasonablealignmentwithinthatregion.The datasetsusedforfurtherphylogeneticanalysescontained24taxaand1280( rbc L),981( ndh F), 1010( rpl 16intron),and3271(allthreedatasetscombined)alignedpositions.

Phylogenetic analyses MaximumLikelihood(ML)optimizationwasusedtofindthebesttreeforeachofthe threeseparatedatapartitionsandforthecombineddatamatrix,includingallcharacters.A NeighborjoiningtreecalculatedundertheJC69substitutionmodel(JukesandCantor,1969)was usedasthestartingtreetoestimatetheoptimalMLparametersunder56differentmodelsof evolutioninModeltest3.06(PosadaandCrandall,1998).Thebestsubstitutionmodelwas selectedbyperforminghierarchicallikelihoodratiotests(Felsenstein,1981;Huelsenbeckand Rannala,1997).Theselectedoptimalmodelswereallsubmodelsofthegeneraltimereversible (GTR)model(Rodríguez et al. ,1990).Forthe rbc Ldataset,theK81uf+G+Imodelwasselected (Kimura,1981):unequalbasefrequencies(A=0.2673,C=0.1941,G=0.2488,T=0.2898),one transitionrate(AG/CT:1.4245),twotransversionrates(AC/GT:1,AT/CG:0.3281),gamma distributionofratesamongsiteswithalphashapeparameter0.7280(Yang,1993),proportionof invariablesites0.7098.Forthe ndh Fdataset,theTVM+Gmodelwasselected:unequalbase frequencies(A=0.3085,C=0.1481,G=0.1529,T=0.3905),onetransitionrate(AG/CT:1.5243), fourtransversionrates(AC:1.2165,AT:0.1544,CG:1.4160,GT:1),gammadistributionofrates amongsiteswithalphashapeparameter0.3887,noproportionofinvariablesites.Forthe rpl 16 introndataset,theK81uf+Gmodel(Kimura,1981)wasselected:unequalbasefrequencies (A=0.3716,C=0.1651,G=0.1685,T=0.2948),onetransitionrate(AG/CT:1.3446),two transversionrates(AC/GT:1,AT/CG:0.4837),gammadistributionofratesamongsiteswith alphashapeparameter0.8358,noproportionofinvariablesites.Forthecombineddataset,the TVM+G+Imodelwasselected:unequalbasefrequencies(A=0.314,C=0.1692,G=0.1912, T=0.3256),onetransitionrate(AG/CT:1.5),fourtransversionrates(AC:1.1651,GT:1,AT: 0.3469,CG:0.7904),gammadistributionofratesamongsiteswithalphashapeparameter 0.8288,proportionofinvariablesites0.4007. TheestimatedparameterswerethenusedinaMLheuristicsearchusing100random additionsequences,treebisectionreconnection(TBR)branchswapping,andsteepestdescent activated,implementedinPAUP4.0b10(Swofford,2001).Thetreeswererootedonthebranch leadingto Mouriri helleri (Memecylaceae)andfourrepresentativesofMelastomataceae,which wereconstrainedtobemonophyletic.Thesechoiceswerejustifiedbytheresultsofmore 53 inclusivephylogeneticanalysesofMyrtales(Contiet al. ,1996and2002).Statisticalsupportfor eachcladewasestimatedbygenerating1000bootstrappseudoreplicatesusingtheMLfast heuristicsearchoptioninPAUP.Allphylogeneticanalyseswereperformedona2GhzPentium IVmachineunderRedHatLinux8.0.

Molecular Dating Whenperformingmoleculardatinganalyses,severalcrucialchoicesneedtobemadethat mightaffecttheestimatedages,includingselectionofmoleculardatingmethod,genesampling, andcalibrationmethod.Thefirstchoiceistodecidewhethertheanalysesshouldbebasedonthe assumptionofrateconstancy(molecularclock)orwhethertheyshouldallowratestovaryacross branchesofatree.Toevaluatewhetherthesequencesofeachdatapartitionevolvedinaclock likefashion,alikelihoodratio(LR)testwasperformedbycomparingthescoresofMLtreeswith andwithoutamolecularclockenforced(Felsenstein,1981;Sanderson,1998,NeiandKumar, 2000).Togainsomeinsightintotherelativeperformanceofdifferentmoleculardatingmethods, wecomparedtheresultsoftheclockdependentLangleyFitch(LF;LangleyandFitch,1974)and theclockindependentnonparametricratesmoothing(NPRS;Sanderson,1997)andPenalized Likelihood(PL;Sanderson,2002)analyses,asimplementedinr8s1.6(Sanderson,2003).Both lattermethodsrelaxtheassumptionofrateconstancybysmoothingchangesofsubstitutionrates acrossthetree.NPRSisanentirelynonparametricmethodthatestimatesratesandtimesviaa leastsquaressmoothingcriterion,whereasPLisasemiparametrictechniquethatattemptsto combinethestatisticalpowerofparametricmethodswiththerobustnessofnonparametric methods. Briefly,PLreliesonadatadrivencrossvalidationprocedurethatsequentiallyprunes taxafromthetree,estimatesparametersfromthesubmatrixforagivensmoothingvalue,predicts thedatathatwereremovedbyusingtheestimatedparameters,andcalculatesthe χ2error associatedwiththedifferencebetweenpredictedandobserveddataoftheremovedsubmatrix. Theoptimalsmoothinglevelcorrespondstothelowest χ2error(Sanderson,2002). TheoptimalMLtreesestimatedinPAUP4.0b10foreachdatapartitionandforthe combineddatasetweresavedwithbranchlengths(Figures25a)andthenusedasinputtreesin r8s.ToestablishthepositionoftherootinthebasalbranchoftheMLtrees, Myrtus communis and Eugenia uniflora (Myrtaceae)wereusedasdatingoutgroups(seeConti et al. ,1996;1997). Toevaluatetheoverallbranchlengthfromtheroottoatipofatree,itisnecessarytoknowthe lengthsofthebasalbranches.Inanadditivetree,onlythesumoftheselengthsisknown,andthe placewheretherootattachestothebasalbranchesisundefined(Figure6a).Datingoutgroup choiceinfluencesthepositionoftherootattachmentpoint,hencethelengthsofthebasal branches(Figure6b)andtherelativecontributionofindividualbranchestothetotalpathsfrom 54 theroottothetips(SandersonandDoyle,2001;Sanderson,2002).Therefore,rootposition affectsthecalculationofabsolutesubstitutionratesandthesmoothingofdifferentialsubstitution ratesacrossthetree. Afterrootpositionwasestablished,thedatingoutgroupwasremovedinr8spriorto moleculardating.ForthePLanalyses,theoptimalsmoothingparameter,rangingbetween0.001 to1000,wasselectedpriortothedatingbyperformingacrossvalidationprocedure.Tocalculate theabsolutesubstitutionratesacrossthetree,optimizationviaTruncatedNewton(TN)algorithm waschosenfortheLangleyFitchandPLmethods,andthePOWELLalgorithmfortheNPRS dating. Allageestimationsinr8swerestartedfivetimestoprovidedifferentstartingconditions (arandomsetofinitialdivergencetimes),apracticeaimedatpreventingtheoptimization algorithmsfromconvergingtoalocalplateau.AgeestimationswereperformedonlyfornodesA, B,andC,becausethesenodesarecrucialtotestingtheoutofIndiaoriginofCrypteroniaceae. NodeArepresentsthediversificationoftheCrypteroniaceaecrowngroup;nodeBtheoriginof theCrypteroniaceaestemlineage(equivalenttothetimeatwhichCrypteroniaceaesplitofffrom theirWestGondwanansistergroup);andnodeCrepresentsthesplitbetweentheSouthAmerican Alzatea anditsAfricansisterclade(seeFigures25). Toevaluatestatisticalsupportfortheestimatedages,weperformedabootstrap resamplingprocedure(EfronandTibshirani,1993).Forallmoleculardatinganalysesperformed onthecombineddataset,100bootstrappseudoreplicatesweregeneratedusingtheprogram SEQBOOTfromthePhylippackage,version3.6a3(Felsenstein,2002).Whilethetopologyof theoptimalMLtreeswaskeptfixed,branchlengthsforeachpseudoreplicatewereestimatedby MLwiththeselectedsubstitutionmodelinPAUP(Sanderson,1997).Withthisapproach,100 bootstraptreeswiththesametopology,butdifferentbranchlengthsweregeneratedand individuallyanalyzedin100moleculardatingproceduresasdescribedabove.ForthePL analysis,theoptimalsmoothingparameterforeachbootstrapreplicatewascalculatedpriortothe datingprocedures.Usingther8sbootstrapkit(Eriksson,2002),relativebranchlengthsfromthe 100bootstrappedtreesweretransformedintoadistributionof100absoluteagesforeachof nodesA,B,andC,respectively.Aftercheckingfornormality,theobtainedagedistributionswere usedtocalculatethemean,standarddeviation,and95%confidenceintervalofeachageestimate (tables24).

Calibration TotransformtheresultingrelativebranchlengthsintoabsoluteagesfornodesA,B,and C(Figure5b)itisnecessarytofixorconstrainanodetoanabsoluteage.Thecalibration 55 procedurerepresentsoneofthemostsensitivechoicesinmoleculardatinganalyses(Yangand Yoder,2003;ThorneandKishino,2002;Wikström et al. ,2001;Sanderson,1998).Calibration canbeperformedbyreferenceeithertothefossilrecord(paleobotanicdating)ortoknown vicarianceevents(geologicaldating;Sanderson,1998;Hillis et al. ,1996).Eitherapproachcan establishonlytheminimumageatthecalibrationpoint,mostlikelyresultinginan underestimationofdivergencetimes(Tavaré et al. ,2002).Inthefollowingsectionweconsider theproblemsassociatedwitheachofthethreecalibrationpointsthatweselectedforouranalyses. Fromananalyticalpointofview,theidealcalibrationpointwouldbeascloseaspossible tothenodetobeestimated,inordertoreducepotentialsourcesoferrorinageestimation (Wikström et al. ,2001).Inourtree,thiswaspossibleonlywithgeologicalcalibration(see below),becausethefossilrecordofCrypteroniaceaeistoouncertain.Heterocolpatepollen tentativelyassignedtoCrypteroniaceaefromtheMiddleMiocene(Muller,1975)isdifficultto distinguishfromheterocolpatepollenofMelastomataceae,Memecylaceae,Oliniaceae, Penaeaceae,andRhynchocalycaceae(MorleyandDick,2003).Therefore,wewereforcedtolook forpaleobotaniccalibrationpointsoutsideofCrypteroniaceae. ThephylogeneticallyclosestfossilswereinMelastomataceae.Renner et al. (2001)and RennerandMeyer(2001)usedfossilfromtheMioceneofcentralEurope(Collinsonand Pingen,1992)toconstraintheoriginofMelastomeae.However,theassignmentoftheseseedsto Melastomeaeisnotstraightforward.CollinsonandPingen(1992,p.134)stated:“[Thesefossil seeds]aremostsimilartoseedsofmembersofthetribesOsbeckieae[Melastomeae]and Rhexieae,butdifferinseveralsignificantfeatures,especiallythepresenceofmulticellular tubercles”.Therefore,itisdifficulttoknowwhetherthesefossilsshouldbeassignedtothebase oftheMelastomeaecrowngrouportomorerecentnodesinthetribe.Withthesecaveatsinmind, weassignedaprobablyveryconservativeageof26mys(assuggestedbyRenner et al. ,2001)to nodeD,representingthecrowngroupofMelastomeaeinourcurrenttaxonsampling(Figures2 5). FossilleavesfromtheEarlyEoceneofNorthDakota(53mys;Hickey,1977)canalsobe usedtoconstrainanodeinMelastomataceae.However,theassignmentofthesemacrofossilstoa specificnodeisproblematic.Inhisdescriptionofthesefossilleaves,Hickey(1977)statedthat theyresemblemostcloselytheleavesofextantMiconieaeandMerianieae,butcautioned:“They alldiffer,however,innotbeingdeeplycordateandinhavingtertiarieswhichdonotformagood Vpattern”(Hickey,1977,p.144).Renner et al. (2001)conservativelyassignedtheseleaves, characterizedbytheacrodromousleafvenationtypicalofextantMelastomataceae,tothenode thatsubtendsthecrowngroupoftheentireMelastomataceae,includingthebasalKibessieae. However,thesefossilleavescanalsobeassignedtothecrowngroupthatincludesMiconieaeand

56 Micronieae,asthecommentsbyHickey(1977)mightimply(seealsoRenner et al. ,2001).Our currentsamplingofMelastomataceaedoesnotincluderepresentativesofthebasalKibessieae. However,alsoinlightofthebiasesinthemacrofossilrecorddiscussedbyMorleyandDick (2003)itdoesnotseemunreasonabletoassignanageof53mystothenodethatcomprisesour currentsamplingofMelastomataceae(nodeE,seeFigures25;seealsoRenner,2004). Severalrecentstudieshaveusedgeologicalcalibrationpointsformoleculardating estimates,forexample,in Phylica (Richardson et al. ,2001),Laurales(Renner et al. ,2000),ranid frogs(BossuytandMilinkovitch,2001),andratitebirds(Cooper et al. ,2001).Inouranalyses,all MLtreesfromeitherseparateorcombineddatasetssupportedthesistergrouprelationship betweentheSouthAmericanAlzateaceaeandtheAfricanclade(seeResults).Thispattern, supportedbyabootstrapvalueof86%inthecombinedMLtree(seeFigure5a),representsa rathercleargeologicalsignature,andcanbeusedasacalibrationpoint,despitecaveatsof potentialcircularity.Therefore,weassignedanageof90mys,representingthefinalsplit betweenSouthAmericaandAfrica,tonodeC(seeFigure5b).

57 Results Phylogenetic analyses OnesingleoptimalMLtreewasfoundforeachdatasetwithaloglikelihoodscoreof– lnL=3408.68( rbc L),4119.76( ndh F),4603.61( rpl 16intron),and12460.2(combineddataset; Figures25a). Alloptimaltreesfromthethreeindividualandthecombineddatasetsshowedcommon results:1) Crypteronia , Axinandra ,and Dactylocladus (allCrypteroniaceae)formeda monophyleticgroup,withbootstrapsupportvalues(BS)between98%and100%(Figures25a); 2) Alzatea (Alzateaceae), Rhynchocalyx (Rhynchocalycaceae),andallPenaeaceaeandOliniaceae includedinthisanalysisformedanothercladewithBSbetween51%and86%;3)Thesetwo cladesweresistertoeachotherwithBSbetween67%and99%;and4) Alzatea wassistertothe cladeformedby Rhynchocalyx ,Oliniaceae,andPenaeaceaewithBSbetween79and97%.Inall theseclades,thehighestbootstrapsupportvalueswereobtainedinthecombinedanalysis.

Molecular dating ByenforcingthemolecularclockinPaup4.0b10weobtainedanoptimalMLtreefor eachdatasetwithloglikelihoodscoresof–lnL=3429.36( rbc L),4169.04( ndh F),4648.36( rpl 16 intron),and12531.27(combineddataset).Comparisonsbetweenclockandnonclocktreesby applyinglikelihoodratio(LR)testsrejectedclocklikeevolutionforalldatasets(LR=41.35, rbc L;98.56, ndh F;89.52, rpl 16intron;142.12,combineddataset;degreesoffreedom=22, confidenceinterval=95%).Theresultsofmoleculardatinganalysesusingbothclockdependent andclockindependentapproachesforthethreeseparateandforthecombineddatasetsare summarizedintables24,andthePLchronogramforthecombineddatasetisshowninFigure 5b.Smoothingparametervaluesof0.1( rbc L),0.01( ndh F),0.001( rpl 16intron),and0.00316 (combineddataset),selectedviaacrossvalidationprocedureinr8s,wereusedforPenalized Likelihoodageestimations.

58 Discussion ThetopologiesofalloptimalMLtreesfromthethreeindividualandthecombined datasetswerecongruentwithphylogeniespublishedbyClausingandRenner(2001),Conti et al. (2002),SchönenbergerandConti(2003),andSytsmaet al. (thisissue).However,thetrees differedslightlyinthedetailedtopologicalresolutionwithinthecladesmentionedintheResults sectionandinthebranchlengths.

Comparisons among dating methods Comparisonsamongthenodalagesestimatedbythethreedatingmethodsshowed remarkabledifferences(table24),dependingonthemethodsthemselves,butalsoontheposition ofthecalibrationnodewithinthetree.Adiscrepancybetweenclockbasedandclock independentageestimateswasexpected,becauselikelihoodratiotestsstronglyrejectedthe assumptionofrateconstancyforalldatasets.Differencesintheratesofnucleotidesubstitution betweenbranchesinatreearealsoknownaslineageeffects(Britten,1986;Gillespie,1991). Ingeneral,thenonparametricratesmoothingmethod(NPRS;Sanderson,1997),which relaxestheassumptionofrateconstancybysmoothingchangesofsubstitutionratesacrossthe tree,consistentlyproducedthehighestratedifferencesbetweenthebranches(asvisualizedinthe ratogramsproducedbyr8s;datanotshown),thustheagesestimatedusingNPRSwereeither muchyoungerorolderthanthoseobtainedbyusingLangleyFitch(LF:LangleyandFitch,1974) –dependingonthepositionofthecalibrationnodeanddatapartition.ThisisbecauseNPRS tendstooverfitthedata,thuscausingrapidratefluctuationsincertainregionsofatree (Sanderson,2002).ThesemiparametricPenalizedLikelihoodmethod(PL;Sanderson,2002) triestoalleviatethisproblembyselectingtheoptimalsmoothingparameterviaadatadriven crossvalidationprocedure(GreenandSilverman,1994).TheapplicationofPLresultedinrates ofnucleotidesubstitutionaswellasageestimateswhichwereformostbranchesbetweenthose calculatedwithLFandNPRS. BycalibratingthetreesatnodesEorD(tables2and3),theagesestimatedfornodesA, B,andCusingNPRSwereconsistentlyolderthanthoseproducedusingPL,whereastheages obtainedusingLFwereyoungerthanthePLresults.Thelikelyexplanationforthiseffectliesin thetwolongbranchesbelownodeE(Figures25a).Dependingonthedatingmethod,different ratesofnucleotidesubstitutionareassignedtothesebranches(ratogramsnotshown),producing considerablydifferentabsoluteagesatnodeslocatedontheothersideoftherootofthetree.

59 Comparisons among DNA regions BycalibratingthetreesatnodesEorD(tables2and3),theagesfornodesA,B,andC estimatedusingthe ndh Fdatasetweregenerallymucholderthanthosebasedontheothertwo datasets.Reciprocally,whenwecalibratedthetreesatnodeC(table4),theagesfornodesEand Dweremuchyoungerinthe ndh Fbasedanalysisthanbyusingthe rbc Lor rpl 16introndatasets. Nodalagesestimatedfrom rbc Land rpl 16intronsequencesweresimilartoeachother. ComparisonsofthethreeMLphylogramsshowthatthebranchesbelownodeEaresignificantly longerinthe ndh Fphylogram(Figure3)thanthesamebranchesinthe rbc Land rpl 16intron phylograms(Figures2and4). Thephenomenonofstrikingdifferencesinthetempoandmodeofevolutionbetween differentgenesiswellknown,butitseffectsondivergencetimeestimationarepoorlyunderstood (Goremykin et al. ,1996;SandersonandDoyle,2001).Inthepresentpaper,wecanonly speculateonpossibleexplanationsfortheanomalousresultsobtainedfrom ndh Fsequencesand suggestresearchdirectionsthatmightprovefruitfultoinvestigatetheroleofgenespecificeffects onmoleculardatingestimates. Forexample,thebiasofnucleotidesubstitutionsinbothcodingandnoncoding sequencesoftheplantchloroplastgenomeisstronglydependentonthecompositionofthetwo flankingbases(Morton,1997a,1997b).Onepossibleexplanationfortheolderagesobtained from ndh Fsequencesmightlieinthedifferentialinfluencethatthetwoneighboringbasescould haveonthesubstitutiontypeofacertainnucleotideinour ndh Fsequencesascomparedto rbc L and rpl 16intronsequences.Itisalsoreasonabletoaskwhethertheoccurrenceofan ndh F pseudogenemightexplaingenespecificeffectsonageestimates,as ndh Fpseudogeneshavebeen reported,forexample,inorchids(NeylandandUrbatsch,1996).However,translationof ndh F sequencesintothecorrespondingaminoacidsdidnotrevealthepresenceofanystopcodons,and multiplealignmentof ndh Fsequencesrequiredonlygapsinmultiplesofthree,suggestingthat our ndh Fsequenceslikelyrepresentfunctionalgenecopies.Furthermore,PCRamplifications usingan ndh Fspecificprimerpair(OlmsteadandSweere,1994)didnotrevealanyPCR productsofdifferentlengths,anddirectsequencingofdoublestrandedPCRproductsproduced unequivocalelectropherograms,characterizedbysinglepeaksatallpositions.Finally,the topologyoftheoptimalMLtreebased ndh Fwascongruenttotheothertreesbasedonthe rbc L and rpl 16intronsequences.Nevertheless,wecannotexcludethepossibilitythatan ndh F pseudogenemightexistinsomeorallofthestudiedtaxa,perhapsinfluencingthemolecular evolutionarybehaviorofthefunctional ndh Fgenecopiesthatwelikelysequencedforthisstudy (BromhamandPenny,2003).Anotherpotentialexplanationforthedifferentdatingresults obtainedfrom ndh Fsequencesmightbesoughtinalignmenteffects.However,experimentsusing 60 amodified ndh Fdatasetfromwhichallgappedregionswereremovedpriortoanalysisproduced ageestimatessimilartothoseobtainedwiththegappeddataset(datanotshown).Additional theoreticalandexperimentalstudiesofgenespecificeffectsonmoleculardatingestimatesare clearlyneeded(BromhamandPenny,2003). Althoughnestedlikelihoodratiotestsofthethreeseparatedatasetsindicatedthatthethree chloroplastregionsusedinourdatinganalysesevolvedaccordingtodifferentmodelsand parametersofnucleotidesubstitutions,weproceededtoestimatenodalagesfromthecombined datamatrix,becausewewishedtocompareresultsfromthelatterwiththosefromthethree separatesequencematrices.Theexceedinglyolderoryoungernodalagesestimatedfrom ndh F sequences,dependingonthepositionofthecalibrationpoint,seemedtofurtherjustifydataset combination,forithasbeensuggestedthatthecombinationofsequenceswithdifferent evolutionarypatternsmightcompensateforunusualpatternsinanysingleDNAregion (Wikström et al. ,2001;Qiu et al. ,1999).

Congruence between geological and biological history Oneofthemajorgoalsofbiogeographicstudiesistoelucidatethehistoricalgenesisof currentplantdistributions.Inanevolutionaryframework,itisassumedthatgeologicaleventsof thepast,forexampletheemergenceand/ortheeliminationofmajorgeographicbarrierstorange expansion,likelyleftamarkonthephylogeneticandbiogeographichistoryofbioticelements (Lieberman,2000).Therefore,tosupportthehypothesisthatgeologicaleventsshapedthecurrent distributionofanytaxa,onewouldneedtodemonstratecongruencebetweengeologicaland biologicalhistorybothintermsofpatternandtime(table5).Atthelevelofpattern,onewould expectcorrespondencebetweenthesequenceofgeologicaleventsandthesequenceof cladogeneticevents.Paleogeologicalreconstructionsandthetopologyofphylogenetictrees providethenecessaryevidenceforpatterncongruence.Attheleveloftime,thespecifictimingof geologicaleventsmustbecompatiblewiththetimingofcladogeneticevents(nodalages)inferred frommolecularorotherdatingmethods.Bothlinesofevidence(patternandtime)arenecessary, butindependentlynotsufficient,tosupportakeyroleofgeologyinshapingcurrenttaxic distributions.Ifevidenceforcongruencebetweengeologyandbiologycanbeproducedatthe levelsofbothpatternandtime,thereisnoneedtoinvokeothertypesofexplanatoryprocessesfor currentbioticdistributions(table5;seealsoSober,1988;HunnandUpchurch,2001). Geologicaleventsthatinfluencebiologicaldistributionsincludeplatefragmentation,asin theclassicinterpretationofvicariance,ortheexpansionofalineageduetothetemporary eliminationorreductionofageographicbarrier,followedbytheemergenceofanewbarrier producingvicariantsistergroups,asintherecentlyproposedconceptofgeodispersal(Lieberman, 61 1997;Lieberman,2000).Inthenextsectionwewilldiscusswhetherthephylogenetic relationshipsandmoleculardatingestimatesofCrypteroniaceaewarrantakeyroleforgeological eventsinexplainingthecurrentdistributionofthisgroupanditssisterclade.

Congruence between geology and biology for the out-of-India hypothesis of Crypteroniaceae Aftercomparingtheresultsofdifferentdatingmethodsanddatasets(seeabove),it seemedmostreasonabletousetheMLtreetopology(Figure5a)andthePLages(Figure5b) calculatedfromthecombineddatamatrixtoreconstructthebiogeographichistoryof Crypteroniaceae.Apreviousphylogeneticandmoleculardatingstudybasedexclusivelyon rbc L sequencesproposedanancientGondwananoriginforCrypteroniaceaeintheEarlytoMiddle Cretaceous,followedbydispersaltotheDeccanplate(comprisingMadagascar,India,SriLanka, andtheSeychelles)asitwasraftingalongtheAfricancoast,andsubsequentdispersalfromIndia toSouthEastAsiaaftercollisionoftheIndianplatewithAsiaintheMiddleEocene(Conti et al. , 2002).Isthisbiogeographicreconstructioncongruentwithbothpatternandtimingof cladogeneticevents(table5),asestimatedfromthephylogeneticandmoleculardatinganalyses oftheexpandeddatasetsusedinthepresentstudy? ThecombinedMLtree(Figure5a)stronglysupports(BS=99%)thesistergroup relationshipbetweentheSouthEastAsianCrypteroniaceaeandtheWestGondwanancladeand thesplitbetweentheSouthAmericanAlzateaceaeandtheAfricanclade(BS=86%).Therefore, atthelevelofpattern,thesequenceofcladogeneticeventsiscongruentwiththesequenceof geologicalevents,ifweconsiderthattheDeccanPlateraftedalongtheAfricancoastbetweenthe LowerandMiddleCretaceous(Scotese et al. ,1988;Morley,2000),withlikelyislandchain connectionsbetweenthetwoplatesuptotheEarlyMaastrichtian(Morley,2000),andthat separationbetweenAfricaandSouthAmericawascompletedbyapproximately90mys (McLoughlin,2001),althoughtransoceanicdispersalroutesbetweenAfricaandSouthAmerica likelyexistedbetween84and65mys(McDougalandDouglas,1988;Hallam,1994;Morley, 2000). Attheleveloftime,resultsaremorecontroversial.Thedeviationsinageestimatesdueto theuseofdifferentcalibrations(tables24)indicatethatcalibrationisoneofthemostcritical issuesinmolecularphylogeneticdating.TheagesfortheoriginofCrypteroniaceae(nodeB), obtainedfromPLoptimizationonthecombinedMLtree,rangedfromaminimumvalueof62 mys,estimatedbyfixingnodeDto26mys,toahighervalueof101mys,estimatedbyfixing nodeEto53mys,andamaximumvalueof109mys,estimatedbyfixingnodeCto90mys(see tables24andFigure5b).AsexplainedinMethods,theassignmentsoffossilseedsfromthe 62 MioceneofcentralEurope(CollinsonandPingen,1992)tonodeD(Melastomeaecrowngroup) andfossilleavesfromtheEoceneofNorthDakota(Hickey,1977)tonodeE(Melastomataceae crowngroup)mostlikelyrepresentlargeunderestimationsofnodalages.Furthermore,Morley andDick(2003)extensivelyreviewedthefossilrecordforMelastomataceaeandarguedthatits abruptappearanceatnortherntemperatelatitudesduringtheEoceneandMiocenemaysimply reflectcolonizationfromancientGondwananlineages.Giventheseconsiderations,itseemsmore plausibletosuggestanoriginoftheCrypteroniaceaestemlineagethatisclosertotheolder ages(101106mys)obtainedwithourthreecalibrationpoints.Whichbiogeographicscenariois congruentwiththisinterpretationfortheageofCrypteroniaceae? Accordingtopaleogeographicreconstructions,EastGondwanaincludingIndiasplit fromWestGondwanabetween165and150mysago(Krutzsch,1989;McLoughlin,2001; Briggs,2003).Therefore,atraditionalvicariantexplanationfortheoriginofCrypteroniaceae withoverlanddispersalfromWesttoEastGondwana,followedbytectonicsplitisincompatible withourdatingestimatesfornodeBandindeedwithmolecularestimatesfortheageof angiosperms(190140mys;SandersonandDoyle,2001;Wikström et al. ,2001).Itismore probablethatthebiogeographichistoryofCrypteroniaceaemightreflectatemporaryreductionor eveneliminationoftheoceanicbarrierbetweenAfricaandtheDeccanPlate(atthattime comprisingMadagascar,India,SriLanka,andtheSeychellesPlateau),astheplatedrifted northwardalongtheAfricancoastforaratherextendedperiodoftime(over40mys)betweenthe EarlyandLateCretaceous(Morley,2000;Scotese et al. ,1988;Briggs,2003).Ithasalsobeen suggestedthatsmallislandsorlandbridgesbetweenWestGondwanaandtheDeccanPlate facilitatedshorttomediumdistancedispersalovertheMozambiqueChannelofotherbiotic elements,includingsomegroupsofdinosaurs,crocodiles,mammals(Krause et al. ,1999;Krause andMaas,1990),frogs(BijuandBossuyt,2003;BossuytandMilinkovitch,2001),lizards, snakes,turtles,andcaecilians(Briggs,2003).AshtonandGunatilleke(1987)suggestedthatthe totaldistancebetweenWestGondwanaandtheDeccanplate(stillconnectedtoMadagascar) remainedmoreorlessconstant(about420km)untilapproximately84mysago,whentheplate separatedfromMadagascarandstartedtodriftnorthwards(Storey et al. ,1995;Plummerand Belle,1995;McLoughlin,2001).PollenrecordssuggestedthatplantdispersalfromAfricato MadagascarandtheIndianplatecontinuedonaregularbasis,presumablyuntilthemiddle Maastrichtian(6571mysago;MorleyandDick,2003).Therefore,India’sroleinthe biogeographichistoryofCrypteroniaceaemostlikelydidnotconformtoapurelyvicariant pattern,involvingdirectdispersalpriortobarrierformation(Wiley,1988;MorroneandCrisci, 1995),butrathertothedynamicsofrangeexpansionfollowingbarrierreduction(geodispersal; Lieberman,2000;seealsoStace,1989).

63 ExtinctionplayedaprominentroleinthehistoryoftheancientGondwananelementsof India’sbiotas,asIndiatraveledrapidlyacrosslatitudesduringtheMiddletoLateCretaceous (McLoughlin,2001;Morley,2000).Itsbiotaswereaffectedbymassivevolcanismatthe CretaceousTertiaryboundary(approximately65mysago;Officer et al. ,1987),extensive aridificationduringtheLateTertiary(followingtheupliftoftheHimalayanchaincausedby India’scollisionwithSouthernAsiabetween55and49mysago;Beck et al. ,1995),andfurther cyclesofaridityassociatedwithglaciationsduringtheQuaternary(RavenandAxelrod,1974; BandeandPrakash,1986;AshtonandGunatilleke,1987;Morley,2000). Axinandra zeylanica is endemicinSriLankawhichwasprobablyconnectedtoIndiauntil6000yearsago(McLoughlin, 2001).SouthwesternIndiatogetherwithSriLankaservedasrefugialareas,wheresomeancient Gondwanantaxaescapedextinction(RavenandAxelrod,1974;Guleria,1992;Morley,2000). SomeoftheserelictualtaxadispersedtoSouthEastAsia,where Crypteronia sp ., Dactylocladus stenostachys andtheotherthreespeciesof Axinandra occurtothisday . SouthEastAsiahasalso longbeenrecognizedasarefugiumwheretheequableoceanicconditionsallowedtropical lineagestosurvive(BandeandPrakash,1986;Morley,2000;Takhtajan,1987). Tosummarize,ourcurrentphylogeneticandmoleculardatingresultsfromexpandedtaxic andgeneticsamplingsuggestapossiblecongruencebetweenbiologicalandgeologicalhistory thatiscompatiblewithacentralroleplayedbytheDeccanPlateintransportingthestemlineage ofCrypteroniaceaefromWestGondwanatoAsia,mostlikelyinatimeframecomprisedbetween theMiddletoLateCretaceous.However,ourresultsremainopentodebate,especiallyinlightof thedifficultassignmentofpaleobotanicandgeologicalconstraintstospecificnodesinthe phylogeny.Itisourhopethattheadditionofmorefossilcalibrationpoints,furthertaxonomic samplingfromCrypteroniaceaeandadditionalgroups,andtheuseofdatingmethodsthatallow formultiple,contemporaryconstraintsonthephylogenywillallowustorefineourinterpretations ofthebiogeographichistoryofCrypteroniaceaeandrelatedclades.

64 References Arbogast,B.S.,S.V.Edwards,J.Wakeley,P.Beerli,andJ.B.Slwinski.2002.Estimating divergencetimesfrommoleculardataonphylogeneticandpopulationgenetictimescales. Annual Review of Ecology, Evolution and Systematics 33 :707740.

ArisBrosou,S.2001.Phybayes:aprogramforphylogeneticanalysesinaBayesianframework. DepartmentofBiology(GaltonLaboratory),UniversityCollegeLondon,London,UK.

ArisBrosou,S.,andZ.Yang.2002.Effectsofmodelsofrateevolutiononestimationof divergencedateswithspecialreferencetothemetazoan18SribosomalRNAPhylogeny. Systematic Biology 51 :703714.

ArisBrosou,S.,andZ.Yang.2003.BayesianmodelsofepisodicevolutionsupportaLate PrecambrianexplosivediversificationofMetazoa. Molecular Biology and Evolution 20 :1947 1954.

Baldwin,B.G.,andM.J.Sanderson.1998.Ageandrateofdiversificationofthehawaiian silverswordalliance(Compositae). Proceedings of the National Academy of Sciences USA 95 :94029406.

Bell,C.D.,D.E.Soltis,andP.S.Soltis.2005.TheageoftheAngiosperms:Amolecular timescalewithoutaclock. Evolution 59 :12451258.

Berry,P.E.,W.J.Hahn,K.J.Sytsma,J.C.Hall,andA.Mast.2004.Phylogeneticrelationships andbiogeographyof Fuchsia (Onagraceae)basedonnoncodingnuclearandchloroplastDNA data. American Journal of Botany 94 :601614.

Bremer,K.,E.M.Friis,andB.Bremer.2004.Molecularphylogeneticdatingofasteridflowering plantsshowsearlyCretaceousdiversification. Systematic Biology 53 :496505.

Bremer,K.,andM.H.G.Gustafsson.1997.EastGondwanaancestryofthesunflowerallianceof families. Proceedings of the National Academy of Sciences USA 94 :91889190.

Britten,R.J.1986.RatesofDNAsequenceevolutiondifferbetweentaxonomicgroups. Science 231 :13931398.

Britton,T.2005.Estimatingdivergencetimesinphylogenetictreeswithoutamolecularclock. Systematic Biology 54 :500507.

Britton,T.,B.Oxelman,A.Vinnersten,andK.Bremer.2002.Phylogeneticdatingwith conficenceintervalsusingmeanpathlengths. Molecular Phylogenetics and Evolution 24 :5865.

Bromham,L.,andD.Penny.2003.Themodernmolecularclock. Nature Reviews Genetics 4:216 224.

Bromham,L.,A.Rambaut,R.Fortey,A.Cooper,andD.Penny.1998.TestingtheCambrian explosionhypothesisbyusingamoleculardatingtechnique. Proceedings of the National Academy of Sciences USA 95 :1238612389.

Bromham,L.,andM.Woolfit.2004.Explosiveradiationsandthereliabilityofmolecularclocks: islandendemicradiationsasatestcase. Systematic Biology 53 :758766.

65 Bromham,L.D.,A.Rambaut,M.D.Hendy,andD.Penny.2000.Thepowerofrelativeratestest dependsonthedata. Journal of Molecular Evolution 50 :296301.

Bryant,D.,C.Semple,andM.Steel.2004.Supertreemethodsforancestraldivergencedatesand otherapplications.Pp.129150 in O.R.P.BinindaEmonds,ed.Phylogeneticsupertrees: Combininginformationtorevealthetreeoflife.KluwerAcademic,Dordrecht,TheNetherlands.

Chaw,S.M.,C.C.Chang,H.L.Chen,andW.H.Li.2004.Datingthemonocotdicotdivergence andtheoriginofcoreeudicotsusingwholechloroplastgenomes. Journal of Molecular Evolution 58 :424441.

Conti,E.,T.Eriksson,J.Schönenberger,K.J.Sytsma,andD.A.Baum.2002.EarlyTertiaryout ofIndiadispersalofCrypteroniaceae:evidencefromphylogenyandmoleculardating. Evolution 56 :19311942.

Conti,E.,F.Rutschmann,T.Eriksson,K.J.Sytsma,andD.A.Baum.2004.Calibrationof molecularclocksandthebiogeographichistoryofCrypteroniaceae:AreplytoMoyle. Evolution 58 :18741876.

Cutler,D.J.2000.Estimatingdivergencetimesinthepresenceofanoverdispersedmolecular clock. Molecular Biology and Evolution 17 :16471660.

Douzery,E.J.P.,E.A.Snell,E.Bapteste,F.Delsuc,andH.Philippe.2004.Thetimingof eukaryoticevolution:Doesarelaxedmolecularclockreconcileproteinsandfossils? Proceedings of the National Academy of Sciences USA 101 :1538615391.

Drummond,A.J.,S.Y.W.Ho,M.J.Phillips,andA.Rambaut.2006.Relaxedphylogeneticsand datingwithconfidence. PLoS Biology 4:e88.

Drummond,A.J.,andA.Rambaut.2003.BEASTv1.0.Availableat http://evolve.zoo.ox.ac.uk/beast/ .

Efron,B.,andR.J.Tibshirani.1993.Anintroductiontothebootstrap.ChapmanandHall,New York.

Eriksson,T.2002.Ther8sbootstrapkit.BergianskaUniversity,Stockholm,Sweden.

Felsenstein,J.1981.EvolutionarytreesfromDNAsequences:amaximumlikelihoodapproach. Journal of Molecular Evolution 17 :368376.

Felsenstein,J.1988.Phylogeniesfrommolecularsequences:inferenceandreliability. Annual Review of Genetics 22 :521265.

Felsenstein,J.1993.PhylogeneticInferencePackage(PHYLIP),version3.5.Universityof Washington,Seattle,WA.

Felsenstein,J.2004.Inferringphylogenies.SinauerAssociates,Inc.,Sunderland,MA.

Foote,M.,J.P.Hunter,C.M.Janis,andJ.J.SepkoskiJr.1999.Evolutionaryandpreservational constraintsonoriginsofbiologicgroups:divergencetimesofEutherianmammals. Science 283 :13101314.

Foote,M.,andJ.J.SepkoskiJr.1999.Absolutemeasuresofthecompletenessofthefossil record. Nature 398 :415417.

66 Gillespie,J.H.1986.Ratesofmolecularevolution. Annual Review of Ecology, Evolution and Systematics 17 :637665.

Gillespie,J.H.1991.Thecausesofmolecularevolution.OxfordUniversityPress,Oxford,GB.

Gillooly,J.F.,A.P.Allen,G.B.West,andJ.H.Brown.2005.TherateofDNAevolution: Effectsofbodysizeandtemperatureonthemolecularclock. Proceedings of the National Academy of Sciences USA 102 :140145.

Graur,D.,andW.Martin.2004.Readingtheentrailsofchickens:moleculartimescalesof evolutionandtheillusionofprecision. TRENDS in Genetics 20 :8086.

Hasegawa,M.,H.Kishino,andT.Yano.1989.Estimationofbranchingdatesamongprimatesby molecularclocksofnuclearDNAwhichsloweddowninHominoidea. Journal of Human Evolution 18 :461476.

Hasegawa,M.,J.L.Thorne,andH.Kishino.2003.Timescaleofeutherianevolutionestimated withoutassumingaconstantrateofmolecularevolution. Genes & Genetic Systems 78 :267283.

Heckman,D.S.,D.M.Geiser,B.R.Eidell,R.L.Stauffer,N.L.Kardos,andS.B.Hedges.2001. MolecularEvidencefortheEarlyColonizationofLandbyFungiandPlants. Science 293 :1129 1133.

Hedges,S.B.,andS.Kumar.2003.Genomicclocksandevolutionarytimescales. TRENDS in Genetics 19 :200206.

Hedges,S.B.,andS.Kumar.2004.Precisionofmoleculartimeestimates. TRENDS in Genetics 20 :242247.

Hedges,S.B.,P.H.Parker,C.G.Sibley,andS.Kumar.1996.Continentalbreakupandthe ordinaldiversificationofbirdsandmammals. Nature 381 :226229.

Hillis,D.M.,B.K.Mable,andC.Moritz.1996.Applicationsofmolecularsystematics:thestate ofthefieldanalooktothefuture.Pp.515543 in D.M.Hillis,C.MoritzandB.K.Mable,eds. MolecularSystematics.Sinauer,Sunderland,MA.

Ho,S.Y.W.,M.J.Phillips,A.Cooper,andA.J.Drummond.2005a.Timedependencyof molecularrateestimatesandsystematicoverestimationofrecentdivergencetimes. Molecular Biology and Evolution 22 :15611568.

Ho,S.Y.W.,M.J.Phillips,A.J.Drummond,andA.Cooper.2005b.Accuracyofrateestimation usingrelaxedclockmodelswithacriticalfocusontheearlymetazoanradiation. Molecular Biology and Evolution 22 :13551363.

Huelsenbeck,J.P.,B.Larget,andD.Swofford.2000.AcompoundPoissonprocessforrelaxing themolecularclock. Genetics 154 :18791892.

Huelsenbeck,J.P.,andF.Ronquist.2001.MrBayes:Bayesianinferenceofphylogeny. Bioinformatics 17 :754.

Kishino,H.,andM.Hasegawa.1989.Evaluationofthemaximumlikelihoodestimateofthe evolutionarytreetopologiesfromDNAsequencedata,andthebranchingorderinHominoidea. Journal of Molecular Evolution 170179 :170179.

67 Kishino,H.,J.L.Thorne,andW.J.Bruno.2001.Performanceofadivergencetimeestimation methodunderaprobabilisticmodelofrateevolution. Molecular Biology and Evolution 18 :352 361.

Korber,B.,M.Muldoon,J.Theiler,F.Gao,R.Gupta,A.Lapedes,B.H.Hahn,S.Wolinsky,and T.Bhattacharya.2000.TimingtheancestoroftheHIV1pandemicstrains. Science 288 :1789 1796.

Langley,C.H.,andW.Fitch.1974.Anestimationoftheconstancyoftherateofmolecular evolution. Journal of Molecular Evolution 3:161177.

Li,W.H.1997.MolecularEvolution.SinauerPress,SunderlandMA,USA.

Li,W.H.,andD.Graur.1991.Fundamentalsofmolecularevolution.SinauerAssociates, Sunderland,MA.

Li,W.H.,andM.Tanimura.1987.Themolecularclockrunsmoreslowlyinmanthaninapes andmonkeys. Nature 326 :9396.

Linder,H.P.,C.R.Hardy,andF.Rutschmann.2005.Taxonsamplingeffectsinmolecularclock dating:anexamplefromtheAfricanRestionaceae. Molecular Phylogenetics and Evolution 35 :569582.

Madsen,O.,M.Scally,C.J.Douady,D.J.Kao,R.W.Debry,R.Adkins,H.M.Amrine,M.J. Stanhope,W.W.DeJong,andM.S.Springer.2001.Paralleladaptiveradiationsintwomajor cladesofplacentalmammals. Nature 409 :610614.

Magallón,S.A.2004.Datinglineages:molecularandpaleontologicalapproachestothetemporal frameworkofclades. International Journal of Plant Sciences 165 :721.

Magallón,S.A.,andM.J.Sanderson.2001.AbsolutediversificationratesinAngiospermclades. Evolution 55 :17621780.

Martin,A.P.,andS.R.Palumbi.1993.Bodysize,metabolicrate,generationtimeandthe molecularclock. Proceedings of the National Academy of Sciences USA 90 :40874091.

Muse,S.V.,andB.S.Weir.1992.Testingforequalityofevoltuionaryrates. Genetics 132 :269 276.

Near,T.J.,andM.J.Sanderson.2004.Assessingthequalityofmoleculardivergencetime estimatesbyfossilcalibrationsandfossilbasedmodelselection. Philosophical Transactions of the Royal Society B: Biological Sciences 359 :14771483.

Nei,M.1987.MolecularEvolutionaryGenetics.ColumbiaUniversityPress,NewYork.

Ohta,T.2002.Nearneutralityinevolutionofgenesandingeneregulation. Proceedings of the National Academy of Sciences USA 99 :1613416137.

Ota,R.,andD.Penny.2003.Estimatingchangesinmutationalmechanismsofevolution. Journal of Molecular Evolution 57 :S233–S240.

PérezLosada,M.,J.T.Høeg,andK.A.Crandall.2004.Unravelingtheevolutionaryradiationof theThoracianBarnaclesusingmolecularandmorphologicalevidence:acomparisonofseveral divergencetimeestimationapproaches. Systematic Biology 53 :244264.

68 Rambaut,A.2000.Estimatingtherateofmolecularevolution:incorporatingnon contemporaneoussequencesintomaximumlikelihoodphylogenies. Bioinformatics 16 :395399.

Rambaut,A.2001.Rhinov1.1.Availableat http://evolve.zoo.ox.ac.uk/ .

Rambaut,A.,andL.Bromham.1998.Estimatingdivergencedatesfrommolecularsequences. Molecular Biology and Evolution 15 :442448.

Rambaut,A.,andM.Charleston.2002.PhylogeneticTreeEditorandManipulatorv1.0alpha10. DepartmentofZoology,UniversityofOxford,Oxford,UK.

Reisz,R.R.,andJ.Müller.2004.Moleculartimescalesandthefossilrecord:apaleontological perspective. TRENDS in Genetics 20 :237241.

RodríguezTrelles,F.,R.Tarrío,andF.J.Ayala.2002.Amethodologicalbiastoward overestimationofmolecularevolutionarytimescales. Proceedings of the National Academy of Sciences USA 99 :81128115.

Rutschmann,F.2005.Bayesianmoleculardatingusingpaml/multidivtime.Astepbystep manual.Version1.5(July2005).InstituteofSystematicBotany,UniversityofZurich,Zurich, Switzerland.Availablefrom http://www.plant.ch .

Rutschmann,F.,T.Eriksson,J.Schönenberger,andE.Conti.2004.DidCrypteroniaceaereally disperseoutofIndia?Moleculardatingevidencefrom rbc L, ndh F,and rpl 16sequences. International Journal of Plant Sciences 165 :6983.

Sanderson,M.J.1997.Anonparametericapproachtoestimatingdivergencetimesintheabsence ofrateconstancy. Molecular Biology and Evolution 14 :12181231.

Sanderson,M.J.1998.Estimatingrateandtimeinmolecularphylogenies:beyondthemolecular clock?Pp.242264 in D.E.Soltis,P.S.SoltisandJ.J.Doyle,eds.Molecularsystematicsof plantsII;DNAsequencing.KluwerAcademicPublishers,Norwell,MA.

Sanderson,M.J.2002.Estimatingabsoluteratesofmolecularevolutionanddivergencetimes:a PenalizedLikelihoodapproach. Molecular Biology and Evolution 19 :101109.

Sanderson,M.J.2003a.Moleculardatafrom27proteinsdonotsupportaPrecambrianoriginof landplants. American Journal of Botany 90 :954956.

Sanderson,M.J.2003b.r8s:inferringabsoluteratesofmolecularevolutionanddivergencetimes intheabsenceofamolecularclock. Bioinformatics 19 :301302.

Sanderson,M.J.,andJ.A.Doyle.2001.Sourcesoferrorandconfidenceintervalsinestimating theageofAngiospermsfrom rbc Land18SrDNAdata. American Journal of Botany 88 :1499 1516.

Sanderson,M.J.,J.L.Thorne,N.Wikström,andK.Bremer.2004.Molecularevidenceonplant divergencetimes. American Journal of Botany 91 :16561665.

Smith,A.B.,andJ.J.Peterson.2002.Datingthetimeoforiginofmajorclades:molecularclocks andthefossilrecord. Annual Review of Earth and Planetary Sciences 30 :6588.

Soltis,P.S.,D.E.Soltis,V.Savolainen,P.R.Crane,andT.G.Barraclough.2002.Rate heterogeneityamonglineagesoftracheophytes:Integrationofmolecularandfossildataand

69 evidenceformolecularlivingfossils. Proceedings of the National Academy of Sciences USA 99 :44304435.

Springer,M.S.,W.J.Murphy,E.Eizirik,andS.J.O'Brien.2003.Placentalmammal diversificationandtheCretaceousTertiaryboundary. Proceedings of the National Academy of Sciences USA 100 :10561061.

Swofford,D.L.2001.PAUP*4.0b10:PhylogeneticAnalysisUsingParsimony(*andother methods).Sinauer,Sunderland,MA.

Swofford,D.L.,G.J.Olsen,P.J.Waddell,andD.M.Hillis.1996.Phylogeneticinference.Pp. 407514 in D.M.Hillis,C.MoritzandB.K.Mable,eds.MolecularSystematics.Sinauer Associates,Sunderland,Massachusetts.

Sytsma,K.J.,A.Litt,M.L.Zjhra,J.C.Pires,M.Nepokroeff,E.Conti,J.Walker,andP.G. Wilson.2004.Clades,clocks,andcontinents:historicalandbiogeographicalanalysisof Myrtaceae,Vochysiaceae,andrelativesinthesouthernhemisphere. International Journal of Plant Sciences 165 :85105.

Tajima,F.1993.Simplemethodsfortestingthemolecularevolutionaryclockhypothesis. Genetics 135 :599607.

Takahata,N.1987.Ontheoverdispersedmolecularclock. Genetics 116 :169179.

Takezaki,N.,A.Rzhetsky,andM.Nei.1995.Phylogenetictestofthemolecularclockand linearizedtrees. Molecular Biology and Evolution 12 :823833.

Tavaré,S.,C.R.Marshall,O.Will,C.Soligo,andR.D.Martin.2002.Usingthefossilrecordto estimatetheageofthelastcommonancestorofextantprimates. Nature 416 :726729.

Thorne,J.L.,andH.Kishino.2002.Divergencetimeandevolutionaryrateestimationwith multilocusdata. Systematic Biology 51 :689702.

Thorne,J.L.,H.Kishino,andI.S.Painter.1998.Estimatingtherateofevolutionoftherateof molecularevolution. Molecular Biology and Evolution 15 :16471657.

Uyenoyama,M.1995.Ageneralizedleastsquaresestimatefortheoriginofsporophyticself incompatibility. Genetics 139 :975992.

Vos,R.A.,andA.Ø.Mooers.2004.Reconstructingdivergencetimesforsupertrees.Pp.281299 in O.R.P.BinindaEmonds,ed.Phylogeneticsupertrees:Combininginformationtorevealthe treeoflife.KluwerAcademic,Dordrecht,TheNetherlands.

Welch,J.J.,andL.Bromham.2005.Moleculardatingwhenratesvary. TRENDS in Ecology and Evolution 20 :320327.

Whittle,C.A.,andM.O.Johnston.2003.Broadscaleanalysiscontradictsthetheorythat generationtimeaffectsmolecularevolutionaryratesinplants. Journal of Molecular Evolution 56 :223233.

Wikström,N.,V.Savolainen,andM.W.Chase.2001.Evolutionoftheangiosperms:calibrating thefamilytree. Proceedings of the Royal Society B: Biological Sciences268 :22112220.

70 Wikström,N.,V.Savolainen,andM.W.Chase.2003.Angiospermdivergencetimes: congruenceandincongruencebetweenfossilsandsequencedivergenceestimates.Pp.142165 in P.C.J.DonoghueandM.P.Smith,eds.Tellingtheevolutionarytime:molecularclocksandthe fossilrecord.Taylor&Francis,London,UK.

Wray,G.A.2001.DatingbranchesontheTreeofLifeusingDNA. Genome Biology 3:1.11.7.

Wray,G.A.,J.S.Levinton,andL.S.Shapiro.1996.Molecularevidencefordeepprecambrian divergencesamongmetazoanphyla. Science 274 :568573.

Wu,C.I.,andW.H.Li.1985.Evidenceforhigherratesofnucleotidesubstitutioninrodents thaninman. Proceedings of the National Academy of Sciences USA 82 :17411745.

Yang,Z.1997.PAML:aprogrampackageforphylogeneticanalysisbymaximumlikelihood. Computer Applications in the Biosciences CABIOS 13 :555556.

Yang,Z.2004.Aheuristicratesmoothingprocedureformaximumlikelihoodestimationof speciesdivergencetimes. Acta Zoologica Sinica 50 :645656.

Yang,Z.,andB.Rannala.1997.BayesianphylogeneticinferenceusingDNAsequences:A MarkovChainMonteCarlomethod. Molecular Biology and Evolution 14 :717724.

Yang,Z.,andA.D.Yoder.2003.ComparisonoflikelihoodandBayesianmethodsforestimating divergencetimesusingmultiplelociandcalibrationpoints,withapplicationtoaradiationof cutelookingmouselemurspecies. Systematic Biology 52 :705716.

Yoder,A.D.,andZ.H.Yang.2000.Estimationofprimatespeciationdatesusinglocalmolecular clocks. Molecular Biology and Evolution 17 :10811090.

Yoon,H.S.,J.D.Hackett,C.Ciniglia,G.Pinto,andD.Bhattacharya.2004.Amolecular timelinefortheoriginofphotosyntheticEukaryotes. Molecular Biology and Evolution 21 :809 818.

Zuckerkandl,E.,andL.Pauling.1965.Evolutionarydivergenceandconvergenceinproteins.Pp. 97166 in V.BrysonandH.Vogel,eds.EvolvingGenesandProteins.AcademicPress,New York.

71 Tables Table1. Speciesnames,sources,andGenBankaccessionnumbersoftheDNAsequencesusedintheanalyses.Herbariaacronyms:Z=Zurich, BOL=Bolus(UniversityofCapeTown).Superscriptnumbersrefertosourcesinpublishedarticles.References:1)SchönenbergerandConti, 2003;2)Conti et al. ,1996;3)Conti et al. ,2002;4)ClausingandRenner,2001;5)Renner et al. ,2001;6)RennerandMeyer,2001.

Taxon Voucherorsource GenBankaccessionnumbers rbc L ndh F rpl 16intron Alzatea verticillata Ruiz&Pavon 1) 2) 4) U26316 2) AF215591 4) AY151598 1) Axinandra zeylanica Thwaites PeterAshton,s.n.,SriLanka AY078157 3) AJ605094 AJ605107 J.Schönenberger365(Z), Brachysiphon acutus (Thunb.)A.Juss. AJ605084 AJ605095 AY151605 1) (BOL) Brachysiphon fucatus (L.)Gilg J.Schönenberger357(Z),(BOL AJ605085 AJ605096 AY151606 1) J.Schönenberger386(Z), Brachysiphon microphyllus Rourke AJ605086 AJ605097 AY151608 1) (BOL) Crypteronia griffithii C.B.Clarke ShawnLums.n.,Singapore AJ605087 AJ605098 AJ605108 Crypteronia paniculata Blume PeterAshtons.n.,Brunei AY078153 3) AJ605099 AY151597 1) Dactylocladus stenostachys Oliver PeterBecker,s.n.,Brunei AY078156 3) AJ605100 AJ605109 J.Schönenberger370(Z), Endonema retzioides A.Juss AJ605088 AJ605101 AY151611 1) (BOL) Eugenia uniflora L. 4) AF294255 4) AF215592 4) AF215627 4) Medinilla humbertiana Gaudich. 4) AF215517 4) AF215557 4) AF215602 4) Mouriri helleri Aublet 4)5) AF270752 4) AF322230 5) AF215611 4) Myrtus communis L. 4) AF294254 4) AF215593 4) AF215628 4) J.Schönenberger579, Olinia emarginata Davy cultivated,Kirstenbosch AJ605089 AJ605102 AY151601 1) BotanicalGarden,(Z)

72 Table1 ,continued... Olinia ventosa (L.)Cuf. 1)4) AF215546 4) AF215594 4) AY151604 1) Osbeckia chinensis L. 4) AF215525 4) AF215570 4) AF210378 4) Penaea mucronata L. 1)3)4) AJ605090 AF270756 4) AY151620 1) Rhexia virginica L. 2)4) U26334 2) AF215587 4) AF215623 4) Rhynchocalyx lawsonioides Oliver 1) 2) 4) U26336 2) AF270757 4) AY151599 1) Saltera sarcorolla (L.)Bullock J.Schönenberger360(Z), AJ605091 AJ605103 AY151621 1) (BOL) Sonderothamnus petraeus (Barkerf.)R. J.Schönenberger362(Z), AY078154 3) AJ605104 AY151622 1) Dahlgren (BOL) Stylapterus ericoides A.Juss.ssp. pallidus J.Schönenberger355(Z), AJ605092 AJ605105 AY151625 1) R.Dahlgren (BOL) Stylapterus micranthus R.Dahlgren M.Johnss.n.(Z) AJ605093 AJ605106 AY151627 1) Tibouchina urvilleana (DC.)Cogn. 2)6) U26339 2) AF272820 6) AF322234 6)

73 Table2. Agesinmillionyears(mys)estimatedfornodesA,B,andCbasedon rbc L, ndh F,and rpl 16intronsequencesandthreedifferent methodsimplementedinther8ssoftware(Sanderson,2002).AlltreeswerecalibratedatnodeEwithanageof53mys.:mean,σ:standard deviation,CI:95%confidenceinterval,nnd.:bootstrappedagesnotnormallydistributed,n.a.:datanotavailablebecausenodeDisnotpresent inthe rbc Ldatasetduetodifferenttreetopology. rbc L ndh F rpl 16intron combineddataset LangleyFitch(LF) A 31.51 41.64 23.85 29.44,=29.91,σ=3.21,CI:29.2830.55 B 80.22 71.93 49.03 58.89,=58.16,σ=5.16,CI:57.1359.18 C 64.46 49.21 37.1 53.00,=43.63,σ=4.35,CI:42.7644.49 D n.a. 45.43 42.4 42.69,=42.31,σ=2.08,CI:41.942.72 NPRS A 57.08 153.7 56.21 82.68,=85.24,σ=11.93,CI:82.8787.61 B 111.44 217.3 106 152.64,=149.12,σ=16.51,CI:145.84152.39 C 100.56 196.1 94.76 135.68,=133.75,σ=15.84,CI:130.6136.89 D n.a. 42.4 40.15 38.16,=38.35,nnd. PL optimalsmoothing α=0.1 α=0.01 α=0.001 α=0.00316 parameter A 39.37 92.75 43.06 53.00,=54.26,σ=7.58,CI:52.7655.76 B 96.91 154.58 91.09 100.7,=103.28,σ=12.32,CI:100.84105.73 C 80.26 128.08 76.19 83.03,=85.91,σ=12.45,CI:83.4488.38 D n.a. 44.17 39.75 42.4,=40.93,σ=2.18,CI:40.541.36

74 Table3. Agesinmillionyears(mys)estimatedfornodesA,B,andCbasedon ndh Fand rpl 16intronsequencesandthreedifferentmethods implementedinther8ssoftware(Sanderson,2002).AlltreeswerecalibratedatnodeDwithanageof26mys.:mean,σ:standarddeviation, CI:95%confidenceinterval,nnd.:bootstrappedagesnotnormallydistributed.Agesforthe rbc LdatasetarenotavailablebecausenodeDis notpresentinthisdatasetduetodifferenttreetopology.

ndh F rpl 16intron combineddataset LangleyFitch(LF) A 23.85 14.63 17.93,=18.44,nnd. B 41.17 30.06 35.86,=35.82,σ=3.59,CI:35.1136.53 C 28.17 22.75 26,=26.87,σ=2.92,CI:26.2927.44 D 30.33 32.5 32.28,=32.65,σ=1.64,CI:32.3232.98 NPRS A 94.25 36.4 56.33,=58.11,σ=9.39,CI:56.2559.98 B 133.25 68.64 104,=101.53,σ=12.96,CI:98.56104.1 C 120.25 61.36 92.44,=91.07,σ=12.27,CI:88.6393.5 D 32.5 34.32 36.11,=31.78,nnd. PL optimalsmoothing α=0.01 α=0.001 α=0.00316 parameter A 54.6 28.17 32.5,=34.6,σ=5.37,CI:33.5435.67 B 91 59.58 61.75,=65.79,σ=8.54,CI:64.167.49 C 75.4 49.83 50.92,=54.73,σ=8.35,CI:53.0756.38 D 31.2 34.67 32.5,=33.77,σ=1.82,CI:33.4134.13

75 Table4. Agesinmillionyears(mys)estimatedfornodesA,B,andCbasedon rbc L, ndh F,and rpl 16intronsequencesandthreedifferent methodsimplementedinther8ssoftware(Sanderson,2002).AlltreeswerecalibratedatnodeCwithanageof90mys.:mean,σ:standard deviation,CI:95%confidenceinterval,nnd.:bootstrappedagesnotnormallydistributed,n.a.:datanotavailablebecausenodeDisnotpresent inthe rbc Ldatasetduetodifferenttreetopology.

rbc L ndh F rpl 16intron combineddataset LangleyFitch(LF) A 44 76.15 57.86 62.07,=62.08,σ=7.35,CI:60.6363.54 B 112 131.54 118.93 124.14,=120.52,σ=10.25,CI:118.49125.60 C n.a. 83.08 102.86 90,=88.12,nnd. D 74 96.92 128.57 111.72,=110.42,σ=11.09,CI:108.22112.63 NPRS A 51.08 70.54 53.39 54.84,=57.6,σ=6.97,CI:56.2158.98 B 99.73 99.73 100.68 101.25,=100.5,σ=4.23,CI:99.66101.34 C n.a. 19.46 38.14 25.31,=26.15,σ=3.45,CI:25.4626.83 D 47.43 24.32 50.34 35.16,=36.15,σ=4.19,CI:35.3236.98 PL optimalsmoothing α=0.1 α=0.01 α=0.001 α=0.00316 parameter A 44.15 65.17 50.87 57.45,=57.31,σ=7.2,CI:55.8858.74 B 108.68 108.62 107.61 109.15,=108.89,σ=8.52,CI:107.2110.58 C n.a. 31.03 46.96 46.96,=43.79,σ=7.02,CI:42.445.18 D 59.43 37.24 62.61 57.45,=56.71,σ=8.39,CI:55.0458.37

76

Table5. Relationshipsbetweengeologyandbiologyatthelevelsofpatternandtime. Correspondenceatbothlevelsisnecessarytosupportageodispersalistorigin(sensuLieberman, 2000)ofcurrentbioticdistributions.SeeDiscussionforfurtherexplanations.

Geology Biology

Sequenceof Sequenceof Pattern geologicevents cladogeneticevents

Timingof Timingof Time geologicevents cladogeneticevents

77

Figures

Figure1. CurrentdistributionofCrypteroniaceaeandrelatedtaxa. Cry :Crypteroniaceae, Alz : Alzateaceae, Pen :Penaeaceae, Olin :Oliniaceae, Rhyn :Rhynchocalycaceae.

78

Figure2. MaximumLikelihood(ML)tree,basedonthe rbcLdataset(1280characters).Boot strapsupportvaluesarereportedbelowthebranches.Nodesofinterest:A(diversificationof Crypteroniaceaecrowngroup),B(originofCrypteroniaceaestemlineage),C(diversificationof theWestGondwanancrowngroup),D(crowngroupofMelastomeae),andE(diversificationof Melastomataceaecrowngroup).

79

Figure3. MaximumLikelihood(ML)tree,basedonthe ndh Fdataset(981characters).Bootstrap supportvaluesanddescriptionofnodesasinlegendofFigure2.

Figure4. MaximumLikelihood(ML)tree,basedonthe rpl 16introndataset(1010characters). BootstrapsupportvaluesanddescriptionofnodesasinlegendofFigure2. 80

Figure5a. MaximumLikelihood(ML)tree,basedonthecombineddataset(3271characters). BootstrapsupportvaluesanddescriptionofnodesasinlegendofFigure2.

81

Figure5b. ChronogrambasedonaPenalizedLikelihoodmoleculardatinganalysisofthe combineddataset.Theindependentuseofthreedifferentcalibrationpointsresultedinthree differenttimebars.

82

Figure6. Useofadatingoutgrouptaxontoevaluatewheretherootattachestothebasal branches.

83

84

Chapter III. Calibration of molecular clocks and the biogeographic history of Crypteroniaceae: A reply to Moyle

ElenaConti 1,FrankRutschmann,TorstenEriksson 2,KennethJ.Sytsma 3,andDavidA.Baum 3 1Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland 2Bergius Foundation, Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden 3Department of Botany, 430 Lincoln Drive,University of Wisconsin, Madison, WI 53706-1381, USA

Publishedin Evolution(58):18741876.2004.

85

Reply to Robert G. Moyle TotestthemoleculardatingresultsandbiogeographicinterpretationsreportedbyConti et al. (2002),Moylereanalyzedourpublisheddatasetof13 rbc Lsequencesrepresentingfivesmall taxa(theSEAsianCrypteroniaceae:theCclade;theirWGondwanansisterclade,formedbythe SAmerican Alzatea andtheAfrican Rhynchocalyx ,Oliniaceae,andPenaeaceae:theAROP clade)andMelastomataceae.Usingasinglecalibrationpointandnonparametricratesmoothing (NPRS;Sanderson,2003),Moyleestimatedanageof68mya(±10.6mys)forthesplitbetween CrypteroniaceaeandtheAROPclade,whichcontrastswithourpublishedageof116mya(±24 mys),obtainedwithfossilcalibrationandpenalizedlikelihood(PL;Sanderson,2003),andanage rangeof50to151mya,obtainedbyusingthreedifferentcalibrationpointsandthreedifferent datingmethods.MoyleconcludesthathisestimatedagefortheoriginoftheCrypteroniaceae stemlineageis“notcongruentwithastrictvicariancehypothesisforthedistributionof Crypteroniaceaeandnearestrelatives”andthatthedifferencesincalibration“explainmostofthe differencesinresults”. WhileMoley'scommentistimelybyfocusingononeofthemostproblematicissuesin moleculardatinganalysesnamely,calibration,wewouldliketohighlightsomeweaknessesin hischosenanalyticalprocedure,alongwithfactualinaccuraciesandmisrepresentationsofour originalarticle.Furthermore,wereportrecentevidencefromanexpandeddatasetthatincludes rbc L, ndh Fand rpl 16intronsequencesfrom22species(henceforth,"expandedCAROPdata set";Rutschmann et al. ,2004)andoffersomegeneralreflectionsonthecontroversialissueof calibrationinmoleculardatinganalyses. ThecriticismposedbyMoylethatismostreadilyaddressedconcernsthephylogenetic placementoftheSouthAmerican Alzatea .Moyle’smaximumlikelihood(ML)analyses supportedtheplacementoftheSAmerican Alzatea withintheAfricanclade,ratherthanassister totheAfricancladeasreportedinConti et al. (2002).Heproposedthatthisdiscrepancymaybe explainedbytheuseofdifferentmodelsofnucleotidesubstitutioninthetwoanalyses,adding thatlowstatisticalsupportforthepositionof Alzatea suggeststhatitsrelationshipsremain unresolved.However,wewouldliketonotethatMoyleusedoutgroups( Hauya ,Onagraceaeand Quisqualis ,Combretaceae)thatarephylogeneticallymoredistantfromthe CAROP/Melastomataceaecladethantheoutgroupweused( Heteropyxis ,representingthesister cladeoftheCAROP/Melastomataceaeclade;seeConti et al. ,1996).AfterrerunningML analyseswithdifferentcombinationsofoutgroupsandsubstitutionmodels,wehaveconcluded thatinstabilityinthepositionof Alzatea iscausedprimarilybydifferentoutgroupchoices.In

86 supportofouroriginalresult,recentMLanalysesoftheexpandedCAROPdatasetcorroborated thepositionof Alzatea assistertotheAfricancladewithabootstrap(BS)valueof86% (Rutschmann et al. ,2004).Furthermore,preliminaryresultsbasedoncombinednuclear18Sand 26Ssequencesof9taxaalsoconfirmedthesisterrelationshipof Alzatea totheAfricanclade (RutschmannandConti,unpublishedresults). Asecondpointofdisagreementconcernsthepropertiesandinferentialvalueofthe estimatedageranges.Moylestates:“Becauseofthewiderangeofageestimatesproducedbythe differentcalibrationpointsandmoleculardatingprocedures,Ireexaminedthebiogeographic historyofCrypteroniaceaewithparticularattentiontocalibrationprocedure”.Hethenelaborates onresultsbasedonasingledatingmethod(NPRS)andasinglecalibrationpoint(anageof23 myaassignedtonodeE).Thismethodologicalapproachwilltendtoprovideanarrowerrangeof estimatedagesthanwouldbeobtainedbyusingarangeofmethods,butsuchasuperficially preciseresultmaynotbyindicativeofincreasedaccuracy.Indeed,fromastrictlyanalytical perspective,thechoiceofNPRSasthesingledatingmethodisquestionable,sinceNPRStendsto overfitthedata,especiallywhenratesofmolecularevolutionchangeabruptly(Sanderson,2002). Amorecriticalissueis,however,thewayinwhichfossilsareusedtocalibratetrees. Moyleusedasinglecalibrationpointbasedonseedsthataredatedat2326myaand characterizedbythelargetestatuberclesarrangedinrows.Theseseedshavebeenassigned confidentlytothecrowngroupofMelastomeae,whichweremonophyleticinrecentanalyses (RennerandMeyer,2001;Renner et al. ,2001;seealsoCollinsonandPingen,1992).Yet,most likelyduetoscarcesampling,thethreerepresentativesofMelastomeae( Tibouchina, Osbeckia , and Rhexia )includedinour rbcL analysisdidnot formamonophyleticgroup,butweremembers ofacladethatalsoincluded Medinilla fromtheDissochaeteae/Sonerileae(Conti et al. ,2002, Figure3).Itwasforthisreasonthatwerefrainedfromusingthisfossilasacalibrationpoint. Moyle(seehisFigure1),incontrast,usedtheageof23matoconstrainnodeE,whichsubtendsa cladeformedbymembersofMelastomeaeand Dissochaeteae/Sonerileae.Sincethisnode necessarilypredatestheoriginoftheMelastomeaestemgroup,towhichthefossilseedsmaybe assigned(seealsoRennerandMeyer,2001,Figure3;Renner et al. ,2001,Figure1),this impropercalibrationprocedureautomaticallyproducesanunderestimationofallnodalages. AfurthersourceofdisagreementbetweenMoyle’sandouranalysesconcernsthenodal assignmentoffossilleaves(datedat53mya)thatarecharacterizedbyacrodromousvenation,a synapomorphyexclusiveforMelastomataceaeamongthesampledtaxa(Renner et al. ,2001). Moylecriticizesourdecisiontousethesefossilleavestoconstrainthebaseofthe Melastomataceaecrowngroup(correspondingtonodeEinhisFigure1),insteadofthebaseof itsstemlineage(correspondingtonodeDinhisFigure1).AlthoughweagreewithMoylethat 87 theinclusionofbasallineages(e.g., Pternandra )wouldhavebeendesirable(henceweare includingtheminongoinganalyses),wedisagreewithhisconclusionthatthesefossilleaves shouldbeassignedtothebaseoftheMelastomataceaestemlineage.Thefossilleavesmost closelyresembletheleavesofextantMiconieaeandMerianeae(Hickey,1977),suggestingthat theymightbebetterassignedtoshallowernodeswithinMelastomataceae(seealsoRutschmann et al. ,2004.Thisobservation,coupledwiththefactthatacrodromousvenationissharedbyall Melastomataceae,whiletheirMemecylaceaesistergroupischaracterizedbybrochidodromous venation,ledustoconcludethat,intheabsenceofadditionalinformation,thefossilleavesare morereasonablyusedtoprovideaminimalageforthecrownratherthanstemnodeof Melastomataceae(asdonealsobyRenner,2001andRenner,2004). Someofthetemporaluncertaintiesinherenttonodalassignmentoffossilsinamolecular phylogenystemfromthefactthatthetimeoffirstappearanceofdistinctivesynapomorphiesin thefossilrecordpostdatestheoriginofthegrouptowhichthefossilsareassigned.Thus,when thosefossilsareusedtoprovideminimalagesofthesubtendingstemlineages,andifthose minimalagesareinterpretedasestimatesofactualages,thenoneinevitablyobtainsasystematic underestimationofdivergencetimes.Theextentofthetemporalgapbetweentimeoffirst appearanceinthefossilrecordandoriginofagroupdependsonseveralfactors,includingthe fossil’sprobabilityofpreservation,whichinturnisinfluencedbypropertiesinherenttothe fossilizedstructures,thechangingabundancethroughtimeofthestructuresbeingpreservedin thefossilrecord,taphonomicidiosyncrasies(MorleyandDick,2003),andthegeologic characteristicsofthestratigraphiclayerwherethefossilisretrieved(foracomprehensiveand detailedreviewofcalibrationproblemsinmoleculardatingwereferthereadertoMagallón, 2004;seealsoGraurandMartin,2004).Ideally,itwouldbepossibletoestimatethedifference betweentheobservedageofthefossilandthe“real”ageofthegroup.Recentlydeveloped methodsthatattempttoachievethisgoalmakeuseofmultiplelinesofevidence,includingthe densityanddistributionofgapsinthefossilrecord,thenumberofextantspecies,themean specieslifetime,andcladediversificationmodels.Toourknowledge,thesemethodshavebeen appliedprimarilytomammals(Tavaré et al. ,2002,Foote et al. ,1999). Inouroriginalpaperwealsoexploredtheresultsofassumingacorrespondencebetween certainnodesandwelldatedgeologicalevents,specificallyequatingthephylogeneticsplit betweentheSAmerican Alzatea anditsAfricansistercladewiththeformationoftheSouth Atlantic.Moylecriticizesouruseofgeologiccalibrationasanexampleofcircularreasoning.Itis truethatwedidusegeologiccalibrationtoconstrainthisnode,butalwaysinconjunctionwith fossilcalibrations(Conti et al. ,2002;Rutschmann et al. ,2004),subscribingtothepracticeof usingasmanycalibrationpointsaspossibleandthencomparinganddiscussingtheresults 88

(SandersonandDoyle,2001;ThorneandKishino,2002;YangandYoder,2003;Graurand Martin,2004;Magallon,2004).Furthermore,givenhiscriticism,itisironicthatMoyleclaimed supportforhisestimatedageoftheCrypteroniaceaestemlineagebynotingitscorrespondence withthe68myaageinferred( sic! )byMorleyandDick(2003).However,thelatterauthorsdid notestimatethatdivergenceat68mya,butuseditasageologicconstraint,markingthe separationofIndiafromMadagascar(seeFigure1inMorleyandDick,2003). Afurtherpointofcontentionconcernshowagerangesareusedtoreconstructpossible biogeographicscenarios.Forexample,Moylecriticizesthechoiceofusingonlytheolderportion (106141mya)oftheinferred50151myarangeforourbiogegraphicdeductions(Conti et al. , 2002).However,the106141rangecorrespondedtotheagesestimatedbyavariableratemethod (PL),whiletheyoungerportionoftheagerangeincludedtheagesestimatedbytwoconstantrate methods(MLwithclockenforcedandLangleyFitch;Sanderson,2003).Becausethelikelihood ratiotest(LRT)hadrejectedrateconstancy,itseemeddubioustouseclockbasedagerangesfor ourbiogeographicinferences. Irrespectiveofthedifferencesproducedbydifferentdatingandcalibrationprocedures,we wouldliketohighlightsomeofMoyle'smisrepresentationsofourbiogeographicconclusions. First,Moylefailstoexplainthegeneralcontextofouranalyses:weusedmoleculardating estimatestotestcompetinghypothesesontheLaurasian(RavenandAxelrod,1974)vs. Gondwanan(TobeandRaven,1984)originofCrypteroniaceae.Ourresultssupporteda Gondwananoriginforthefamily,aconclusiontowhichMoylealsosubscribes.However,despite theapparentagreementbetweenourgeneralbiogeographicconclusions,Moylestates:“The phylogenyanddivergencetimeestimatesproducedherearenotcongruentwithastrict GondwananvicariancehypothesisforthedistributionofCrypteroniaceaeanditsnearestrelatives. […]Instead,assumingaGondwananoriginofthestemlineageleadingtoCrypteroniaceaeand itsallies,thesedatesinfer( sic! )dispersalbetweenAfricaandIndiaasIndiadriftednorthward”. WeweresurprisedtoseethatMoyleproposedthisconclusionasanovelinterpretation,in oppositiontoourpurportedlystrictvicariantexplanation.Sufficeitheretoreportthefollowing summarystatement: “Therefore,itseemsreasonabletoproposethatGondwanandriftplayedan essentialroleinthebiogeographichistoryofCrypteroniaceaeandrelatedfamiliesand specificallythatIndia,initsnorthwardmovementfromGondwanatoAsiaalongtheAfrican coast,servedasthemostlikelymigrationrouteforCrypteroniaceae”(p.1940,Conti et al. ,2002). InourmorerecentpaperbasedontheexpandedCAROPdataset,wefurtherdeveloped theconceptthatdispersaloftheCrypteroniaceaestemlineagefromAfricatoIndiamighthave beenfacilitatedbythereductionoftheoceanbarrierbetweenthesetwoplatesuptothe Maastrichtian(Rutschmann et al. ,2004).Therefore,ourinterpretationofthebiogeographic 89 historyofCrypteroniaceaeconformstoageodispersalist(sensuLiebermann1997,2000),rather thanastrictlyvicariantmodel.Whileweremainopentothepossibilitythattheuseofdifferent calibrationpointsmightproducerelativelyyoungerageestimatesfortheCrypteroniaceaestem lineage,wealsonotethatMoyle’sandourresultsbothconfirmaCretaceousoriginforthis familyandIndia’scrucialroleinitsbiogeographichistory,asstatedinthetitleofouroriginal paper. Moyleconcludesthatthemaindifferencesbetweenhisandourageestimatesstem essentiallyfromdifferencesincalibration,seeminglyimplyingthathiscalibrationisrightand oursiswrong.However,thecomplexissuesrevolvingaroundnodalassignmentoffossilscannot beeasilyreducedtoaManichaeanviewofscientificinferencethatreliesonfixedcategoriesof "right"and"wrong".Theonlykindofpaleobotanicalrecordthatwouldunquestionablysupport theGondwananoriginofCrypteroniaceaewouldbetheretrievalofpreTertiaryfossils attributabletoCrypteroniaceaefromAfrica,Madagascar,orIndia.Barringthat,webelievethat biogeographicdeductionsshouldbebasedonmultiplelinesofevidence,drawnfromboth phylogeneticpatternsandmoleculardating,incombinationwithpaleogeologicandpaleoclimatic reconstructionsandtheevaluationofthepotentialforlongdistancedispersalofthepropagules Wepursuedthisintegrative,multifacetedapproachinouroriginalandsubsequentpapers.

90

References Conti,E.,T.Eriksson,J.Schönenberger,K.J.Sytsma,andD.A.Baum.2002.EarlyTertiaryout ofIndiadispersalofCrypteroniaceae:evidencefromphylogenyandmoleculardating. Evolution 56 :19311942.

Conti,E.,A.Litt,andK.J.Sytsma.1996.CircumscriptionofMyrtalesandtheirrelationsshipsto other:evidencefrom rbc Lsequencedata. American Journal of Botany 83 :221233.

Foote,M.,J.P.Hunter,C.M.Janis,andJ.J.SepkoskiJr.1999.Evolutionaryandpreservational constraintsonoriginsofbiologicgroups:divergencetimesofEutherianmammals. Science 283 :13101314.

Graur,D.,andW.Martin.2004.Readingtheentrailsofchickens:moleculartimescalesof evolutionandtheillusionofprecision. TRENDS in Genetics 20 :8086.

Hickey,L.J.1977.StratigraphyandpaleobotanyoftheGoldenValleyformation(EarlyTertiary) ofwesternNorthDakota.Memoir150.GeologicalSocietyofAmerica,Boulder,Colorado.

Lieberman,B.S.1997.EarlyCambrianpaleogeographyandtectonichistory:abiogeographic approach. Geology 25 :10391042.

Lieberman,B.S.2000.Paleobiogeography.Usingfossilstostudyglobalchange,platetectonics, andevolution.KluwerAcademicPublishers,NewYork.

Magallón,S.A.2004.Datinglineages:molecularandpaleontologicalapproachestothetemporal frameworkofclades. International Journal of Plant Sciences 165 :721.

Morley,R.J.,andC.W.Dick.2003.Missingfossils,molecularclocksandtheoriginofthe Melastomataceae. American Journal of Botany 90 :16381645.

Moyle,R.G.2004.Calibrationofmolecularclocksandthebiogeographichistoryof Crypteroniaceae. Evolution 58 :18711873.

Raven,P.H.,andD.I.Axelrod.1974.Angiospermbiogeographyandpastcontinental movements. Annals of the Missouri Botanical Garden 61 :539673.

Renner,S.S.2004.Bayesiananalysisofcombinedchloroplastloci,usingmultiplecalibrations, supportstherecentarrivalofMelastomataceaeinAfricaandMadagascar. American Journal of Botany 91 :14271435.

Renner,S.S.,G.Clausing,andK.Meyer.2001.HistoricalbiogeographyofMelastomataceae: therolesofTertiarymigrationandlongdistancedispersal. American Journal of Botany 88 :1290 1300.

Renner,S.S.,andK.Meyer.2001.Melastomeaecomefullcircle:biogeographicreconstruction andmolecularclockdating. Evolution 55 :13151324.

Ricklefs,R.E.,andS.S.Renner.1994.Speciesrichnesswithinfamiliesoffloweringplants. Evolution 48 :16191636.

91

Rutschmann,F.,T.Eriksson,J.Schönenberger,andE.Conti.2004.DidCrypteroniaceaereally disperseoutofIndia?Moleculardatingevidencefrom rbc L, ndh F,and rpl 16sequences. International Journal of Plant Sciences 165 :6983.

Sanderson,M.J.2002.Estimatingabsoluteratesofmolecularevolutionanddivergencetimes:a PenalizedLikelihoodapproach. Molecular Biology and Evolution 19 :101109.

Sanderson,M.J.2003.r8s:inferringabsoluteratesofmolecularevolutionanddivergencetimes intheabsenceofamolecularclock. Bioinformatics 19 :301302.

Sanderson,M.J.,andJ.A.Doyle.2001.Sourcesoferrorandconfidenceintervalsinestimating theageofAngiospermsfrom rbc Land18SrDNAdata. American Journal of Botany 88 :1499 1516.

Sytsma,K.J.,A.Litt,M.L.Zjhra,J.C.Pires,M.Nepokroeff,E.Conti,J.Walker,andP.G. Wilson.2004.Clades,clocks,andcontinents:historicalandbiogeographicalanalysisof Myrtaceae,Vochysiaceae,andrelativesinthesouthernhemisphere. International Journal of Plant Sciences 165 :85105.

Tavaré,S.,C.R.Marshall,O.Will,C.Soligo,andR.D.Martin.2002.Usingthefossilrecordto estimatetheageofthelastcommonancestorofextantprimates. Nature416 :726729.

Thorne,J.L.,andH.Kishino.2002.Divergencetimeandevolutionaryrateestimationwith multilocusdata. Systematic Biology 51 :689702.

Tobe,H.,andP.H.Raven.1984.TheembryologyandrelationshipsofOliniaceae. Plant Systematics and Evolution 146 :105116.

Wikström,N.,V.Savolainen,andM.W.Chase.2001.Evolutionoftheangiosperms:calibrating thefamilytree. Proceedings of the Royal Society B: Biological Sciences268 :22112220.

Yang,Z.,andA.D.Yoder.2003.ComparisonoflikelihoodandBayesianmethodsforestimating divergencetimesusingmultiplelociandcalibrationpoints,withapplicationtoaradiationof cutelookingmouselemurspecies. Systematic Biology 52 :705716.

92

Chapter IV. Tempo and mode of diversification in the African Penaeaceae and related taxa

FrankRutschmann,JürgSchönenberger 1,PeterLinder 2,andElenaConti 2 1Department of Botany, Stockholm University, Lilla Frescativägen 5, SE-106 91 Stockholm, Sweden 2Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland

Inpreparationforpublicationin AmericanJournalofBotany

93

Abstract TheCapeFloristicRegion(CFR)inSouthAfricaischaracterizedbyveryhighlevelsof plantspeciesdiversity,including69%endemics.AmongthesearethePenaeaceae(Myrtales),a smallfamilyoferiocoidshrubsmostcloselyrelatedtoOliniaceaeandRhynchocalycaceae,which alsooccurintheCape,butfurtherextendtoSouthernandEasternAfrica.Duetotheirisolated phylogeneticpositionandtheirnarrowdistribution,Penaeaceaehavebeenreferredtoasancient, paleoendemicelements.Previousphylogeneticstudiesrevealedapatterncharacterizedbyalong branchforthestemlineage,andmanyshortbranchesforthecrowngroupofPenaeaceae. Herewepresenttheresultsofphylogeneticandmoleculardatinganalysesofeight chloroplastandthreenuclearsequencesaimedatreconstructingthetempoandmodeof diversificationinPenaeaceaeandrelatedfamilies.Bayesianinferenceofdivergencetimesand statisticalevaluationoflineagesthroughtimeplotsprovidedatemporalframeworkfor diversification.Maximumlikelihoodreconstructionofancestralcharacterstatesforleafsizeand vegetationtypesofferednewinsightsintopossibleevolutionaryscenariosfortheir diversification.

Thechloroplastandnucleardatasetsproducedsignificantlyincongruenttreetopologies, possiblysuggestingearlierhybridizationeventsfollowedbychloroplastcapture.Molecular datingandthelineagesthroughtimeanalysesbasedontheplastiddatasetshowedthatthecrown radiationofPenaeaceaestartedabout17mysago,followingtheinitiationofaclimatictrend towardsthemodernseasonallycoldandaridconditionsintheCape.Lignotubersandprotective scleromorphicleavespossiblyrepresentkeyinnovationsthattriggeredtheradiationof PenaeaceaeintheMiddleMiocene,allowingPenaeaceaetogrowonlownutrientsoils.Contrary toPenaeaceae,OliniaceaeandRhynchocalycaceaeremainedrestrictedtoatemperateclimate, andprobablyexperiencedahighdegreeofextinction.Ourancestralcharacterstate reconstructionsindicategeneralshiftsfromtropicaltofynbosvegetationtypes,andfrommacro toleptophyllousleaves,corroboratingthehypothesisthatmodernspecies,adaptedtolownutrient soilsandsummeraridity,replacedanancestraltropicalfloraduringtheLateMiocene aridification.

Keywords:Diversification,radiation,Penaeaceae,Oliniaceae,Rhynchocalycaceae, biogeography,CapeFloristicRegion,SouthAfrica.

94

Introduction TheCapeFloristicRegion(CFR)inSouthAfricaisabiodiversityhotspotwithmorethan 9000plantspeciesinanareaof90000km 2.Thelevelofendemismisveryhigh:68.8%ofthe speciesarerestrictedexclusivelytothesouthwesterntipofsouthernAfrica(Goldblattand Manning,2000,2002).Thecompositionofthisfloraisverydistinctive,withsomefamilies,for ex.,Penaeaceae,Stilbaceae,Grubbiaceae,Roridulaceae,andGeissolomataceaefoundexclusively here.Otherfamilies,forex.,Iridaceae,Aizoaceae,Ericaceae,Proteaceae,andRestionaceaeare morenumerousandecologicallydominantintheCFRthaninanyotherregionoftheworld. Speciesrichnessisconcentratedinafewlargeclades,whichradiatedmostlywithintheCFR (Linder,2003;LinderandHardy,2004);50percentofthefloraiscontainedinthe30largest clades(Linder,2003),andthefloraisdominatedbyafewlargegenera(e.g. Erica withits658 species;GoldblattandManning,2000).ThemostcharacteristicvegetationtypeintheCFRisthe fynbos,whichoccupiesabouthalfoftheCFRandaccountsfor80%ofthespeciesrichness, includingtallproteoids,heathlikeericoids,restioids,andbulbousgeophytes(Goldblattand Manning,2002). ThedominatingclimateintheCFRismediterranean,characterizedbywetwintersand warm,drysummers.Thisprecipitationregimeismorepronouncedinthewesternmost(ranging fromthewestcoasttoSwellendam)thanintheeasternpartoftheCFR(rangingfromthe OverbergtoPortElizabeth;SchulzeandMcGee,1978).Inthewesternpart,thewinterweatheris dominatedbyasuccessionofcoldfrontsandmoist,nothwesterlywinds,whereasinsummer, highpressurecellsanddrysoutheasterlywindsdominatetheclimate.Intheeasternpart,seasons arelesswelldefinedintermsofwinterrainfallandsummerdrought,becausethesoutheasterly windsbringsummerraintothecoastalplainsandthemountainsbetweentheOverbergandthe easternCape.Ingeneral,highaltitudelocationsinthemountainsarelessexposedtoseasonality andgetmorerainthroughouttheyearthanthelowlands(GoldblattandManning,2002;Linder, 2003). MostsoilsintheCFRarederivedfromquartzitesandhardsandstonesthatformtheTable MountainandWitteberggroupsandaregenerallydeficientinnutrients(Kruger et al. ,1983).In thecool,highrainfallmountainareas,rainfallleachesthescarcenutrientsfromthesoil,leading toableached,extremelynutrientpoorhorizon.Atthebaseofthemountains,soilsderivedfrom MalmesburyandBokkeveldshalesaregenerallydeeperandcontainmoreclayandnutrientsthan theupperslopesandplateaux(Campbell,1983;GoldblattandManning,2000).

95

Becauseofitsdryandhighflammablenature,thefynbosisfrequentlyexposedtobush fires,initiatedbylightnings,rockfalls,orhumanactivities.Thesehotandintensefires,proposed asamaindrivingforceofdiversification(Cowling,1987;VanWilgen,1987;Mandersand Cunliffe,1987),coverlargeareasthatburndownevery12to15yearsonaverage,withextreme cyclesof5to50years(inaverageevery).Plantsfollowtwomainstrategiestocopewithfire: reseedingandresprouting(Pate et al. ,1989;Schutte et al. ,1995;Linder,2003).Reseeders regeneratefromandfloweronlyafterseveralyears(Cowling,1987,1992),while resproutersusuallyregeneratefromundergroundtherootsorstemsandflowerwithinthefirst yearortwoafterafire.Bothstrategiesareconnectedwithcomplexandspecificmorphological adaptationsthatmusthaveevolvedunderintenseselectivepressures(Linder,2003). AmongthesixfamiliesendemictotheCFRarethePenaeaceae(Myrtales),which comprise23speciesofshrubsandundershrubsinsevengenera(Dahlgren,1967a,1967b,1967c, 1968,1971;DahlgrenandThorne,1984;JohnsonandBriggs,1984;DahlgrenandvanWyk, 1988;SchönenbergerandConti,2003).Mostofthespeciesoccurwithina200kmradiusofCape TowninthesouthwesternmostportionoftheCapeProvince(CarlquistandDebuhr,1977)and inhabitthemountainfynbos,wheretheygrowonrocky,oligotrophicsandstonerocks,slopesand cliffsundermesicconditionswithmorethan600mmrainfallperyear(GoldblattandManning, 2000;Schönenberger et al. ,inpress).Aminorfractionofspeciesoccuralongwaterstreams (Penaea dahlgrenii, Stylapterus ericoides, Stylapterus micranthus, Endonema laterifolia )orin sandyflats( Stylapterus fruticulosus ).Allspeciesgrowonsandstone,exceptthelimestone restricted Brachysiphon mundii .Duetotheirisolatedtaxonomicpositionamongotherplant groupsendemictotheCFRandtheirsmalldistributionrange,Penaeaceaehavebeenviewedasa paleoendemicfloristicelement,togetherwithotherfamilies“withlowevolutionary specialization”(GoldblattandManning,2000)likeBruniaceae,Geissolomaceae,Grubbiaceae, Retziaceae,Roridulaceae,andStilbaceae(GoldblattandManning,2000).Thesepaleoendemics areinterpretedasrelictsofanancienttemperateflorathatoncedominatedtheCFRandlater progressivelyadaptedtonutrientpoorsoils(seeDiscussion;GoldblattandManning,2000). MostcloselyrelatedtoPenaeaceaearetheSoutheastAfricanfamiliesOliniaceaeand Rhynchocalycacae,bothwithfewerspecies,butabroaderdistributionrange.Oliniaceae compriseabouteightspeciesinthesinglegenus Olinia (DahlgrenandThorne,1984;Tobeand Raven,1984b;SebolaandBalkwill,1999;Conti et al. ,1996,1997,2002;Schönenbergerand Conti,2003;Rutschmann et al. ,2004,submitted).Thesetreesandshrubsoccurinthetemperate aftromontaneandcoastalforestsofeasternandsouthernAfrica(SouthAfrica,Swaziland, Moçambique,Uganda,Kenya,Tanzania,Malawi,Rwanda,Ethiopia,RepublicoftheCongo, Zambia,andAngola),andalsoontheislandofSt.Helena,where Olinia ventosa wasmost 96 probablyintroducedfromSouthAfrica(Cufodontis,1960;SchönenbergerandConti,2003).A soundtaxonomictreatmentofthefamilyisnotyetavailable(SebolaandBalkwill,1999). Rhynchocalycaceaecomprisethesinglespecies Rhynchocalyx lawsonioides ,arare,evergreen treeendemictotheSouthAfricanprovincesofEasternCapeandKwaZuluNatal(Van BeusekomOsingaandvanBeusekom,1975;JohnsonandBriggs,1984;TobeandRaven,1984; SchönenbergerandConti,2003). Rhynchocalyx isa3to10mhightreeandgrowsmainlyalong themarginsoftemperateforestsandclosetowatercoursesandrivers(PalmerandPitman,1972). Accordingtoearliermolecularphylogeneticstudies, Rhynchocalyx issistertoacladecomprising themonophyleticPenaeaceaeandOliniaceae(Conti et al. ,2002;SchönenbergerandConti,2003; Rutschmann et al. ,2004).However,dependingongeneandtaxonsamplingandthemethodused forphylogeneticinference, Rhynchocalyx mightbenestedwithinOliniaceae,whicharesisterto Penaeaceae(Rutschmann et al. ,submitted). Inthemolecularphylogeneticstudiesmentionedabove,alongbranchbetweenthestem lineageandthecrowngroupofbothPenaeaceaeandOliniaceaewasobservedinthephylograms, representingahighnumberofnucleotidesubstitutions.Insubsequentmoleculardatinganalyses aimedatreconstructingthebiogeographichistoryofthesoutheastAsianCrypteroniaceae,closely relatedtoPenaeaceae,Oliniaceae,and Rhynchocalyx, thelongstembranchesofPenaeceaeand Oliniaceaepersistedinthechronograms,indicatinglongtimeperiodsbetweentheiroriginand diversification(Conti et al. ,2002;Rutschmann et al. ,2004;Rutschmann et al. ,submitted).In addition,thechronogramssuggestedthatafterthedescribedlongperiodofabsentdiversification, bothcrowngroupsstartedtodiversifyrapidly.However,neitherthespecifictiming,northe tempoandmodeofthesediversificationshavebeeninvestigated. Here,weanalyzeanexpandednucleotidedataset,comprisingDNAsequencesfromeight plastidandthreenuclearregions,withacombinationofphylogeneticandmoleculardating methods,lineagethroughtimeplots,andancestralstatereconstructionstoelucidate diversificationpatternsinPenaeceaeandOliniaceae.Morespecifically,weaddressthefollowing questions:i)WhatarethephylogeneticrelationshipswithinPenaeaceae,basedonevidencefrom boththeplastidandnucleargenomes?;ii)WhendidthestemlineagesofPenaeaceaeand Oliniaceae,respectively,originateandwhendidtheircrowngroupsstarttodiversify?iii)Did speciesinPenaeaceaeandOliniaceaeaccumulateataconstantratethroughtimeornot?Do tempoandmodeofdiversificationdifferbetweenthetwofamilies?iv)Howcantheobserved diversificationpatternsbebestexplainedinthelightoftheknownhistoryoftheCapeflora?

97

Materials and Methods

Taxon sampling and DNA extractions Taxonsampling,identicaltothatdescribedinSchönenbergerandConti(2003),included atotalof31taxa(seeTable1).AlmostfullsamplingwasachievedforPenaeaceae(19of23 speciesplus4subspeciesof Penaea cneorum ),Oliniaceae(5ofabout8species), Rhynchocalycaceae(1of1species),andAlzateaceae(1of1species).Thefourmissing Penaeaceae, Stylapterus barbatus , Stylapterus dubius , Stylapterus sulcatus ,and Stylapterus candolleanus ,arealleitherveryrare,occuronlyinrestrictedareas,orwerecollectedonlyonce ortwice.FollowingSebolaandBalkwill(1999),thethreemissingOliniaceaeare Olinia discolor , Olinia rochetiana, and Olinia micranth a.TotalDNAwasextractedasdescribedin SchönenbergerandConti(2003)andRutschmann et al. (2004).

In vitro amplification, sequencing and alignment Atotalof31newInternalTranscribedSpacer(ITS)sequencesweregeneratedforthis study,comprisingITS1,the5.8SrRNAgeneandITS2.Taxonnames,voucherinformation,and GenBankaccessionnumbersarelistedinTable1.Forallremainingsequences,voucher informationandaccessionnumbersarelistedinSchönenbergerandConti(2003),Rutschmann et al. (2004),andRutschmann et al. ,submitted. (seeTable1). Oursamplingofgeneticlociwasexpandedfrompublishedstudies(Schönenbergerand Conti,2003;Rutschmann et al. ,2004;Rutschmann et al. ,submitted)toinclude11generegions: theplastid rbc Lexon, ndh Fexon, rpl 16intron, rps 16intron, trn Strn Gspacer, atp Brbc Lspacer, mat Kexon,and psb Atrn Hspacer,plusthenuclearribosomal18S,26S,andthenuclearITSgene sequences(comprisingtheITS1,the5.8SrRNAgeneandITS2).TogenerateITSsequences,we usedamplificationandsequencingprimersslightlymodifiedfromBaum et al. (1998)andWhite et al. (1990):ITSLeu:5'GTCCACTGAACCTTATCATTTAG3',ITS4:5'TCCTTCCGC TTATTGATATGC3',ITS3B:5′GCATCGATGAAGAACGTAGC3',ITS2:5'GCT GCGTTCTTCATCGATGC3'.AllotherprimersequencesandtheproceduresforPCR amplificationandsequencingaredescribedinRutschmann et al. (2004)andRutschmann et al. , submitted. ThesoftwareSequencher4.5(GeneCodes,AnnArbor,MI,USA)wasusedtoeditand assemblecomplementarystrands.Basepositionswereindividuallydoublecheckedforagreement betweenthecomplementarystrands.ThesequenceswerefirstalignedusingClustalX1.83 (Thompson et al. ,1997)priortoadjustingthealignmentsbyeyewiththesoftwareMacClade

98

4.07(MaddisonandMaddison,2000).ThechloroplastandnuclearDNAdatasetsusedforfurther phylogeneticanalysescontained31taxaandatotalof9955alignedpositions,composedofeight chloroplastandthreenuclearpartitions).Thechloroplastdatasetcomprisedsequencesfromthe rbc L(1144chars), ndh F(800chars)and mat K(730chars)genes,andthenoncoding rpl 16 intron(492chars), rps 16intron(975chars), trn Strn Gspacer(843chars), atp Brbc Lspacer (1011chars),and psb Atrn Hspacer(576chars;seeTable1).Thenucleardatasetcontained sequencesfromtheribosomal18S(1630chars)and26S(962chars)genes,andthenoncoding ITS(792chars;seeTable1). ToinvestigatepossibleintragenomicvariationofITSrepeats(ÁlvarezandWendel, 2003),thePCRproductsoftheITSregionfrom Crypteronia paniculata , Olinia ventosa , Brachysiphon mundii ,and Penaea mucronata wereeachclonedbyusingtheTOPOTA Cloning®kitbyfollowingthemanufacturer’sinstructions(InvitrogenBV,Groningen).After growingthecoloniesat37°CovernightonagarplateswithLuriaBertani(LB)mediumand ampicillin,fourtofiverecombinantclonesperplatewererandomlyselectedandtheITSinsertof eachclonewasinvitroamplifiedusingtheprovideduniversalprimersM13FandM13R.The amplificationproductswerethensequencedbyusingthesameITSprimersandcyclesequencing conditionsdescribedabove. Phylogenetic analyses Thechloroplastandnucleardatasetswereanalyzedseparately.Bayesiananalysesfor topologyandbranchlengthestimationreliedonMrBayesversion3.12(Huelsenbeckand Ronquist,2001;RonquistandHuelsenbeck,2003).MrAIC1.4(Nylander,2005),aprogramthat usesPHYML(GuindonandGascuel,2003)toevaluate24nucleotidesubstitutionmodels,was employedtoselectthebestmodelsbasedonthecorrectedAkaikeinformationcriterion(AICc; BurnhamandAnderson,2002;seeTable2).Parametervaluesforthechosenoptimalmodels werethenestimatedsimultaneouslyforeachpartitionduringtopologyandbranchlength optimizationinMrBayes. BayesiantopologyestimationusedonecoldandthreeincrementallyheatedMarkovchain MonteCarlo(MCMC)chainsrunfor1.5*10 6cycles,withtreessampledevery100 th generation, eachusingarandomtreeasastartingpointandatemperatureparametervalueof0.2(thedefault inMrBayes).Foreachdataset,MCMCrunswererepeatedtwice.Thefirst5000treeswere discardedasburnin.TheremainingtreeswereusedtoconstructoneBayesianconsensustree withmeanbranchlengths(Figures1aand1b)andtocalculatetheposteriorprobabilitiesforeach branch.Examinationofthelogarithmiclikelihoodsandtheobservedconsistencybetweenthe runssuggestedthattheusedburninperiodsweresufficientlylong. 99

BootstrapsupportvalueswerecalculatedbyusingthePerlscriptBootPHYML3.4 (Nylander,2005).Thisprogram(slightlymodifiedbythefirstauthor)firstgenerates1000 pseudoreplicatesinSEQBOOT(partofPhylip3.63;Felsenstein,2004),thenperformsa maximumlikelihoodanalysisinPHYML(GuindonandGascuel,2003)foreachreplicateunder themodelofevolutionselectedabove,andfinallycomputesa50%majorityruleconsensustree byusingCONSENSE(alsopartofthePhylippackage). Inadditiontothechloroplastandnucleardatasets,aseparatephylogeneticanalysiswas performedasdescribedabovefortheITSdatasetonly,including19clonesfrom Crypteronia paniculata , Olinia ventosa , Brachysiphon mundii ,and Penaea mucronata, tocheckfor monophylyoftherespectiveclones. Totestforsignificantdifferencesbetweenthebesttreetopologiesderivedfromthe chloroplastandthenucleardatasets,theKishinoHasegawa(KH)pairedsitestest,alsoknownas ResamplingEstimatedLogLikelihood(RELL)incongruencetest(KishinoandHasegawa,1989; Felsenstein,2004),wasused.Forboththechloroplastandthenucleardataset,10 5sampledtrees obtainedintheMrBayesanalyseswereusedtoconstructtherespective80%majoritiyrule consensustreesinPAUP*(Swofford,2001).Usingtheplastidsequencedata,thebranchlengths forthetwoconsensustreeswerereestimatedunderMLusingthemodelparametersestimated duringtheMrBayesanalysis.TheKishinoHasegawatestwasthenusedtocomparethelog likelihoodsofthetreesandtestthenullhypothesisthatthetreesarenotsignificantlydifferent. Thesameprocedurewasrepeatedstartingwiththenuclearsequencedata.BecausetheKH pairedsitestestindicatedthatthetwotreesweresignificantlydifferent(seeResults),molecular datingandancestralstatereconstructionanalyseswereperformedonthedataderivedfromthe maternallyinheritedchloroplastgenome(CorriveauandColeman,1988) Calibration Tocalibratethetree,wereliedonpreviousresultsofbroaderphylogeneticanddating analysesinMyrtales(Rutschmann et al. ,submitted,Rutschmann et al. ,2004,Conti et al. ,2002). Mostrecently,theageofthephylogeneticsplitbetweentheAfricanPenaeaceae/Oliniaceaeand theSouthAmericanAlzateaceaewasplacedatbetween85.54and54.99mys,basedonthe97.5 th and2.5 th percentileoftheposteriordistributioninRutschmann et al. (submitted).Byusingsucha broadtimerangeforconstrainingthecalibrationnode(node c;Figures1aand2),wetriedto minimizeproblemsrelatedtosecondarycalibration(GraurandMartin,2004;HedgesandKumar, 2004).

100

Divergence time estimation Byusingtheχ2molecularclocktestofLangleyandFitch(1974)implementedinr8s (Sanderson,2003),wetestedforrateconstancywithintheentiretree(globaltest),orwithin selectedclades(localtest;seeTable3).Thisχ2clocktestcomparestheobservedbranchlengths withthebranchlengthspredictedunderaclockmodel. WethenappliedBayesiandating(Thorne et al. ,1998;ThorneandKishino,2002)to estimatedivergencetimes.Thismethodusesaprobabilisticmodeltodescribethechangein evolutionaryrateovertimeandaMarkovchainMonteCarlo(MCMC)routinetoderivethe posteriordistributionofratesandtime.Theprocedurewefollowedisdividedintothreestepsand programswhicharedescribedinmoredetailintheBayesiandatingstepbystepmanualversion 1.5(Rutschmann,2005).Itwasperformedona3GHzPentiumIVmachinerunningUbuntu Linux6.04.Thevaluesofthepriordistributionsinthethird multidivtime step(Kishino et al. , 2001;ThorneandKishino,2002)werespecifiedinunitsof10mys,assuggestedinthemanual:

RTTM =8.554, RTTMSD =2, RTRATE and RTRATESD =0.02525(nucleardataset),0.00549(plastid dataset),and0.00585(combineddataset), BROWNMEAN and BROWNSD =0.117,and BIGTIME = 10.WerantheMarkovchainforatleast10 6cyclesandcollectedonesampleevery100cycles, withoutsamplingthefirst10 5 cycles(burninsector).Weperformedeachanalysisatleasttwice withdifferentinitialconditions( INSEED parameters)andcheckedtheoutputsamplefilestoassure convergenceoftheMarkovchainbyusingtheprogramTracer1.3(RambautandDrummond, 2005),althoughwerealizethatitisnotpossibletosaywithcertaintythatafinitesamplefroman MCMCalgorithmisrepresentativeofanunderlyingstationarydistribution(CowlesandCarlin, 1996).Inaddition,divergencetimeswerealsoestimatedbyusingpenalizedlikelihood (Sanderson,2002)implementedin r8s (Sanderson,2003).

Diversification rate analysis Byusingthechronogramderivedfromtheplastiddataset(Figure2),thenumberof diverginglineageswasplottedagainstdivergencetime(LTTplots;Figures3and4).Toprovidea globalpictureofdiversificationrates,theLTTanalysiswasfirstperformedforalltaxa,excluding thefoursubspeciesof Penaea cneorum (fulldataset;Figure3).Additionally,wefocused exclusivelyonmembersofthePenaeaceaecrowngroup(againwithoutsubspecies)toprovide moreresolutionfordetectingdiversificationratechangeswithinthefamily(reduceddataset; Figure4).Thenumberoflineageswasplottedinadecimalscale(Figure3aand4a)orlog transformedtolinearizeapotentialexponentiality(Figure3band4b).

101

BoththeCramérvonMisesandtheAndersonDarlinggoodnessoffittestsimplemented inAPE(Paradis et al.,2004)–apackagewritteninRfortheRprojectofstatisticalcomputing (RDevelopmentCoreTeam,2004)wereusedtotestthenullhypothesisthatthediversification ratesareconstantovertheentireultrametrictree(Table4).Bothmethodscomparetheempirical densityfunctionoftheobservations(branchingtimesderivedfromthechronogram)tothe expectedexponentialcumulativedensityfunctionundertheassumptionofconstant diversificationrates(Paradis,1998). Inaddition,survivalanalysis(Paradis,1997)implementedinAPEwasusedtodetect shiftsinnetdiversificationrate(Table4).Themethodcomparesthelikelihoodofthedata (branchingtimes)underthreedifferentsurvivalmodels.ModelAassumesaconstantrateof diversification(whichleadstoanexponentialincreaseinlineagesovertime).ModelBassumesa monotonicallychangingrateofdiversification(Weibulllaw),andincludestheestimated parameterβ,whichindicatesifthediversificationrateincreases(positiveβvalue)ordecreases (negativeβvalue).ModelCassumesconstantdiversificationrates,butassumesoneabrupt changeinthediversificationrateatasinglebreakpoint(Paradis et al. ,2004).Thisbreakpointhas tobespecifiedaprioriasparameterγ.FortheglobalandthePenaeaceaecrowngroupanalyses, wesetγto16.6mysand8.7mys,respectively,becausethesevaluesrepresentedthemost probablebreakpointsbasedonavisualinspectionoftheLTTplots(Figures3and4).The comparisonamongmethodswasdoneusingbothlikelihoodratiotests(LRT)andtheAkaike informationcriterion(AIC;seeTable4;Paradis,1997;Kadereit et al. ,2004).

Ancestral character state reconstructions Inordertoreconstructcharacterstatesforselectednodesofinterest,anexpanded chronogramfromRutschmann et al. (submitted)wasusedwhichcomprisessixmoretaxaof Crypteroniaceae(Figure5).Althoughthischronogramisbasedonfewergenes,itprovidesbetter taxonsamplingwithinCrypteroniaceaeanditstopologyisalmostentirelycongruentwiththatof thechronogrambasedoneightchloroplastgenes(seeFigure2).All37taxawereassignedtoone outofthreevegetationtypeclasses(tropical,temperate,andfynbos)andoneoutoffiveleafsize classes(lepto,nano,micro,meso,andmacrophyll;Table5).Leafsizeswerecalculatedasthe areaofanellipse(leaflengthxleafwidthxpi/4)andthenassignedtotheappropriateleafsize classesfollowingRaunkiaer(1916,1934).Leafdimensionsweremeasuredonherbarium specimens(seevouchersinTable1)andderivedfrompublishedliterature(PalmerandPitman, 1972;Pereira,1996).AncestralcharacterstateswerethenestimatedunderMaximumLikelihood optimizationinMesquite1.06(buildg97;MaddisonandMaddison,2005)byusingtheMk1

102 model(Table6andFigure5).Additionally,leafsizeswerecodedascontinuouscharactersand reconstructedbyusingMLoptimizationinANCML(Schluter et al. ,1997;Table6andFigure5).

103

Results

Phylogenetic analyses Thetwodatasetsusedforphylogeneticanalysescontained31taxaandatotalof9955 alignedpositions,composedofeightchloroplast(6571characters)andthreenucleargene partitions(3384characters;seeTable1). Theoptimalmodelsofevolution,selectedoutof24differentmodelswiththecorrected Akaikeinformationcriterion(implementedinMrAIC1.4;Nylander,2005),aresummarizedin Table2.Forboththechloroplastandthenucleardatasets,thecorrespondingMrBayesmajority ruleconsensustreeswithposteriormeanbranchlengths,maximumlikelihoodbootstrapsupport valuesobtainedwithBootPHYML3.4(abovebranches),andBayesianposteriorprobabilities (belowbranches)areshowninFigures1aand1b. Thetreetopologiesgeneratedfromtheplastidandnucleardatapartitionswere significantlydifferent.Basedontheplastiddataset,theKHpairedsitetesttest(Kishinoand Hasegawa,1989)produceda–lnLscoreof15044.91fortheplastidtopologyanda–lnLscore of15417.92forthenucleartopology,leadingtorejectionofthenullhypothesisthatthetwotrees arenotsignificantlydifferent(p<0.05).Likewise,basedonthenucleardataset,theKHtest resultedina–lnLscoreof8342.07forthenucleartopology,andina–lnLscoreof8469.34for theplastidtopology,whichalsoledtorejectionofthenullhypothesis(p<0.05). ThephylogeneticanalysisofITSsequences,includingthosegeneratedfromclonedPCR products,supportedthemonophylyoftheclonesamplifiedfrom Crypteronia paniculata, from Olinia ventosa, from Brachysiphon mundii andfrom Penaea mucronata (fivecloneseach;results notshown).ThesequencesofITSclonesdifferedfromeachotherbyaminimumof2nucleotides (<1%)betweentheclonesfrom Brachysiphon mundii toamaximumof6nucleotides(about1%) betweentheclonesfrom Penaea mucronata .Theseresultssuggestthat,atleastforthetested species,mutationsgivingorigintodifferentITSrepeatsoccurredafterspeciation,thusnot affectingphylogeneticinference. Inagreementwithotherphylogeneticstudies(Conti et al. ,1996,1997and2002; SchönenbergerandConti,2003;Rutschmann et al. ,2004;Rutschmann et al. ,submitted), OliniaceaeandPenaeaceaeformtwomonophyleticsistergroups,basedonboththechloroplast andthenucleardatasets(Figures1aand1b).Thephylogeneticpositionof Rhynchocalyx lawsonioides, however,differsamongpartitions:intheplastidtree,itissistertoOliniaceae, whereasinthenucleartreeitissistertothecladeformedbyOliniaceaeandPenaeaceae. However,therelationshipsof R. lawsonioides areweaklysupportedinbothphylogenies(BS=

104

53%and45%,respectively).PhylogeneticincongruencewasalsoobservedwithinPenaeaceae: Penaea ismonophyleticinthenucleartree,butnotintheplastidtree,becausehere Penaea dahlgrenii issisterto Stylapterus ericoides .Alsothephylogeneticpositionof Glischrocolla formosa isdependentonthepartitionusedforthephylogeneticreconstruction:intheplastidtree, itissisterto Brachysiphon rupestris ,whereasinthenucleartree,itissisterto Endonema .Inboth trees, Endonema ismonophyletic,and Saltera and Sonderothamnus grouptogether.The phylogeneticrelationshipsof Brachysiphon and Stylapterus isproblematic,becausethetaxaare arrangedincladeswithlowstatisticalsupport.However,basedonthepresentdata,neithergenus appearstobemonophyletic. Divergence time estimates TheLangleyandFitchχ2testappliedtotheplastidphylogram(afterexcluding Crypteronia paniculata ,whichwasusedasdatingoutgroup),indicatedsignificantdeparturefrom rateconstancy(Table3).Rateconstancywasclearlyrejectedalsowhenthetestwasappliedto subcladesofthetree. Theestimatedmeanages,theirstandarddeviations,andthe95%credibilityintervals basedontheplastiddatasetarereportedforselectednodesofinterestinTable6,anda chronogramisshowninFigure2.Theuseofpenalizedlikelihood(implementedin r8s ; Sanderson,2002,2003)insteadofBayesiandating(implementedinmultidivtime;Kishino et al. , 2001;ThorneandKishino,2002)resultedinsimilarageestimates(datanotshown). Diversification rate analysis Byusingthechronogramderivedfromtheplastiddataset(Figure2),thenumberof lineageswasplottedagainsttime(LTTplots).Theplotsforthefulldataset(withoutsubspecies) areshowninFigure3,whereastheLTTplotsforthereduceddataset(Penaeaceaecrowngroup only)areshowninFigure4.Thediamondsinallplotsrepresentmeanestimatedages,whilethe dotsrepresenttheextremesofthecredibilityintervals.InFigures3band4b,thenumberof lineagesarelogtransformed. TheLTTplotsshowtwodistinctivephases:Thefirstisaperiodwithoutany diversificationbetween53.47mysagoand16.6mysago(Figure3),alsorepresentedbythelong branchesbetweenthestemandthecrownnodesofPenaeaceaeandOliniaceaeinthechronogram (Figure2).Thesecondphase(16.6mysagotopresent;Figures3and4)ischaracterizedbya high,butnonexpontentialaccumulationoflineageswithinthecrowngroupofPenaeaceae. Accordinglytotheseobservations,boththeCramérvonMises(CM)andtheAnderson Darling(AD)goodnessoffittestsimplementedinAPE(Paradis et al. ,2004)rejectedoverall 105 diversificationrateconstancyona95%significancelevelforbothdatasets(Figures3and4;full dataset:p CM <0.01,p AD <0.025;reduceddataset:pCM <0.01,p AD <0.048).Alsothesurvival analysis(Paradis,1997)confirmedtheexpectationsfromvisualinspectionoftheLTTplots:For thefulldataset(Figure3),modelCwasselectedamongthreedifferentdiversificationmodels, basedonthelowerAICvalues(Table4).Thismodelassumesanabruptchangeindiversification 16.6mysago,butotherwiseimpliesconstantrates(Paradis et al. ,2004).Forthereduceddataset (Penaeaceaecrowngroup;Figure4),modelBwasfavored,againbasedonthelowerAICvalues (Table4).Accordingtoitsestimatedβparameter(β=2.456),thismodelassumesthatthe diversificationratedecreasedmonotonicallyovertime.TheresultsoftheLRTwereeithernot significantornotdecisive(seeTable3). Insummary,thesestatisticalresultssuggestthatthenetdiversificationratefor PenaeaceaeandOliniaceaeisnotconstant,butchangesabruptlyatabout16.6mysago(Figure 3).Afterthisbreakpoint,thediversificationrateofPenaeaceaeishigherthanbefore,but decreasesgraduallyovertime,leadingtoanonexponentialincreaseoflineages(Figure4). Ancestral character state reconstructions Forthediscretecharacters(vegetationtypeclassandleafsizeclass),thestateswiththe highestproportionallikelihoodsareshowninTable6.Pvaluesoflessthan0.95indicatethatalso otherancestralcharacterstatesmightbeprobable.Inthesmallpiechartsassociatedtothenodes inFigure5,theproportionallikelihoodsofallpossiblestatesareshown(leftside:vegetation type,rightside:leafsize).Theancestralcharacterstatereconstructionsshowthatthemostrecent commonancestor(MRCA)ofallPenaeaceae(node e)likelyhadleptophyllousleavesand belongedtoafynbostypevegetation,whereasthefirstmemberoftheOliniaceaecrowngroup (node g)wasmicrophyllousandbelongedtoatemperatevegetation.TheMRCAofall Crypteroniaceae(node b)mostlikelyhadmesophyllousleavesandoccurredinatropicalhabitat. Fortheothernodes,theresultsarenotsignificant,butacleartendencyisvisibleovertimefrom ancestralplantswithlargeleavesthatgrowintropicalhabitatstophylogeneticallyyoungerplant groupswithsmallerleavesthatoccurinmorearidhabitats.Thisconclusionissupportedbythe gradientofthereconstructedleafsizestreatedasacontinuouscharacterinANCML(Schluter et al. ,1997;seeTable6andFigure5,rightside):thereconstructedleafsizesarelarge(over7000 mm 2)fortherootnodeandtheMRCAofCrypteroniaceae(node b),buttheydecreaseforthe MRCA’sofAlzateaceae(node c),Oliniaceae(node g)andPenaeaceae(node e).Forexample,the leafsizeoftheMRCAofCrypteroniaceae(node b)isreconstructedtobe20timesbiggerthan thatofthePenaeaceaeMRCA(node e).

106

Discussion

Phylogenetic relationships within Penaeaceae InhistaxonomictreatmentofthePenaeaceae,Dahlgren(1967a,1967b,1967c,1968, 1971)subdividedthefamilyintosevengenera.Subsequently,twoadditionalspecies, Penaea dahlgrenii (RourkeandMcDonald,1989)and Brachysiphon microphyllus (Rourke,1995),were described.Arecentmolecularphylogeneticstudybasedonsixchloroplastmarkerspartially contradictedearliergenericcircumscriptions(SchönenbergerandConti,2003).Specifically,it foundthegenera Brachysiphon, Penaea, and Stylapterus tobenonmonophyletic.Theseresults werenotentirelysurprising,asearlierauthorshadalreadyfoundgenericdelimitationstobe problematic(e.g.,Supprian1894,Gilg1894),andalsoDahlgren(1967a,1968)pointedout severalspeciestobe“morphologicallytransitional”betweengenera,particularlysobetween Brachysiphon and Stylapterus .Inaddition,Rourke(1995)statedthatthetwonewlydescribed species, Penaea dahlgrenii and Brachysiphon microphyllus ,werenoteasilyassignedtoanyof Dahlgren’sgenera,furtheremphasizingthelackofclearcutmorphologicalboundariesbetween genera(seealsoSchönenberger et al. ,inpress).Thephylogeneticrelationshipssupportedbythe presentanalysisofchloroplastdata(Figure1a),whichaddedtwomarkers( rbc Land ndh F)tothe datasetofSchönenbergerandConti(2003),arelargelyidenticaltothoseoftheformerstudy. Resultsarealsosimilarwithrespecttotheoverallresolutionandbranchsupport,whicharestill lowinsomeareasofthetree. Therelationshipsinferredfromthenucleardataset(Figure1b),however,differ significantlyfromthechloroplasttopology,butarelikewisenotcongruentwiththegeneric circumscriptions.Nevertheless,atleastseveralpartsofthetwotopologiesarecongruent,and theseareprobablyreliableinferencesofthespeciestree(Figures1aand1b):1) Endonema is monophyleticandsistertotherestofthefamily,oratleastbelongstotheearliestdiverging lineageinthefamily;2) Glischrocolla alsobelongstooneoftheearliestdiverginglineages, eitherinacladewith Brachysiphon rupestris (cpDNA,strongsupport;Figure1a)orassisterto Endonema (ncDNA,weaksupport;Figure1b);3) Saltera groupswith Sonderothamnus inboth topologies,butitremainsunclearwhether Sonderothamnus isparaphyleticto Saltera ;4)the genus Penaea sensuDahlgren(1971)ismonophyleticandthelaterdescribed Penaea dahlgrenii iscloselyrelatedtoit,eitherasdirectsistergroup(ncDNA,strongsupport;Figure1b)or perhapsassistergrouptogetherwith Stylapterus ericifolius (cpDNA,weaksupport;Figure1a); and5) Penaea cneorum isclosestto Penaea mucronata ,butitremainsunclearwhethervarious subspeciesof P. cneorum areparaphyleticto P. mucronata. Theremainingrelationships–mainly

107 concerningthegenera Brachysiphon and Stylapterus –areeithernotwellsupportedordiffer considerablybetweenthetwotopologies. Amongthebiologicalprocessesthatmighthavecausedtheobservedincongruencies betweenthechloroplastandnucleartreesofPenaeaceaeandrelatedtaxaareorthology/paralogy conflation(e.g.Vanderpoorten et al. ,2004),lineagesorting(e.g.Doyle et al. ,2004),and hybridization(e.g.Rieseberg et al. ,1996).Ourtargetedcloningexperimentsonfourspecies (Crypteronia paniculata , Olinia ventosa , Brachysiphon mundii, and Penaea mucronata )showed thatallsequencedITSrepeatsfromaspeciesaremonophyletic,suggestingthatduplication eventsandmutationsthatgaveoriginstothedifferentrepeatsfollowedspeciation.Therefore,in ourcase,orthology/paralogyconflationandlineagesortingappeartobealesslikelyprimary sourceofincongruencebetweenthetwotrees. Hybridization,however,hasbeenshowntobeawidespreadmodeofspeciationinplants atboththehomoploidandallopolyploidlevels,withfundamentaleffectsonthepotential incongruencebetweenthematernallyinheritedchloroplastandthebiparentallyinheritednuclear phylogenies(Soltis et al. ,1992;SoltisandSoltis,1999;ÁlvarezandWendel,2003).For example,themostconspicuousconflictamongourgenetreesinvolves Stylapterus ericoides, Stylapterus micranthus, and Brachysiphon acutus :inthenucleartopology(Figure1b),thetwo formerspeciesformastronglysupportedclade,whereasinthechloroplasttopology(Figure1a), thetwolatterspeciesarestronglysupportedasbeingsisters.Fromamorphologicalpointofview, thefirsthypothesismakesdoubtlessmoresenseasStylapterus micranthus and Brachysiphon acutus differinseveralfloralcharacters(fordiscussionseeSchönenbergerandConti,2003). Thus,morphologicalevidence,togetherwiththeobservedconflictbetweennuclearand chloroplastdata,supportsanearlierformulatedhypothesisthattheseeminglycloserelationship of Stylapterus micranthus and Brachysiphon acutus inthechloroplastphylogenymightbethe resultofanearlierhybridizationeventthatwasfollowedbychloroplastcapture(Schönenberger andConti,2003). Fortheremainingincongruentspecies,thereisnofurtherevidencefrommorphological traitsand/ordistributionrangesavailable,exceptafewchromosomecounts,whichdonot concernincongruenttaxa(2n=20for Penaea mucronata , Penaea cneorum , Brachysiphon rupestris;2n=40for Saltera sarcocolla ;Dahlgren,1968,1971). Phylogenetic relationships within Oliniaceae TheofthemonogenericOliniaceaeisnotyetsettledandspeciesdelimitation andtheexactnumberofspeciesareunclear(SebolaandBalkwill,1999;vonBalthazarand Schönenberger,inpress).Thefivespeciesincludedinthepresentstudyaregroupedintotwo 108 stronglysupportedclades,whicharebothsupportedbychloroplastandnucleardata(Figures1a andb).ThesametwocladeswerealsofoundanddiscussedbySchönenbergerandConti(2003). Inaddition,thenucleardatasetstronglysupportsasistergrouprelationshipbetween Olinia ventosa and O. capensis ,twosympatricspeciesthathavebeenrecognizedearliertobeclosely relatedalsobasedontheirmorphology(SebolaandBalkwill,1999). Diversification of Penaeaceae, Oliniaceae and Rhynchocalycaceae Byintegratingourresultsfrommoleculardating(timingofdiversification;Table6and Figure2),LTTanalyses(tempoandmodeofdiversification;Figures3and4),andancestral characterstatereconstructions(possiblereasonsofdiversification;Tables5and6andFigure5), weattempttodiscussthediversificationhistoryofPenaeaceaeinthefollowingparagraph.Before weproceedwiththeinterpretationofourdata,wewouldliketoemphasizethatwetriedto minimizetwopitfallsoftheusedmethods:First,theuseofsecondarycalibrationinmolecular datingisproblematicbecausegeneandtaxonsamplingandthemethodsusedinthesecondary studyoftendiffersignificantlyfromthoseappliedinthestudythatproducedtheoriginal calibrationpoint(HedgesandKumar,2003;GraurandMartin,2004;HedgesandKumar,2004). Inaddition,theerrorsassociatedwithdivergencetimeestimationintheoriginalstudyareoften ignoredwhenaspecificageestimateisadoptedforsecondarycalibration(GraurandMartin, 2004).Becauseweusedacalibrationpointfromoneofourrecentstudies(Rutschmann et al. , submitted),whichisbasedonacomparablegeneandtaxonsamplingandidenticalmethods,and becausewefullyincorporateerrorestimatesintocalibration,wethinkthattheapplicationof secondarycalibrationisappropriateinthepresentcase.Secondly,itisknownthatLTTanalyses areentirelydependentontaxonsampling,andtheiruseisnotrecommendedbelowasampling levelof80%(BarracloughandNee,2001;Hawkins,2006).Forexample,thefiveterminals representingOliniaceae(Figure2)areinsufficienttoinferdiversificationinformationfromLTT plots(Figures3and4),becausewesampledonlyfiveoutofeigthspecies(62.5%;vonBalthazar andSchönenberger,inpress).ForPenaeaceae,however,wesampled19of23knownspecies, providingenoughdataforinvestigatingthetempoandmodeofdiversificationforthisgroup. OurLTTanalyses(seeFigures3and4)revealedtwodistinctphasesinthediversification ofOliniaceaeandPenaeaceae:i)aperiodwithoutanydiversificationbetween54and17mysago, alsovisibleinthechronogram(Figure2)aslongbranchesbetweenthestemandthecrownnodes ofPenaeaceaeandOliniaceae,andii)asubsequentphasewithahighaccumulationoflineages withinthecrowngroupsofPenaeaceaeandOliniaceae(17mysagotopresent;seeFigures3and 4).

109

Forthefirstperiod,whichspanstheentireOligoceneandEocene,wecanonlyspeculate aboutthehistoryofthetaxaexaminedhere.Forallthreelineages,weobserveanabsenceof diversification,whichcanbeexplainedaseitherlackofspeciationorahighamountof extinction,bothleadingtoastasisintheaccumulationoflineages.Paleoclimaticreconstructions, althoughbasedonscantevidence,assumeachangingclimateduringthisperiod(Zachos et al. , 2001;DeContoandPollard,2003).Itisimaginable,butnotsupportedbyfossilevidence,that numerouslineagesofoncemorespeciesrichPenaeaceae,OliniaceaeandRhynchocalycaceae couldhavegoneextinctduringthisperiod,becausetheycouldnotadaptrapidlyenoughtothe changingclimate.Alternatively,speciationwasprobablyhinderedbecausethenecessaryhabitat wasnotavailableatthattime.OurcharacterstatereconstructionssuggestthatearlyPenaeaceae, OliniaceaeandRhynchocalycaceae(node d;Table6andFigure5)possessedmicrophyllous leavesandinhabitedatemperateortropicalenvironmentatthebeginningofthatperiod(Table6 andFigure5).Overtime,Penaeaceaedevelopedsmallerleaves(node e;Table6andFigure5), whereasthefoliageofOliniaceaeandRhynchocalycaceaeremainedmicrophyllous(nodes fand g;Table6andFigure5). Around16.6mysago(±3.6mys;seeFigure2),thesecondepisodebegan:weobservean abruptchangeindiversification(Table4andFigure3;modelC)atthebeginningoftheMiddle Miocene.InPenaeaceae,butnotinOliniaceaeandRhynchocalycaceae,thenumberoflineages increases,leadingtothe19(outof21)extantspecies.However,thediversificationrateisnot constantthroughoutthisphase:accordingtooursurvivalanalysis(Table4andFigure4),it decreasessignificantlyovertime(modelB).Boththetriggersfortheradiationandthereasonsfor thesubsequentdecreaseofthediversificationratearedifficulttoidentify,becausetheclimatic historyofthatperiodisnotwellknownatsufficientlydetailedtemporalandspatialscalesand fossilsarenotavailable(Linder,2003).Apopularpaleoclimaticscenarioisthearidificationof theCapeintheMiddleMiocene,causedbydeterioratingworldclimaticconditions(Zachosetal, 2001).Althoughsomekeyelementsofthisscenarioaredebated(e.g.,thetimingoftheupliftof theBenguelacurrent;Siesser,1980;SiesserandDingle,1980),aclimatictrendtowardsthe modernseasonallycoolandaridconditionsintheCapeneartheMiocenePlioceneboundaryis commonlyaccepted(Levyns,1964;Linder et al. ,1992;GoldblattandManning,2000;Linder, 2003,2005). WastheradiationofPenaeaceaeabout17mysagodrivenbykeyinnovationsrelatedto thedescribedaridificationscenario?Atleastaccordingtothecharacterstatereconstructions, Penaeaceaepossesedalreadysmall,thick,amphistomatousleavesatthistime(node e;Figure5 andTable6;RuryandDickison,1984;DickieandGasson,1999).Whilethickleavesprovide improvedgasexchangeefficiencyunderwaterstress,amphistomatousleavesaregenerally 110 associatedwithplantsgrowingindryconditions(Parkhurst,1978).Additionally,some Penaeaceae(e.g., Saltera sarcocolla )possesslignotubers(rootstocks),subterrestrialstorage organsthatallowthemtoendureperiodsoflowwaterandnutrientavailabilityandtoresprout afterfire(CarlquistandDebuhr,1977;Schönenberger et al. ,inpress).Ontheotherhand, Penaeaceaedonothaveadaptationslikesucculenceorbulbstoendurelongdroughtperiods,but arerestrictedtomesichabitatslikehighermountains,wheretheyreceivehigheramountsof precipitationthaninlowerregions,ortheyoccurclosetowaterstreams(Rourke,1995).In addition,theirsmall,scleromorphicleaves(seeTable5)canalsobeviewedasbeingprimarily protective(Turner,1994)andrelatedtoensuringlonglifespansforspeciesgrowingslowlyon nutrientpoorsoils,ratherthananadaptationtosummerdrought(Stock et al. ,1992). AmongotherpossibleselectiveforcesthatmayhavetriggeredtheradiationofPenaeaceae isalsotheadaptationtothefireregime.Penaeaceaeareabletoresproutefficientlyafterafire, andseedgerminationhasbeenshowntobestimulatedchemicallybycharredwoodorsmoke (KeeleyandBond,1997).However,thepostfiremortalityofPenaeaceaewasshowntobehigh incomparisontoothershrubslike Aulax , Leucadendron (Proteaceae)or Widdringtonia (Cupressaceae;LeMaitre et al. ,1992).Inaddition,Penaeaceaedonotrepresenttypicalreseeders, whichareusuallytallerandinvestmoreresourcesinseedproductionthaninresprouting(Pate et al. ,1989;Schutte et al. ,1995).Ingeneral,theirabilitytosurvivefiredoesnotseemtobevery efficient,atleastnotasefficientasthesystemssomecompetitorshaveevolved.Asthetimingof thefirstoccurenceofbushfiresintheCapeisunknown(Linder,2003;butseealsoCowling, 1987,1992),itisdifficulttoknowifadaptationtofirebecameimportantintheMiddleMiocene, orbeforeorevenaftertheradiationofPenaeaceae. ItisworthmentioningthatPenaeaceaewerenottheonlygroupthatstartedtodiversify rapidlyatthistime(16.6mys±3.6mys;95%credibilityinterval:24.8–10.7mys;seeTable6). AmongotherCapefloristicelementsthatradiatedintheEarlyandMiddleMioceneare Moraea (Irididaceae;beginningofradiationdatedto22.5±2.15mysago;Goldblatt,2002), Pelargonium (Geraniaceae;diversificationofxerophyticclade18.5to11.4mysago;Bakker et al. ,2005), Phylica (Rhamnaceae;13to14mysago;Richardson,2004,butseeRichardson et al. ,2001),and Indigofera (Fabaceae;13±3.5mysago;Schrire et al. ,2003).For Phylica and Indigofera ,the plantspecifictraitsthatcouldhavepromotedtheradiationswerenotinvestigated,butfor Pelargonium ,itissuggestedthatstemandleafsucculenceandtuberformationrepresent importantadaptationstosummeraridity,whichmighthavepromotedthediversificationofthis genus(Bakker et al. ,2005).Similarily,theevolutionofherbaceousformswithunderground cormsin Moraea areseenasadapationstoaseasonallydryclimateandnutrientpoorsoils (Goldblatt,2002). 111

OliniaceaeandRhynchocalycaceae,althoughmuchmorewidelydistributedthan Penaeaceae,arerestrictedtotheirpurportedlyancienthabitat,thetemperateforest.Bearingmuch biggerleaves,thesetrees,upto21mhigh,growonlyalongwaterstreamsorinmesicmountain forestswherecontinuouswaterandnutrientavailabilityisguaranteed(intheCFR,twospecies occuralongthecoastandsomerivers: Olinia ventosa and Olinia capensis ;Goldblattand Manning,2000).Theancestralcharacterstatereconstructionssuggestthatthiscladepossessed microphyllousleavesandfavouredatemperatehabitatsincetheoriginofitsstemlineageabout 58mysago(node d;Table6andFigure5),withthefixationofthesestatesintheMRCAofthe Oliniaceaecrowngroup(node g;Table6andFigure5).Wedonotknowwhythesetrees speciatedslowerthanPenaeaceae,butspeculatethatitmightbethelackofpreferredhabitat spaceandtheirlongerlifecyclewhichpreventedthemfromradiatingasfastasPenaeaceae. Conclusions ThediversificationoftheCapefloracanbeexpressedasagradualtransformationfrom speciespoorcladeswithrelictualtaxarestrictedtoforestsandfireprotectedhabitatsalongwater streamstospeciesrichcladeswithtaxathatarehighlyadaptedtoopen,heathy,periodicallyburnt habitats(Linder,2003,2005).DrivenbycomplexclimatechangessincethelateCretaceous, gradualadaptationstodroughtandfiregaveaselectiveadvantagetotheCapefloristicclades overtheancestraltropicalflora(LinderandHardy,2004;seealsoLevyns,1964;Linder et al. , 1992;GoldblattandManning,2000). Theevolutionarytrendsrevealedinourancestralcharacterstatereconstructionsfor Penaeaceae,Oliniaceae,andRhynchocalycaceaecorrespondtothismodel:theyindicateshifts fromatropical/temperatehabitattothefynbosvegetationtype,andfrommacroand mesophyllousleavestothicknanoandleptophyllousleaves(seeTable6andFigure5). AlthoughthereasonsforthesuddenincreaseindiversificationofPenaeaceaeintheMiddle Mioceneremainspeculative,lignotubersandprotectivescleromorphicleavespossiblyrepresent keyinnovationsthattriggeredtheirradiation,allowingPenaeaceaetogrowonlownutrientsoils. ThetimeframeofthePenaeaceaeradiationcorrespondswelltoinsightswehavefrom otherCapetaxasuchas Moraea , Pelargonium , Phylica and Indigofera .Itwillbefascinatingto seeinthenearfuturehowtheintegrationofdiversificationdatafromadditionalCapeclades, togetherwithfurtherpaleoclimaticevidence,willcontributetoaglobalreconstructionofthe historyoftheCapeFlora.

112

References

Álvarez,I.,andJ.F.Wendel.2003.RibosomalITSsequencesandplantphylogeneticinference. Molecular Phylogenetics and Evolution 29 :417434.

Bakker,F.T.,A.Culham,E.M.Marais,andM.Gibby.2005.NestedradiationinCape Pelargonium .Pp.75100.Plantspecieslevelsystematics:newperspectivesonpattern&process. A.R.G.GantnerVerlag,Ruggell,Liechtenstein.

Barraclough,T.G.,andS.Nee.2001.Phylogeneticsandspeciation. Trends in Ecology & Evolution 16 :391399.

Baum,D.A.,R.L.Small,andJ.F.Wendel.1998.BiogeographyandfloralevolutionofBaobabs (Adansonia ,Bombacaceae)asinferredfrommultipledatasets. Systematic Biology 47 :181207.

Burnham,K.P.,andD.R.Anderson.2002.ModelSelectionandMulitmodelInference:A PracticalInformationTheoreticApproach.2ndedition.Springer,NewYork.

Campbell,B.M.1983.Montaneplantenvironmentsinthefynbosbiome. Bothalia 14 :283298.

Carlquist,S.,andL.Debuhr.1977.WoodanatomyofPenaeaceae(Myrtales):comparative, phylogenetic,andecologicalimplications. Botanical Journal of the Linnean Society 75 :211227.

Conti,E.,T.Eriksson,J.Schönenberger,K.J.Sytsma,andD.A.Baum.2002.EarlyTertiaryout ofIndiadispersalofCrypteroniaceae:evidencefromphylogenyandmoleculardating. Evolution 56 :19311942.

Conti,E.,A.Litt,andK.J.Sytsma.1996.CircumscriptionofMyrtalesandtheirrelationsshipsto otherRosids:evidencefrom rbc Lsequencedata. American Journal of Botany 83 :221233.

Conti,E.,A.Litt,P.G.Wilson,S.A.Graham,B.G.Briggs,L.A.S.Johnson,andK.J.Sytsma. 1997.InterfamilialrelationshipsinMyrtales:molecularphylogenyandpatternsofmorphological Evolution. Systematic Botany 22 :629647.

Corriveau,J.L.,andA.W.Coleman.1988.RapidScreeningMethodtoDetectPotential BiparentalInheritanceofPlastidDNAandResultsforover200AngiospermSpecies. American Journal of Botany 75 :14431458.

Cowles,M.K.,andB.P.Carlin.1996.MarkovchainMonteCarloconvergencediagnosis:A comparativereview. Journal of the American Statistical Association 91 :883904.

Cowling,R.M.1987.FireanditsroleincoexistenceandspeciationinGondwananshrublands. South African Journal of Science 83 :106112.

Cowling,R.M.1992.Floraandvegetation.Pp.2361 in R.M.Cowling,ed.TheEcologyof Fynbos:Nutrients,FireandDiversity.OxfordUniversityPress,CapeTown,SouthAfrica.

Cufodontis,G.1960.Dieidentifizierungvon Tephea DelileundanderedieOliniaceae betreffendeFeststellungen. Österreichische Botanische Zeitschrift 107 :106112.

Dahlgren,R.1967a.StudiesinPenaeaceae.PartI.Systematicsandgrossmophologyofthegenus Stylapterus A.Juss. Opera Botanica 15 :340. 113

Dahlgren,R.1967b.StudiesonPenaeaceaeIII.Thegenus Glischrocolla . Botaniska Notiser 120 :5768.

Dahlgren,R.1967c.StudiesonPenaeaceaeIV.Thegenus Endonema . Botaniska Notiser 120 :69 83.

Dahlgren,R.1968.StudiesonPenaeaceae.PartII.Thegenera Brachysiphon , Sonderothamnus and Saltera . Opera Botanica 18 :572.

Dahlgren,R.1971.StudiesonPenaeaceae.VI.Thegenus Penaea L.. Opera Botanica 29 :558.

Dahlgren,R.,andR.F.Thorne.1984.TheorderMyrtales:circumscription,variation,and relationships. Annals of the Missouri Botanical Garden 71 :633699.

Dahlgren,R.,andA.E.vanWyk.1988.Structuresandrelationshipsoffamiliesendemictoor centeredinSouthernAfrica. Monographs in Systematic Botany from the Missouri Botanical Garden 25 :194.

DeConto,R.M.,andD.Pollard.2003.RapidCenozoicglaciationofAntarcticainducedby decliningatmosphericCO 2. Nature 421 :245249.

Dickie,J.B.,andP.E.Gasson.1999.ComparativeleafanatomyofthePenaeaceaeandits ecologicalimplications. Botanical Journal of the Linnean Society 131 :327351.

Doyle,J.J.,J.L.Doyle,J.T.Rauscher,andA.H.D.Brown.2004.Diploidandpolyploid reticulateevolutionthroughoutthehistoryoftheperennialsoybeans( Glycine subgenusGlycine). New Phytologist 161 :121132.

Felsenstein,J.2004a.Inferringphylogenies.SinauerAssociates,Inc.,Sunderland,MA.

Felsenstein,J.2004b.PHYLIP(PhylogenyInferencePackage),version3.63.Departmentof Genetics,UniversityofWashington,Seattle,WA.

Gilg,E.1894.Penaeaceae. Natürliche Pflanzenfamilien III 6:208213.W.Engelmann,Leipzig.

Goldblatt,P.,andJ.C.Manning.2000.CapePlants.AConspectusoftheCapeFloraofSouth Africa.NationalBotanicalInstituteofSouthAfrica,Pretoria,SouthAfrica.

Goldblatt,P.,andJ.C.Manning.2002.PlantdiversityoftheCapeRegionofsouthernAfrica. Annals of the Missouri Botanical Garden 89 :281302.

Goldblatt,P.,V.Savolainen,O.Porteous,I.Sostaric,M.Powell,G.Reeves,J.C.Manning,T.G. Barraclough,andM.W.Chase.2002.RadiationintheCapefloraandthephylogenyofpeacock irises Moraea (Iridaceae)basedonfourplastidDNAregions. Molecular Phylogenetics and Evolution 25 :341360.

Graur,D.,andW.Martin.2004.Readingtheentrailsofchickens:moleculartimescalesof evolutionandtheillusionofprecision. TRENDS in Genetics 20 :8086.

Guindon,S.,andO.Gascuel.2003.Asimple,fast,andaccuratealgorithmtoestimatelarge phylogeniesbymaximumlikelihood. Systematic Biology 52 :696704.

Hawkins,J.A.2006.UsingphylogenytoinvestigatetheoriginsoftheCapeflora:theimportance oftaxonomic,geneandgenomesamplingstrategies.Diversity and Distributions 12 :2733. 114

Hedges,S.B.,andS.Kumar.2003.Genomicclocksandevolutionarytimescales. TRENDS in Genetics 19 :200206.

Hedges,S.B.,andS.Kumar.2004.Precisionofmoleculartimeestimates. Trends in Genetics 20 :242247.

Huelsenbeck,J.P.,andF.Ronquist.2001.MrBayes:Bayesianinferenceofphylogeny. Bioinformatics 17 :754.

Johnson,L.A.S.,andB.G.Briggs.1984.MyrtalesandMyrtaceaeaphylogeneticanalysis. Annals of the Missouri Botanical Garden 71 :700756.

Kadereit,J.W.,E.M.Griebeler,andH.P.Comes.2004.QuaternarydiversificationinEuropean alpineplants:patternandprocess. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359 :265274.

Keeley,J.E.,andW.J.Bond.1997.ConvergentseedgerminationinSouthAfricanfynbosand Californianchaparral. Plant Ecology 133 :153167.

Kishino,H.,andM.Hasegawa.1989.Evaluationofthemaximumlikelihoodestimateofthe evolutionarytreetopologiesfromDNAsequencedata,andthebranchingorderinHominoidea. Journal of Molecular Evolution 170179 :170179.

Kishino,H.,J.L.Thorne,andW.J.Bruno.2001.Performanceofadivergencetimeestimation methodunderaprobabilisticmodelofrateevolution. Molecular Biology and Evolution 18 :352 361.

Kruger,F.J.,D.T.Mitchell,andJ.U.M.Jarvis.1983.MediterraneantypeEcosystems:The RoleofNutrients.Springer,Berlin.

Langley,C.H.,andW.Fitch.1974.Anestimationoftheconstancyoftherateofmolecular evolution. Journal of Molecular Evolution 3:161177.

LeMaitre,D.C.,C.A.Jones,andG.G.Forsyth.1992.Survivalofeightwoodysprouting speciesfollowinganautumnfireinSwatboskloof,CapeProvince,SouthAfrica. South African Journal of Botany 58 :405413.

Levyns,M.R.1964.Presidentialaddress,migrationsandoriginoftheCapeflora. Transactions of the Royal Society of South Africa 37 :85107.

Linder,H.P.2003.TheradiationoftheCapeflora,southernAfrica. Biological Reviews of the Cambridge Philosophical Society 78 :597638.

Linder,H.P.2005.Evolutionofdiversity:theCapeflora. TRENDS in Plant Science 10 :536541.

Linder,H.P.,andC.R.Hardy.2004.EvolutionofthespeciesrichCapeflora. Philosophical Transactions of the Royal Society London B 359 :16231632.

Linder,H.P.,M.E.Meadows,andR.M.Cowling.1992.HistoryoftheCapeflora in R.M. Cowling,ed.TheEcologyofFynbos:Nutrients,FireandDiversity.OxfordUniversityPress, CapeTown,SouthAfrica.

Maddison,P.G.,andD.R.Maddison.2000.MacClade4:analysisofphylogenyandcharacter evolution.Sinauer,Sunderland,MA. 115

Maddison,W.P.,andD.R.Maddison.2005.Mesquite:amodularsystemforevolutionary analysis.Availableat http://mesquiteproject.org .

Manders,P.T.,andR.N.Cunliffe.1987.Fynbosplantlifehistories,populationsdynamicsand speciesinteractionsinrelationtofire:anoverview.Pp.1523 in R.M.Cowling,C.D.leMaitre, B.McKenzie,R.P.PrysJonesandB.W.vanWilgen,eds.DistrubanceandDynamicsofFynbos BiomeCommunities.CSIR,Pretoria,SouthAfrica.

Nylander,J.2005a.BootPHYML3.4.SchoolofComputationalScience(SCS),FloridaState University,Tallahassee,Florida.

Nylander,J.2005b.MrAIC1.4.SchoolofComputationalScience(SCS),FloridaState University,Tallahassee,Florida.

Palmer,E.,andN.Pitman.1972.TreesofSouthernAfricacoveringallknownindigenousspecies intheRepublicofSouthAfrica,SouthWestAfrica,Botswana,LesothoandSwaziland.A.A. Balkema,CapeTown,SouthAfrica.

Paradis,E.1997.Assessingtemporalvariationsindiversificationratesfromphylogenies: estimationandhypothesistesting. Proceedings of the Royal Society of London B 264 :11411147.

Paradis,E.1998.Testingforconstantdiversificationratesusingmolecularphylogenies:A generalapproachbasedonstatisticaltestsforgoodnessoffit. Molecular Biology and Evolution 15 :476479.

Paradis,E.,J.Claude,andK.Strimmer.2004.APE:AnalysesofPhylogeneticsandEvolutionin Rlanguage. Bioinformatics 20 :289290.

Parkhurst,D.F.1978.Theadaptivesignificanceofstomataloccurrenceononeorbothsurfaces ofleaves. Journal of Ecology 66 :367383.

Pate,J.S.,R.H.Froend,B.J.Bowen,A.Hansen,andJ.Kuo.1989.Seedlinggrowthandstorage characteristicsofseederandresprouterspeciesofMediterraneantypeecosystemsofS.W. Australia. Annals of Botany 65 :585601.

Pereira,J.T.1996.Crypteroniaceae.Pp.135149 in E.Soepadmo,K.M.WongandL.G.Saw, eds.TreefloraofSabahandSarawak,Volume2.ForestResearchInstituteMalaysia,Sabah ForestryDepartment,andSarawakForestryDepartment,KualaLumpur,Malaysia.

RDevelopmentCoreTeam.2004.R:Alanguageandenvironmentforstatisticalcomputing.R FoundationforStatisticalComputing,Vienna,Austria.Availablefrom http://www.Rproject.org .

Rambaut,A.,andA.J.Drummond.2005.Tracer1.3.Aprogramforanalyzingresultsfrom BayesianMCMCprogramssuchasBEAST&MrBayes.DepartmentofZoology,Universityof Oxford,Oxford,UK.Availablefrom http://evolve.zoo.ox.ac.uk/software.html .

Raunkiaer,C.1916.Theuseofleafsizeinbiologicalplantgeography.BotaniskTidsskrifit,34. Pp.368–378 in C.Raunkiaer,ed.Lifeformsofplantsandstatisticalplantgeography.ArnoPress, NewYork.

Raunkiaer,C.1934.Lifeformsofplantsandstatisticalplant geography.ArnoPress,NewYork.

116

Richardson,D.2004.Evolutionof Phylica (Rhamnaceae)intheCape. Abstract for the meeting "Recent Floristic Radiations in the Cape Flora", 3-5 July 2004, Zurich, Switzerland.

Richardson,J.E.,F.M.Weitz,M.F.Fay,Q.C.B.Cronk,H.P.Linder,G.Reeves,andM.W. Chase.2001.RapidandrecentoriginofspeciesrichnessintheCapefloraofSouthAfrica. Nature 412 :181183.

Rieseberg,L.H.,J.Whitton,andC.R.Linder.1996.Molecularmarkerincongruenceinplant hybridzonesandphylogenetictrees. Acta Botanica Neerlandica 45 :243262.

Ronquist,F.,andJ.P.Huelsenbeck.2003.MrBayes3:Bayesianphylogeneticinferenceunder mixedmodels. Bioinformatics 19 :15721574.

Rourke,J.P.1995.AnewspeciesofBrachysiphon(Penaeaceae)fromtheSouthernCape,South Africa. Nordic Journal of Botany 15 :6366.

Rourke,J.P.,andD.J.McDonald.1989.Anewspeciesof Penaea (Penaeaceae),fromthe Langebergrange,southernCape. South African Journal of Botany 55 :400404.

Rury,P.M.,andW.C.Dickison.1984.XI.Structuralcorrelationsamongwood,leavesandplant habitat.Pp.495540 in R.A.WhiteandW.C.Dickison,eds.ContemporaryProblemsinPlant Anatomy.AcademicPress,London.

Rutschmann,F.Assessingcalibrationuncertaintyinmoleculardating:Theassignmentoffossils toalternativecalibrationpoints. Submitted.

Rutschmann,F.2005.Bayesianmoleculardatingusingpaml/multidivtime.Astepbystep manual.Version1.5(July2005).InstituteofSystematicBotany,UniversityofZurich,Zurich, Switzerland.Availablefrom http://www.plant.ch .

Rutschmann,F.,T.Eriksson,J.Schönenberger,andE.Conti.2004.DidCrypteroniaceaereally disperseoutofIndia?Moleculardatingevidencefrom rbc L, ndh F,and rpl 16sequences. International Journal of Plant Sciences 165 :6983.

Sanderson,M.J.2002.Estimatingabsoluteratesofmolecularevolutionanddivergencetimes:a PenalizedLikelihoodapproach. Molecular Biology and Evolution 19 :101109.

Sanderson,M.J.2003.r8s:inferringabsoluteratesofmolecularevolutionanddivergencetimes intheabsenceofamolecularclock. Bioinformatics 19 :301302.

Schluter,D.,T.Price,A.O.Mooers,andD.Ludwig.1997.Likelihoodofancestorstatesin adaptiveradiation. Evolution 51 :16991711.

Schönenberger,J.,andE.Conti.2003.MolecularphylogenyandfloralevolutionofPenaeaceae, Oliniaceae,Rhynchocalycaceae,andAlzateaceae(Myrtales). American Journal of Botany 90 :293309.

Schönenberger,J.,E.Conti,F.Rutschmann,andR.Dahlgren. In press .Penaeaceae in K. Kubitzki,ed.Thefamiliesandgeneraofvascularplants.Vol.9.Springer,Berlin.

Schrire,B.D.,M.Lavin,N.P.Barker,H.CortesBurns,I.vonSenger,andJ.H.Kim.2003. Towardsaphylogenyof Indigofera (LeguminosaePapilionoideae):identificationofmajorclades andrelativeages..Pp.269302 in B.B.KlitgaardandA.Bruneau,eds.AdvancesinLegume Systematics,part10,HigherLevelSystematics.RoyalBotanicGardens,Kew,London. 117

Schulze,R.E.,andO.S.McGee.1978.Climaticindicesandclassificationsinrelationstothe biogeographyofsouthernAfrica.Pp.1952 in M.J.A.Werger,ed.BiogeographyandEcology ofSouthernAfrica,Chapter2.W.Junk,TheHague,Netherlands.

Schutte,A.L.,J.H.J.Vlok,andB.E.VanWyk.1995.Firesurvivalstrategyastrategyof taxonomic,ecologicalandevolutionaryimportanceinfynboslegumes. Plant Systematics and Evolution 195 :243259.

Sebola,R.J.,andK.Balkwill.1999.Resurrectionoftwopreviouslyconfusedspecies, Olinia capensis (Jacq.)Klotzschand O. micrantha Decne.(Oliniaceae). South African Journal of Botany 65 :97103.

Siesser,W.G.1980.LateMioceneoriginoftheBenguelaupwellingsystemofnorthernNamibia. Science 208 :283285.

Siesser,W.G.,andR.V.Dingle.1980.TertiarysealevelmovementsaroundsouthernAfrica. Journal of Geology 89:8396.

Soltis,D.E.,andP.S.Soltis.1999.Polyploidy:recurrentformationandgenomeevolution. Trends in Ecology & Evolution 14 :348352.

Soltis,D.E.,P.S.Soltis,andJ.A.Doyle.1992.Moleculardataandpolyploidevolutionin plants.Pp.177201 in D.E.Soltis,P.S.SoltisandJ.A.Doyle,eds.Molecularsystematicsof plants.Chapman&Hall,NewYork,USA.

Stock,W.D.,F.vanderHeyden,andO.A.M.Lewis.1992.9.Plantstructureandfunction.Pp. 226240 in R.M.Cowling,ed.TheEcologyofFynbos:Nutrients,FireandDiversity.Oxford UniversityPress,CapeTown,SouthAfrica.

Supprian,K.1894.BeiträgezurKenntnisderThymelaeaceaeundPenaeaceae. Botanisches Jahrbuch 18 :306353.

Swofford,D.L.2001.PAUP*4.0b10:PhylogeneticAnalysisUsingParsimony(*andother methods).Sinauer,Sunderland,MA.

Thompson,J.D.,T.J.Gibson,F.Plewniak,F.Jeanmougin,andD.G.Higgins.1997.The ClustalXwindowsinterface:flexiblestrategiesformultiplesequencealignmentaidedbyquality analysistools. Nucleic Acids Research 24 :48764882.

Thorne,J.L.,andH.Kishino.2002.Divergencetimeandevolutionaryrateestimationwith multilocusdata. Systematic Biology 51 :689702.

Thorne,J.L.,H.Kishino,andI.S.Painter.1998.Estimatingtherateofevolutionoftherateof molecularevolution. Molecular Biology and Evolution 15 :16471657.

Tobe,H.,andP.H.Raven.1984.TheembryologyandrelationshipsofOliniaceae. Plant Systematics and Evolution 146 :105116.

Turner,I.M.1994.Sclerophylly:primarilyprotective? Functional ecology 8:669675. vanBeusekomOsinga,R.J.,andC.F.vanBeusekom.1975.Delimitationandsubdivisionofthe Crypteroniaceae(Myrtales). Blumea 22 :255266.

118

VanWilgen,B.W.1987.FireregimesintheFynbosbiome.Pp.614 in R.M.Cowling,C.D.le Maitre,B.McKenzie,R.P.PrysJonesandB.W.vanWilgen,eds.DisturbanceandDynamicsof FynbosBiomeCommunities.CISR,Pretoria,SouthAfrica.

Vanderpoorten,A.,A.J.Shaw,andC.J.Cox.2004.Evolutionofmultipleparalogousadenosine kinasegenesinthemossgenus Hygroamblystegium :phylogeneticimplications. Molecular Phylogenetics and Evolution 31 :505516. vonBalthazar,M.,andJ.Schönenberger. In press. Oliniaceae in K.Kubitzki,ed.Thefamilies andgeneraofvascularplants.Vol.9.Springer,Berlin.

White,T.J.,T.Birns,S.Lee,andJ.Taylor.1990.Amplificationanddirectsequencingoffungal ribosomalRNAgenesforphylogenetics.Pp.315322in M.Innis,D.Gelfand,J.SninskyandT. White,eds.PCRprotocols:aguidetomethodsandapplications.AcademicPress,SanDiego, CA,USA.

Zachos,J.,M.Pagani,L.Sloan,E.Thomas,andK.Billups.2001.Trends,rhythms,and aberrationsinglobalclimate65Matopresent. Science 292 :686693.

119

Tables Table1. Speciesnames,sourcesandGenBankAccessionnumbersofnewlyamplifiedITSDNA sequences.Herbariaacronyms:BOL=Bolus,UniversityofCapeTown,SouthAfrica;Z= UniversityofZurich,Switzerland.Sourcesofallothergenesequencesusedinthisstudyare listedinSchönenbergerandConti(2003),Rutschmann et al. (2004),andRutschmann et al. , submitted.

ITS GenBank Taxon Voucher accession numbers Crypteroniaceae A.DC.(1868),nom.cons. M.W.Chase1235,cultivatedinBogor Crypteronia paniculata Blume AM235848 BotanicGardenVIII.B.67 Alzateaceae S.A.Graham(1985) Alzatea verticillata Ruiz& J.GomezLaurito,s.n.,(USJ) AM235849 Pavon Rhynchocalycaceae L.A.S.Johnson&B.G.Briggs (1985) Rhynchocalyx lawsonioides T.Abbott7658,(Z) AM235850 Oliver Oliniaceae Arn.exSond.(1839),nom. cons. Olinia capensis (Jacq.) J.Schönenberger519,(Z),(BOL) AM235851 Klotzsch J.Schönenberger579,cultivatedin Olinia emarginata BurttDavy AM235852 KirstenboschBotanicalGarden,(Z) Olinia radiata Hofmeyr& T.Abbott,6341,(Z) AM235853 Phill. Olinia vanguerioides Bakerf. A.Blarer,s.n.,(Z) AM235854 Olinia ventosa (L.)Cufod. J.Schönenberger378,(Z),(BOL) AM235855 Penaeaceae Sweetex.Guillemin(1828), nom.cons. Brachysiphon acutus (Thunb.) J.Schönenberger365,(Z),(BOL) AM235856 A.Juss. Brachysiphon fucatus (L.)Gilg J.Schönenberger357,(Z),(BOL) AM235857 Brachysiphon microphyllus J.Schönenberger386,(Z),(BOL) AM235858 Rourke 120

Brachysiphon mundii Sond. J.Schönenberger377,(Z),(BOL) AM235859 Brachysiphon rupestris Sond. J.Schönenberger366,(Z),(BOL) AM235860 Endonema lateriflora (L.f.) J.Schönenberger369,(Z),(BOL) AM235861 Gilg Endonema retzioides Sond. J.Schönenberger370,(Z),(BOL) AM235862 Glischrocolla formosa (Thunb.) J.Schönenberger521,photovouchered AM235863 R.Dahlgren Penaea acutifolia A.Juss. J.Schönenberger376,(Z),(BOL) AM235864 Penaea cneorum Meerb.ssp. J.Schönenberger363,(Z),(BOL) AM235865 cneorum Penaea cneorum Meerb.ssp. J.Schönenberger375,(Z),(BOL) AM235866 gigantea R.Dahlgren Penaea cneorum Meerb.cf.ssp. J.Schönenberger320,(Z),(BOL) AM235867 lanceolata R.Dahlgren Penaea cneorum Meerb.ssp. ovata (Eckl.&Zeyh.exA. J.Schönenberger374,(Z),(BOL) AM235868 DC.)R.Dahlgren Penaea cneorum Meerb.cf.ssp. J.Schönenberger368,(Z),(BOL) AM235869 ruscifolia R.Dahlgren Penaea dahlgrenii Rourke J.Schönenberger388,(Z),(BOL) AM235870 Penaea mucronata L. J.Schönenberger354,(Z),(BOL) AM235871 Saltera sarcocolla (L.)Bullock J.Schönenberger360,(Z),(BOL) AM235872 Sonderothamnus petraeus J.Schönenberger362,(Z),(BOL) AM235873 (Barkerf.)R.Dahlgren Sonderothamnus speciosus R. J.Schönenberger364,(Z),(BOL) AM235874 Dahlgren Stylapterus ericifolius (A.Juss.) J.Schönenberger372,(Z),(BOL) AM235875 R.Dahlgren Stylapterus ericoides A.Juss. J.Schönenberger355,(Z),(BOL) AM235876 ssp. pallidus R.Dahlgren Stylapterus fruticulosus (L.f.) J.Schönenberger359,(Z),(BOL) AM235877 Stylapterus micranthus R. M.Johns,s.n.,(Z) AM235878 Dahlgren

121

Table2. Genepartitionsandmodelsofmolecularevolutionselectedfortheplastidandthe nucleardatasetbyusingMrAIC(Nylander,2005)bytheapplicationofthecorrectedAkaike informationcriterion(AICc).ThecorrespondingmodelparameterswereestimatedinMrBayes (HuelsenbeckandRonquist,2001)duringthephylogeneticreconstruction.

Optimalmodelobtainedbyusing Dataset Genepartition Size AICcselection(inMrAIC)

11144 rbc L GTR+G (1144chars)

11451944 ndh F GTR+G (800chars)

19452436 rpl 16intron HKY (492chars)

24373411 rps 16intron GTR+G (975chars)

34124254 trn Strn G GTR+G (843chars) Chloroplast

42555265 atp Brbc Lspacer GTR+G (1011chars)

52665995 mat K GTR+G (730chars)

59966571 psb Atrn H GTR+G (576chars)

11630 nr18S SYM+I+G (1630chars)

16312592 nr26S GTR+I+G (962chars) Nuclear 25933384 ITS HKY+G (792chars)

122

Table3. Estimatesofrateheterogeneityfortheentirephylogramandselectedclades,evaluated byusingtheχ 2clocktestofLangleyandFitch(1974)implementedinr8s(Sanderson,2003).χ 2 representsthecalculatedtestvalue,dfthedegreesoffreedom(numberoftaxa–1),andpthe significancelevel.Resultsarebasedonthechloroplastdataset.

Clade χ2 df p Constantmolecularclock

Entirephylogram 158.2 29 9.75*10 20 rejected Penaeaceaecrowngroup 94.3 22 6.3*10 11 rejected Oliniaceaecrowngroup 16.24 4 2.71*10 3 rejected

123

Table4. Resultsofthe survivalanalysis(Paradis,1997)implementedinAPE(Paradis et al. ,2004).Forthefulldataset(seeFigure3),noneofthethree modelsispreferredbythelikelihoodratiotests(LRT;pvalues>0.05),buttheAkaikeinformationcriterion(AIC)favoursmodelC.Forthereduced dataset(seeFigure4),eithermodelBorCarepreferredbytheLRT’s(pvalues<0.05),whereastheAICfavorsmodelB.Thevaluesbeingdecisivefor modelselectionarebold. Reduceddataset(Figure4): Fulldataset(Figure3) Penaeaceaecrowngrouponly Model loglikelihood AIC loglikelihood AIC diversificationrateisconstant A 33.51 69.02 16.12 34.23 overtime diversificationrateeither 33.49 8.61 B increases(β>0)ordecreases(β β=0.97 70.98 β=2.456 21.22 <0)monotonically (p=0.845) (p=0.0001) diversificationrateisconstant, 31.71 20.62 C butchangesabruptlyatthegiven γ=16.6mys 67.42 γ=8.7mys 45.23 breakpointγ (p=0.058) (p=0.00269)

124

Table5. Habitat,distribution,maximalleafsize,assignedleafsizeclassandvegetationtypeclassofthetaxausedinthisstudyforthereconstructionof ancestralcharacterstates(Table6andFigure5).DistributiondataismainlyfromPereira(1996);PalmerandPitman(1972),andGoldblattandManning (2000).ThephytogeographiccentersoftheCapeFloristicRegion(CFR;GoldblattandManning,2000)areabbreviatedasfollows:SW:Southwest,NW: Northwest,SE:Southeast,LB:Langeberg,KM:Karoomountain.Leafsizeswerecalculatedastheareaofanellipse(leaflengthxleafwidthxpi/4). LeafsizeclassesfollowtheecologicaldefinitionbyRaunkiaer(1916,1934).

Max.leafsize Vegetation Taxon Habitat Distribution Leafsizeclass (areainmm 2) typeclass Peatswampandmixed Borneo:Sabah,Sarawak,Brunei, Dactylocladus stenostachys 5497.79 mesophyll tropical swampforests Kalimantan ContintalSEAsia,AndamanIslands, Myanmar,PeninsularMalaysia, Crypteronia paniculata Tropicalhillforests 16493.36 mesophyll tropical Borneo,Sumatra,Java,LesserSunda Islands,Philippines Crypteronia borneensis Mixeddipterocarpforest Borneo:Sabah,SarawakandBrunei 40840.70 macrophyll tropical Myanmar,CentralSumatra, Crypteronia griffithii Primarytropicalforest 47123.89 macrophyll tropical PeninsualrMalaysia,Borneo Crypteronia glabrifolia Mixeddipterocarpforest, Borneo:SarawakandBrunei 12566.37 mesophyll tropical Lowermontainetropical Axinandra zeylanica SriLanka 3534.29 mesophyll tropical rainforest Lowlandorlower Borneo:Sabah,Sarawakand Axinandra coriacea 8246.68 mesophyll tropical montainerainforest Kalimantan CostaRica,Panama,Equador,Peru, Alzatea verticillata Tropicalmountainforest 9424.78 mesophyll tropical Bolivia Marginsoftemperate Rhynchocalyx lawsonioides forests,closeto EasternCapeandKwaZuluNatal 1413.72 microphyll temperate watercourses Olinia ventosa Coastalforests SouthAfrica:WesternandEastern 2324.78 mesophyll temperate 125

CapeProvinces,St.Helena (introduced) SouthAfrica:WesternandEastern Olinia capensis Coastalforests 954.26 microphyll temperate CapeProvinces SouthAfrica:KwaZuluNatal, Mountainforests,wooden Olinia radiata Mpumalanga,Gauteng,NorthWest 1413.72 microphyll temperate kloofs andNorthernProvince SouthAfrica:KwaZuluNatal, Mountainforests,wooden Olinia emarginata Mpumalanga,Gauteng,NorthWest 452.39 microphyll temperate kloofs andNorthernProvince SouthAfrica,Swaziland, Moçambique,Uganda,Kenya, Highmoutaintipsand Olinia vanguerioides Tanzania,Malawi,Rwanda,Ethiopia, 810.53 microphyll temperate exposedrockyslopes RepublicoftheCongo,Zambia, Angola(scatteredpopulations) Mostlydampsandstone Penaea acutifolia CapeFloristicRegion:SE 23.56 leptophyll fynbos slopes Penaea cneorum ssp. Dampsandstoneslopes CapeFloristicRegion:SW,LB,SE 176.71 nanophyll fynbos gigantea andstreambanks Dampsandstoneslopes Penaea cneorum ssp. ovata CapeFloristicRegion:SW,LB,SE 31.42 nanophyll fynbos andstreambanks Penaea cneorum ssp. Dampsandstoneslopes CapeFloristicRegion:SW,LB,SE 24.74 leptophyll fynbos lanceolata andstreambanks Mostlyrockysandstone CapeFloristicRegion:NW,SW,AP, Penaea mucronata 32.99 nanophyll fynbos slopes LB Penaea cneorum ssp. Dampsandstoneslopes CapeFloristicRegion:SW,LB,SE 98.96 nanophyll fynbos cneorum andstreambanks Penaea cneorum ssp. Dampsandstoneslopes CapeFloristicRegion:SW,LB,SE 106.81 nanophyll fynbos ruscifolia andstreambanks Brachysiphon microphyllus Sandstonerocks, CapeFloristicRegion:KM 3.93 leptophyll fynbos Sandstoneslopesalong Penaea dahlgrenii CapeFloristicRegion:LB 18.85 leptophyll fynbos streams

126

Stylapterus ericifolius Sandstoneslopes CapeFloristicRegion:LB 5.89 leptophyll fynbos Stylapterus fruticulosus Sandyflats CapeFloristicRegion:SW 14.14 leptophyll fynbos Stylapterus ericoides ssp. Mountainstreamsatlow CapeFloristicRegion:SW 10.21 leptophyll fynbos pallidus elevations Cool,rockysandstone Brachysiphon fucatus CapeFloristicRegion:SW 56.55 nanophyll fynbos slopes Stylapterus micranthus Streambanks CapeFloristicRegion:SW 78.54 nanophyll fynbos Brachysiphon acutus Rockysandstoneslopes CapeFloristicRegion:SW 42.41 nanophyll fynbos Limestonerocksand Brachysiphon mundii CapeFloristicRegion:AP 4.71 leptophyll fynbos cliffs Saltera sarcocolla Rockysandstoneslopes CapeFloristicRegion:SW,AP 113.10 nanophyll fynbos Sonderothamnus speciosus Rockysandstonestlopes CapeFloristicRegion:SW 28.27 nanophyll fynbos Sonderothamnus petraeus Sandstonerocksandcliffs CapeFloristicRegion:SW 28.08 nanophyll fynbos Brachysiphon rupestris Sandstonerocks CapeFloristicRegion:SW 49.48 nanophyll fynbos Rocksandcliffsathigh Glischrocolla formosa CapeFloristicRegion:SW 30.63 nanophyll fynbos altitude Rockysandstoneslopes Endonema laterifolia CapeFloristicRegion:SW 188.50 nanophyll fynbos alongstreams Rockysouthernsandstone Endonema retzioides CapeFloristicRegion:SW 47.12 nanophyll fynbos slopes

127

Table6. Divergencetimeestimates(seeFigure2)andresultsoftheancestralcharacterstatereconstructions(seeFigure5)forselectednodesofinterest. Datingresultswereobtainedbyanalyzingthechloroplastdatasetwith multidivtime (Thorne et al. ,1998;ThorneandKishino,2002).Theageestimates markedwithasterisksarefromRutschmann et al. ,submitted.TheMaximumlikelihoodancestralcharacterstatereconstructionswereperformedin ANCML(Schluter et al. ,1997)forthecontinuousleafsizecharacterandinMesquite1.06(MaddisonandMaddison,2005)forthediscreteleafsizeand vegetationtypeclasses,respectively.Pvaluesrepresenttheproportionallikelihoodfortheinferredancestralstates.Pvaluesfortheotherstatesarelower andnotshownhere,butvisibleinthepiechartsinFigure5.

Meanage ± Nodein 95% Reconstucted standard Reconstructed Reconstructed Figures Nodedescription credibility leafsize(area deviation leafsizeclass vegetationtypeclass 2/5 interval[mys] inmm 2) [mys]

a Crypteroniaceaestem 79.7±7.6* 64.5–94.8* 7314 mesophyll,p=0.38 tropical,p=0.81 b Crypteroniaceaecrown 50.55±8.6* 34.6–68.0* 11628 mesophyll,p=0.70 tropical,p=0.99 c Alzateaceaedivergence 70.6±7.9* 55.0–85.5* 5967 mesophyll,p=0.32 tropical,p=0.75 d Penaeaceaestem 58.4±8.2 45.1–76.3 4329 microphyll,p=0.37 temperate,p=0.51 e Penaeaceaecrown 16.6±3.6 10.7–24.8 605 nanophyll,p=0.98 fynbos,p=0.99 f Oliniaceaestem 53.5±7.9 40.5–70.7 3765 microphyll,p=0.47 temperate,p=0.79 g Oliniaceaecrown 4.7±2.1 1.5–9.5 1485 microphyll,p=0.98 temperate,p=0.99

128

Figures

Figure1a. MrBayesmajorityruleconsensustreewithmeanbranchlengths,basedoneight combinedchloroplastgenesequences(rbc L, ndh F, rpl 16intron, rps 16intron, trn Strn G, atp B rbc Lspacer, mat K,and psb Atrn H;6571characters).Maximumlikelihoodbootstrapsupport valuesandBayesiancladecredibilityvaluesarereportedaboveandbelowthebranches, respectively.Generaldistributionrangesarereportedtotherightofthetree. Crypteronia paniculata wasusedasdatingoutgroup.Node crepresentsthephylogeneticsplitbetweenthe AfricanPenaeaceae/OliniaceaeandtheSouthAmericanAlzateaceaeandwasusedasasecondary calibrationpoint.

129

Figure1b. MrBayesmajorityruleconsensustreewithmeanbranchlengths,basedonthree combinednucleargenesequences(nr18S,nr26S,andITS;3384characters).Maximum likelihoodbootstrapsupportvaluesandBayesiancladecredibilityvaluesarereportedaboveand belowthebranches,respectively.Generaldistributionrangesarereportedtotherightofthetree.

130

Figure2. Chronogramobtainedbyestimatingdivergencetimeswith multidivtime (Thorne et al. , 1998)basedonthechloroplastdataset.Thebranchlengthsandagesrepresentposteriormean values.Node crepresentsthephylogeneticsplitbetweentheAfricanPenaeaceae/Oliniaceaeand theSouthAmericanAlzateaceae.Itwasusedasasecondarycalibrationpointbasedonearlierage estimatesinRutschmann et al. ,submitted.Theothernodelabelsrefertothenodesofinterest usedintheancestralcharacterstatereconstruction(seeTable6andFigure5). Crypteronia paniculata wasusedasdatingoutgroupandremovedduringtheanalysis(seeFigure1).

131

Figure3. Lineagesthroughtime(LTT)plots,obtainedbyevaluatingthechronogramshownin Figure2(fulldataset),butwithoutsubspecies.Thenumberoflineages(Figure3a)andthelog transformednumberoflineages(Figure3b),respectively,areplottedagainstestimated divergencetimes.Thedatapointsrepresentmeanestimatedages(diamonds)surroundedby standarddeviationvalues(dots).Datapoints cto grepresentthenodesofinterestusedinthe ancestralcharacterstatereconstructions(seeFigures2and5).Thearrowsmarkthepointintime (16.6mysago)wherethediversificationratechangesabruptlyaccordingtothediversification modelselectedinthesurvivalanalysis(seeTable4;Paradis,1997).

132

Figure4. Lineagesthroughtime(LTT)plots,obtainedbyevaluatingonlythelineagesofthe Penaeaceaecrowngroup(reduceddataset;seeFigure2),withoutsubspecies.Thenumberof lineages(Figure4a)andthelogtransformednumberoflineages(Figure4b),respectively,are plottedagainstestimateddivergencetimes.Thedatapointsrepresentmeanestimatedages (diamonds)surroundedbystandarddeviationvalues(dots).Datapoint erepresentsthe Penaeaceaecrownnode(seeFigures2and5).Thearrowsmarkthepointintime(8.7mysago) whereasupposedchangeindiversificationratewasstatisticallytestedandrejectedbythe survivalanalysis(seeTable4;Paradis,1997).

133

Figure5 (seelegendonnextpage)

134 Figure5(previouspage). Distributionofreconstructedancestralstatesforleafsize(leftside;three characterstates)andvegetationtype(rightside;fivecharacterstates),optimizedundermaximum likelihoodinMesquite1.06(MaddisonandMaddison,2005)byusingtheMk1model(Table6). Thesmallpiechartsassociatedtothenodesindicatetheproportionallikelihoodsforthedifferent discretecharacterstates.Forthenodesofinterest,labelled ato g,moredetailedresultsarereported inTable6.Thenumbersassociatedwithsomenodesinthetreetotherightrepresentthecontinuous leafsizevaluesreconstructedbyusingANCML(Schluter et al. ,1997;seeTable6).

135

136

Chapter V. Assessing calibration uncertainty in molecular dating: The assignment of fossils to alternative calibration points

FrankRutschmann,TorstenEriksson 1,KamariahAbuSalim 2,andElenaConti 3 1Bergius Foundation, Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden 2Universiti Brunei Darussalam, Department of Biology, Jalan Tungku Link, Gadong BE 1410, Negara Brunei Darussalam 3Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland

Submittedforpublicationin SystematicBiology

137

Abstract Whilerecentmethodologicaladvanceshaveallowedtheincorporationofratevariationin moleculardatinganalyses,thecalibrationprocedure,performedmainlythroughfossils,hasproved moreresistanttoamelioration.Onesourceofuncertaintypertainstotheassignmentoffossilsto specificnodesinaphylogeny,especiallywhenalternativepossibilitiesexistthatcanbeequally justifiedonmorphologicalgrounds.Hereweexpandonarecentlydevelopedfossilcrossvalidation methodtoevaluatewhetheralternativenodalassignmentsproducecalibrationsetsthatdifferin theirinternalconsistency.WeuseanenlargedCrypteroniaceaecenteredphylogenyofMyrtales,six fossils,and72combinationsofcalibrationpoints,termedcalibrationsets,toidentify(i)thefossil assignmentsthatproducethemostinternallyconsistentcalibrationsetsand(ii)theoverallmean age,derivedfromallcalibrationsets,forthesplitoftheSoutheastAsianCrypteroniaceaefromtheir WestGondwanansisterclade(nodeX).Wefoundthatacorrelationexistsbetween svalues, devisedtomeasuretheconsistencyamongthecalibrationpointsofacalibrationset,andnodal distancesamongcalibrationpoints.Byrankingallsetsaccordingtothepercentdeviationof sfrom theregressionlinewithnodaldistance,weidentifiedthesetswiththehighestlevelofcorrected calibrationsetconsistency.Thesesetsgeneratedlowerstandarddeviationsassociatedwiththeage ofnodeXthansetscharacterizedbylowercorrectedconsistency.Thethreecalibrationsetswiththe highestcorrectedconsistenciesproducedageestimatesfornodeXof79.70mys,79.14mys,and 78.15mys.Theoverallmeanage,derivedfromall72calibrationsets,was77.74mys,witha95% credibilityintervalof60.89to94.21mys.Thesetimeframesaremostcompatiblewiththe hypothesisthattheCrypteroniaceaestemlineagedispersedfromAfricatotheDeccanplateasit driftednorthwardduringtheLateCretaceous. Keywords: Moleculardating,divergencetimes,fossilcalibration,calibrationpoint,cross validation,Crypteroniaceae,biogeography,outofIndia.

138

Introduction TheuseofDNAsequencestoestimatethetimingofevolutionaryeventsisincreasingly popular.BasedonthecentralideathatthedifferencesbetweentheDNAsequencesoftwospecies isafunctionofthetimesincetheirevolutionaryseparation(ZuckerkandlandPauling,1965), moleculardatinghasbeenusedasamethodtoinvestigatebothpatternsandprocessesofevolution (Sanderson et al. ,2004;Magallón,2004;WelchandBromham,2005;Renner,2005;Rutschmann, 2006). However,significantmethodologicalchallengesaffecttheuseofmoleculardating approaches.Whilerecentstudieshaveaddressedtheissueofvariationamongsubstitutionrates (Sanderson,1997,2002;Thorne et al. ,1998;Kishino et al. ,2001;ArisBrosouandYang,2002; Yang,2004;Penny,2005;HoandLarson,2006;Rutschmann,2006),otherdifficultiespersist, especiallyconcerningthecalibrationprocedure(Lee,1999;Conti et al. ,2004;Magallón,2004; ReiszandMüller,2004).Calibrationconsistsintheincorporationofindependent(nonmolecular) chronologicalinformationinaphylogenytotransformrelativeintoabsolutedivergencetimes.This informationcanbebasedongeologicalevents(e.g.,patternsofcontinentaldrift,originofislands andmountainchains)and/orthepaleontologicalrecord(fossils).Geologicalcalibrationspointsare assignedtophylogeneticnodesbasedontheassumptionthatageographicbarriercaused phylogeneticdivergence,thusgeneratingtheriskofcircularreasoning,ifthechronogramderived fromthecalibrationisusedtotestbiogeographicalscenarios(Conti et al. ,2004;Magallón,2004). Nevertheless,geologicaleventscanprovideimportantvalidationofdatingestimatesproducedwith othertypesofcalibration(e.g.,Conti et al. ,2002;Sytsma et al. ,2004;BellandDonoghue,2005). Whilethefossilrecordiswidelyregardedasthebestsourceofnonmolecularinformation abouttheagesofselectedclades(Marshall,1990b;Sanderson,1998;MagallónandSanderson, 2001),severalinterrelatedproblemsplagueitsuseforcalibrationpurposes,including(i)erroneous fossilageestimates,(ii)theincompletenessofthefossilrecord,(iii)theassignmentoffossilsto specificnodesinaphylogeny,and(iv)thenumberoffossilsusedforcalibration.Thefirstproblem maydependonmisleadingstratigraphiccorrelationsorimproperradiometricdating(Conroyand vanTuinen,2003)andcanonlybeaddressedbyimprovingthegeologicaldatingprocedures. Theincompletenessofthefossilrecordmayresultfromthefailureofentirespeciestobe preservedordiscoveredasfossils(Darwin,1859).Thislackofinformationmakesitdifficultor impossibletoestimatethetemporalgapsbetweenthedivergenceoftwolineages,theoriginofa synapomorphy,andthediscoveryofthatsynapomorphyinthefossilrecord(seeFigure1in Magallón,2004;Springer,1995;FooteandSepkoski,1999).Fossilscanthusprovideonly minimumagesforanylineage.Recentlydevelopedmethodsaimedatestimatingthegapbetween 139 thetimeoffirstappearanceofasynapomorphyinthefossilrecordandthetimeofdivergence betweentwolineagesarebasedontheideathatthesizeofthegapisinverselycorrelatedwiththe qualityanddensityofthefossilrecordwithinagivenstratigraphicinterval,anddependentonthe ratesoforigination,extinctionandpreservationofthefocuslineage(Marshall,1990a,1990b;Foote et al. ,1999a,1999b,Tavaré et al. ,2002;YangandRannala,2005). Dependingontheirpreservationstate,relativeabundance,andthedistinctivenessof selectedmorphologicaltraits,itcanbeproblematictounambiguouslyassignfossilstoaparticular cladeinagivenphylogeny(BentonandAyala,2003;DoyleandDonoghue,1993).More specifically,itisnecessarytodeterminewhetherthefossilrepresentsanextinctmemberofthestem orthecrowngroupofextanttaxa(Hennig,1969;deQueirozandGauthier,1990;Doyleand Donoghue,1993;MagallónandSanderson,2001;Magallón,2004).Ideally,theassignmentwould bebasedonacomprehensivecladisticmorphologicalanalysisofbothextantandextincttaxa,but, duetotheircomplexity,suchanalysesremainregrettablyrare(Conti et al. ,2004;Near et al. , 2005b).Inpractice,assignmentoffossilstoselectednodes(called“calibrationnodes”fromnow on)isusuallybasedonmoreintuitivecomparisonsbetweenthecharacterstatesofthefossilandthe distributionofsynapomorphiesinthephylogeny.Whenafossilisfinallyattachedtoanode,the nodeinquestionassumestheageofthefossil,thusbecominga“calibrationpoint”. Forthereasonsexplainedabove, theuseofasinglefossilforcalibrationcanproduce stronglybiasedmolecularageestimates(Alroy,1999;Lee,1999;SmithandPeterson,2002; ConroyandvanTuinen,2003;HedgesandKumar,2003;vanTuinenandHadly,2003;Graurand Martin,2004;ReiszandMüller,2004).Additionally,thenodaldistanceofthecalibrationpointto thenode(s)ofinterestandtherootofthephylogenymaystronglyinfluencetheestimatedages (SmithandPeterson,2002;ConroyandvanTuinen,2003;ReiszandMüller,2004).Therefore,it seemsdesirabletousemultiplefossils,preferablyplacedindifferentclades(Brochu,2004),for moleculardatingpurposes,inthehopethatthebiasesbuiltintotheirassignmenttospecific calibrationnodesmaycanceleachotherout(SmithandPeterson,2002;Soltis et al. ,2002;Conroy andvanTuinen,2003). Recentlydevelopedmethodsallowfortheincorporationofmultiplecalibrationpoints (termed“multicalibration”fromnowon)inthedatingprocedure(Sanderson,1997,2002;Thorne et al. ,1998;Kishino et al. ,2001;Yang,2004;YangandRannala,2005;Drummond et al. ,2006). Whenmultiplefossilsareavailable,itispossibletouseonefossilatatimetogenerateage estimatesforthenodestowhichtheotherfossilsareassignedandthencomparetheestimatedages withthefossilagesatthosenodes,essentiallyleadingtoanassessmentoftheconsistencyamong calibrationpoints(NearandSanderson,2004;Nearet al. ,2005b).Thisprocedure,knownasfossil crossvalidation,allowsfortheidentificationandremovalofincongruentcalibrationpoint(s),and

140 hasbeenappliedinmoleculardatingstudiesofmonocotyledons(wheretwooutofeightfossils wereremoved;NearandSanderson,2004),placentalmammals(twooutofnine;Nearand Sanderson,2004),turtles(sevenoutof17;Near et al. ,2005b),centrarchidfishes(fouroutof10; Near et al. ,2005a)anddecapods(nofossilsremoved;Porter et al. ,2005).Tosummarize,Nearand Sanderson(2004)devisedamethodtoassesswhetherindividualcalibrationpointswere inconsistentwiththeotherpointsofacalibrationset,leadingtotheremovalofthecorresponding fossil(s)fromthecalibrationprocedure.Inthestudypresentedhere,weexpandtheirapproachto evaluatewhetheralternativeassignmentsofavailablefossilstodifferentcalibrationnodesproduce moreorlessinternallyconsistentcalibrationsets. Toexaminethecalibrationproblemmentionedabove,weutilizeaMyrtalesdataset centeredontherelationshipsofCrypteroniaceaeandrelatedfamilies(named“Crypteroniaceae phylogeny”fromnowon).Earliermoleculardatingresults(Conti et al. ,2002,2004;Rutschmann et al. ,2004)suggestedapossibleGondwananoriginofthesefamiliesintheEarlytoMiddle Cretaceous,followedbythedispersaloftheCrypteroniaceaestemlineagetotheDeccanplate (comprisingIndiaandMadagascar)whileitwasraftingalongtheAfricancoast,ca.125to84mys ago(McLoughlin,2001;PlummerandBelle,1995;Storey et al. ,1995),abiogeographicscenario knownastheoutofIndiahypothesis(McKenna,1973;AshtonandGunatilleke,1987;Macey et al. ,2000;Morley,2000;BossuytandMilinkovitch,2001).However,theestimatedageofthe crucialbiogeographicnode,representingthesplitbetweentheSoutheastAsianCrypteroniaceaeand theAfrican/SouthAmericansisterclade(nodeX;Figure1),rangedfrom106to141mys(Conti et al. ,2002),62to109mys(Rutschmann et al. ,2004),57to79mys(Moyle,2004),and52mys (Sytsmaetal,2004),dependingongeneandtaxonsampling,butmostlyonthecontrasting assignmentofselectedfossilstodifferentnodesintheMyrtalesphylogeny(Conti et al. ,2004; Moyle,2004).Giventhecontroversialnatureofcalibration,thecontradictingcalibrationprocedures previouslyappliedtodatetheCrypteroniaceaephylogeny,andtheavailabilityofmultiplefossilsin Myrtales,thisgroupoftaxaprovidesanidealcasestudytoinvestigateproblemsofcalibration,at thesametimeattemptingtorefinetheageestimatesthatarecentraltothebiogeographichistoryof Crypteroniaceae. TocalibratetheCrypteroniaceaephylogenyweusesixfossils.Basedonthemorphological traitspreservedinthefossils,fiveoutofthesixfossilscaneachbeassignedtotwoorthree differentnodesinthephylogeny(Figure1;seebelow).Intotal,72differentcombinationsofsix calibrationpointsarepossible,eachcombinationformingacalibrationset.Here,weemployan expandedmoleculardatasetandthesixfossilstoaddressthefollowingquestions:1)Howcanthe fossilcrossvalidationprocedurebeusedtoassignafossiltoacalibrationpointthatismost internallyconsistentwiththeotherpointsinacalibrationset?Inotherwords,whichfossil

141 assignmentsproducethecalibrationsetsthataremostinternallyconsistent?2)Whatisthe distributionofagesandtheoverallmeanageforthesplitbetweentheSoutheastAsian CrypteroniaceaeandtheirWestGondwanansistercladethatisestimatedfromusingall72 calibrationsets? Toourknowledge,thisisthefirststudythatexplorestheapplicationoffossilcross validationtotheproblemofnodalassignmentforselectedfossils(termed“fossilnodalassignment” fromnowon).Whilewerealizethattheresultspresentedherebynomeansrepresentapanaceato thecomplexchallengesofcalibration(Wray,2001;Magallón,2004;NearandSanderson,2004; ReiszandMüller,2004;MüllerandReisz,2005),weneverthelesstrytopresentapractical approach,basedonavailablemethods,toaddressdifficultiesencounteredinmostmoleculardating analyses,butalltoooftenignored.

142

Materials and Methods

Taxon and DNA sampling Samplingwasexpandedfrompublishedstudies(Conti et al. ,2002;Schönenbergerand Conti,2003;Rutschmann et al. ,2004)toincludeDNAsequencesfromthreeplastid( rbc L, ndhF and rpl 16intron)andtwonuclear(ribosomal18Sand26S;termednr18Sandnr26Sfromnowon) locifor74taxa(seeTable1).Intotal,270newsequencesweregeneratedforthisstudy.Almost completetaxonsamplingwasachievedforCrypteroniaceae(sevenof12species;Mentinkand Baas,1992;PereiraandWong,1995;Pereira,1996),Alzateaceae(oneofonespecies;Graham, 1984),Rhynchocalycaceae(oneofonespecies;JohnsonandBriggs,1984),Penaeaceae(19of23 species,plusfoursubspeciesof Penaea cneorum ;DahlgrenandThorne,1984;Dahlgrenandvan Wyk,1988),andOliniaceae(fiveofeightspecies;TobeandRaven,1984;SebolaandBalkwill, 1999).ThesixmissingtaxaofCrypteroniaceae, Axinandra alata, A. beccariana , Crypteronia elegans , C.macrophylla , C. cummingii ,and C. paniculata var. affinis areeitherveryrare,known onlyfromthetype,orcollectedinnowdeforestedareas,forex.,inKalimantan(Indonesia;Pereira, 1996).DNAextractionsfromdriedvoucherswereunsuccessful,becauseallherbariumspecimens ofthesetaxaweretreatedwithethanolaftercollection.ThefourmissingPenaeaceae, Stylapterus barbatus , S. dubius , S. sulcatus ,and S. candolleanus arealsoeitherveryrare,occuronlyin restrictedareas,orwerecollectedonlyonceortwiceeach(pers.comm.JürgSchönenberger). FollowingSebolaandBalkwill(1999),thethreemissingOliniaceaeare Olinia discolor , O. rochetiana, and O. micrantha .Thesamplingoftheremainingtaxawasdesignedtoassignthe fossilsaspreciselyaspossibleandtorepresentcladeheterogeneityatthefamilylevel (Melastomataceae,Myrtaceaes.l.,Vochysiaceae,Onagraceae,Lythraceae),basedonpublished phylogenies(Conti et al. ,1996,1997;Renner,2004;Sytsma et al. ,2004).Phylogenieswererooted usingrepresentativesofLythraceae,i.e., Duabanga grandiflora and Cuphea hyssopifolia ,basedon theresultsofglobalMyrtalesanalyses(Conti et al. ,1996,1997;Sytsma et al. ,2004). DNA Extractions, PCR, sequencing, and alignment DNAwasextractedasdescribedinSchönenbergerandConti(2003)andRutschmann et al. (2004).PrimersfromZurawski et al. (1981),OlmsteadandSweere(1994),Baum et al. (1998),Bult et al. (1992),andKuzoff et al. (1998)wereusedtoamplifyandsequence rbc L, ndh F, rpl 16intron, nr18S,andnr26S,respectively.PCRandsequencingproceduresfollowedtheprotocolsdescribedin Rutschmann et al. (2004).ThesoftwareSequencher4.5(GeneCodes,AnnArbor,MI,USA)was usedtoedit,assemble,andproofreadcontigsforcomplementarystrands. Rbc L,nr26Sandnr18S

143 sequenceswerereadilyalignedbyeye,while ndh Fand rpl 16intronsequenceswerefirstaligned usingClustalX1.83(Thompson et al. ,1997)priortofinalvisualadjustmentwithMacClade4.07 (MaddisonandMaddison,2000). Phylogenetic analyses TreetopologyandbranchlengthswereestimatedusingMrBayesversion3.0b4 (HuelsenbeckandRonquist,2001;RonquistandHuelsenbeck,2003).Plastid( rbc L, ndh F,and rpl 16intron)andnuclear(nr18S,nr26S)partitionswerefirstanalyzedseparately(resultsnot shown).Becausetherespective80%majorityruleconsensusbootstraptreeshadnowellsupported incongruencies,bothdatasetswerecombined. ModelselectionforthecombineddatasetwasperformedinMrAIC1.4(Nylander,2005b), aprogramthatusesPHYML2.4.4(GuindonandGascuel,2003)tofindthemaximumofthe likelihoodfunctionunder24modelsofmolecularevolution.MrAICidentifiedtheoptimalmodels accordingtotwodifferentselectioncriteria:thecorrectedAkaikeinformationcriterion(AICc)and theBayesianinformationcriterion(BIC).Parametervaluesforthechosenmodelswerethen estimatedsimultaneouslyforeachpartitionduringtopologyandbranchlengthoptimizationin MrBayes. BayesiantopologyestimationusedonecoldandthreeincrementallyheatedMarkovchain MonteCarlochains(MCMC)runfor1.5x10 6cycles,withtreessampledevery100 th generation, eachusingarandomtreeasastartingpointandthedefaulttemperatureparametervalueof0.2.For eachdataset,MCMCrunswererepeatedtwice.Thefirst5000treeswerediscardedasburninafter checkingforstationarityonthelogarithmiclikelihoodscurves.Theremainingtreeswereusedto constructoneBayesianconsensustreewithmeanbranchlengthsandtocalculatetheclade credibilityvalues(Figure1). Statisticalsupportforindividualbrancheswasalsocalculatedbybootstrapresamplingusing thePerlscriptBootPHYML3.4(Nylander,2005a).Thisprogramfirstgenerates1000pseudo replicatesinSEQBOOT(partofPhylip3.63;Felsenstein,2004),thenperformsamaximum likelihoodanalysisinPHYML(GuindonandGascuel,2003)foreachreplicateundertheselected modelofevolution,andfinallycomputesa50%majorityruleconsensustreebyusingCONSENSE (alsopartofthePhylippackage).

Evaluation of rate heterogeneity Theconstancyofnucleotidesubstitutionrateswascheckedusingtheχ2molecularclocktest ofLangleyandFitch(1974;LFχ2 test,implementedin r8s 1.7;Sanderson,2003),whichcompares theobservedbranchlengthswiththebranchlengthspredictedunderaclockmodel. 144

Fossil nodal assignment AftercarefullyreviewingthepaleobotanicliteratureofMyrtales,sixfossilswereselected forcalibrationinmoleculardatinganalyses(seeTable2andFigure1).Basedbothontheir morphologicalcharactersandpreviousnodalassignmentsinpublishedphylogenies (Melastomataceae:ClausingandRenner,2001;Renner et al. ,2001;RennerandMeyer,2001; Renner,2004;Myrtaceae:Sytsma et al. ,2004;Onagraceae:Berry et al. ,2004),fiveoutofthesix fossilscouldjustifiablybeassignedtodifferentnodes. Fossil1.Fossil1isrepresentedbyleavesfromtheEarlyEocene(53mys)ofNorthDakota (Table2).Hickey(1977),whofirstdescribedthem,statedthattheyresemblemostcloselythe leavesofextantMiconieaeandMerianieae,butassessedthat“theyalldiffer,however,innotbeing deeplycordateandinhavingtertiarieswhichdonotformagoodVpattern”.Renner et al. (2001) furtherconfirmedtheresemblancewithleavesofmodernMiconieaeandMerianieae.However, becauseallMelastomataceae,including Pternandra, sharethesamebasickindofacrodromousleaf venation,Renner et al. (2001)decidedtoassignthefossilstotheentireMelastomataceaecrown group(node 1a inthepresentstudy;seeFigure1),aviewlatersharedbySytsma et al. (2004)ina Myrtaleswidedatinganalysis.Conversely,inthelightofthestatedsimilaritieswithMiconieaeand Merianieaeandtheknowntemporalgapbetweenlineagedivergenceandfirstappearanceofa synapmorphyinthefossilrecord,Conti et al. (2002),MorleyandDick(2003)andRutschmann et al. (2004)decidedtoassignthefossilleaveseithertothestem(node 1b )ortothecrowngroup (node 1c )thatincludesMiconieaeandMerianieae(Figure1).Renner(2004)includedboth assignmentpossibilitiesinsubsequentBayesiandatinganalysesofMelastomataceae.Insummary, theMioceneleavesofMelastomataceaecanbedefensiblyassignedtothreedifferentnodes( 1a , 1b , and 1c ;seeFigure1).Becausethebranchseparatingnode 1a and 1b islong,fossilassignments aboveorbelowthisbranchwasexpectedtostronglyinfluencethedatingresults. Fossil2. Fossil2isrepresentedbyfossilseedsfromMiocenedepositsinSiberia,the Tambovregion,Belarus,Poland,severalsitesinGermany,andBelgium(2326mys,Dorofeev, 1960,1963,1988;CollinsonandPingen,1992;Dyjor et al. ,1992;FaironDemaret,1994;Mai, 1995,2000;Table2).TheseseedsaremostsimilartothoseofextantmembersofOsbeckieaeand Rhexieae(nowMelastomeae;ClausingandRenner,2001),butdifferinseveralsignificantfeatures, especiallythepresenceofmulticellulartubercles(CollinsonandPingen,1992).RennerandMeyer (2001)assignedthefossilstothecrowngroupofMelastomeae,because“thiskindoftesta ornamentationissynapomorphicforthe Rhexia Arthrostemma Pachyloma subcladeof Melastomeae”.Renner et al. (2001),Conti et al. (2002),Rutschmann et al. (2004),Renner(2004) andSytsma et al. (2004)allfollowedthisinterpretation,althoughitisdifficulttoestablishwith 145 certaintywhetherthesefossilsshouldbeassignedtothebaseoftheMelastomeaecrowngrouporto morerecentnodesinthetribe.Givenourcurrenttaxonsampling,theonlypossibleassignmentof fossil2wastothecrowngroupofMelastomeae,asinpreviousstudies(Figure1). Fossil3.Fossil3isrepresentedbythepollen Myrtaceidites lisamae (syn. Syncolporites lisamae )fromtheSantonianofGabon(86mys;Herngreen,1975;Boltenhagen,1976;Muller, 1981),thelowerSenonianofBorneo(89–83.5mys;Muller,1968),andtheMaastrichtianof Colombia(71.3–65mys;vanderHammen,1954;Table2).Sytsma et al. (2004)attributedthis pollentothecrowngroupofMyrtaceaes.s.(correspondingtonode 3c inFigure1),butpollen grainsofMyrtaceaes.s.andPsiloxyloideae(Wilsonet al. ,2005)aredifficulttodistinguish. Therefore,aminimalageof86myscanbeassignedtothreedifferentnodes: 3a (stemlineageof Myrtaceaes.l.), 3b (crowngroupofMyrtaceaes.l.orstemlineageofMyrtaceaes.s.),andnode 3c (crowngroupofMyrtaceaes.s.;Figure1).Again,becausethebranchseparatingnodes3a and 3b is long,differentassignmentswereexpectedtohavearelevantimpactonthedatingresults. Fossil4. Fossil4isrepresentedbyfruitsandseedsof Paleomyrtinaea fromthelate PaleoceneofNorthDakota(56mys;Crane et al. ,1990;Pigg et al. ,1993)andtheearlyEoceneof BritishColumbia(54mys;Manchester,1999;Table2).Thesefruitsandseedshaveseedcoat features(LanternandSharp,1989)andanunornamentedCshapeembryo(LanternandStevenson, 1986)thatresemblethoseofthelargelyAmericansubtribeMyrtinae,includedinMyrteae (Pigg et al. ,1993).Sytsma et al. (2004)assignedthefossiltothecrowngroupoftheMyrteae (correspondingtonode 4b inFigure1),becauseMyrtinaeprovedtobeparaphyleticintheir phylogeneticanalysis.AsourtaxonsamplingincludestwomembersofMyrteaethatdonot representsubtribeMyrtinae,wedecidedtoassignfossil4eithertotheMyrteaecrowngroup(node 4b ;asinSytsma et al. ,2004)ortheMyrteaestemlineage(node 4a ;Figure1).Thebranch separatingnodes 4a and 4b isshort,thusalternativecalibrationswerenotexpectedtohavelarge effectsonnodalageestimates. Fossil5. Fossil5isrepresentedbytheearliestEucalyptlikefruitsfromtheMiddleEocene RedbankPlainsFormationinSouthEasternQueensland,Australia(Rozefelds,1996;discoveredby RobertKnezourin1990;pers.comm.DavidGreenwood,BrandonUniversity,Manitoba,Canada; Table2).SimilarfossilfruitswerefoundintheMiddleEocenesedimentsnearlakeEyre,Nelly Creek,innorthernSouthAustralia(Christophel et al. ,1992).Theyprovideaminimumageof48 mysforthemostrecentcommonancestor(MRCA)of Eucalyptus and Angophora (node 5b ). Alternatively,weassignedthefossiltothestemlineageofEucalypteae(node 5a ;Figure1), becausetheobservedtypeofcapsuleisalsosimilartothefruitofothertaxainEucalypteae (Rozefelds,1996).Asforfossil4,thebranchseparatingnodes 5a and 5b isshort,thusalternative calibrationswerenotexpectedtohavelargeeffectsonnodalageestimates.

146

Fossil6. Fossil6isrepresentedbythepollen Diporites aspis fromtheEarlyOligocene (33.728.5mys)ofOtwayBasin(Australia),describedbyBerry et al. (1990;Table2).Comparisons ofthefossilpollenwithextantmembersof Fuchsia (Daghlian et al. ,1985)leftnoquestionthat Diporites aspis representspollenof Fuchsia .Molecularclockanalysesofa Fuchsia phylogeny calibratedwithnonFuchsia fossilsresultedinanestimatedageintervalforthe Fuchsia crown groupthatwasconsistentwiththepaleobotanicalageof Diporites aspis (Berry et al. ,2004;Sytsma et al. ,2004).Wethereforeassignedaminimalageof28.5mystothe Fuchsia crowngroup(node 6b ).Alternatively,weassignedtheageofthefossiltothe Fuchsia stemlineage(node 6a ;Figure1), becausethesynapomorphiesvisibleinthefossilpollenmighthaveevolvedbeforethe diversificationof Fuchsia ,andclosertothestemnoderepresentingthephylogeneticsplitbetween Fuchsia anditssisterclade.Asforfossils4and5,thebranchseparatingnodes 6a and 6b isshort, thusalternativecalibrationswerenotexpectedtohavelargeeffectsonnodalageestimates. Consideringallpossibleassignmentsofthesixfossilsreviewedabove,72different combinationsarepossible,correspondingto72calibrationsets,eachcomprisingsixcalibration points(Table3).Theagesofthesixfossilsusedineachsetwereassignedasminimalconstraintsto thecorrespondingnodesinallmoleculardatinganalyses. Molecular dating analyses AlldatinganalysesdescribedbelowwereperformedwithaBayesianapproach (multidivtime ;Thorne et al. ,1998;ThorneandKishino,2002),whichusesanMCMCprocedureto derivetheposteriordistributionsofratesandtimesandallowsformultiplecalibrationwindows. TheanalyticalprocedurefollowedthestepsdescribedinRutschmann(2005)andwasperformedon a3GHzPentiumIVmachinerunningUbuntuLinux5.10.Thevaluesofthepriordistributionsin thelast multidivtime step(Kishino et al. ,2001;ThorneandKishino,2002)werespecifiedinunits of10mys,assuggestedinthemanual:RTTM =12, RTTMSD =3, RTRATE and RTRATESD =0.00815,

BROWNMEANand BROWNSD =0.0833,and BIGTIME =13.Thefirsttwovalues,whichflexibly constraintheageoftheroot,werechoseninlightofpublishedestimatesfortheageoftheMyrtales crowngroup,including100–107mys(Wikström et al. ,2001,2003),about105mys(Magallón andSanderson,2005),and111mys(Sytsma et al. ,2004;seealsoSanderson et al. ,2004). WerantheMarkovchainforatleast5x10 5cyclesandcollectedonesampleevery100 cycles,withoutsamplingthefirst8x10 4 cycles(burninsector).Initialexperimentswith2x10 6 cyclesshowednodifferences,leadingustotheconclusionthatconvergencewasreachedmuch earlier.Weperformedeachanalysisatleasttwicewithdifferentinitialconditionsandcheckedthe outputsamplefilestoassureconvergenceoftheMarkovchainbyusingtheprogramTracer1.3 (RambautandDrummond,2005),eventhoughwerealizethatitisnotpossibletoestablishwith 147 certaintythatafinitesamplefromanMCMCalgorithmisrepresentativeofanunderlyingstationary distribution(CowlesandCarlin,1996). Finding the most internally consistent calibration sets by using fossil cross- validation Toevaluatewhethersomeofthe72calibrationsetsweremoreinternallyconsistentthan others,weimplementedthefossilcrossvalidationprocedureofNearandSanderson(2004)and Near et al. (2005b).Whiletheseauthorsdevelopedthemethodtoidentifypossiblyinconsistent pointsinasinglecalibrationset,weexpandedtheirapproachtocomparetheinternalconsistencies ofdifferentcalibrationsetsgeneratedbyalternativenodalassignmentsofmultiplefossils. Therefore,foreachofthe72calibrationsetsinourcasestudy,weperformedthefollowingsteps: 1.Wefixedoneoutofthesixcalibrationpointsandestimatedtheagesoftheremaining five,unconstrainednodes.Thisprocedureiscalled“fossilcalibrationrun”fromnowon.

2.WethencalculatedthedifferenceD ibetweentheestimatedandthefossilagesofthefive unconstrainednodes.ThisdifferencewasdefinedbyNearandSanderson(2004)asanabsolute deviationmeasureD i=(estimatedage–fossilage).Instead,weusedtherelativedeviationmeasure

Di=(estimatedage–fossilage)/fossilage),assuggestedinNear et al. (2005b).

3.Then,wecalculatedSSχ,thesumofthesixsquaredD ivalues(byusingequation2.2in NearandSanderson,2004). 4.Thesameprocedure(steps13)wasthenrepeatedfortheremainingfivefossilcalibration runs,obtainedbyfixingadifferentcalibrationpoint. 5.BasedonthesixSSχscoresobtainedforallsixcalibrationruns,wecalculatedthe averagesquareddeviation sforthecalibrationset(withequation2.3inNearandSanderson,2004; seeTable3). Byusingthisprocedureiteratively,weobtained svaluesforall72calibrationsets.High valuesof swouldindicatethatoneormorecalibrationpointsinasetareinconsistentwiththe others,suggestingthatthecorrespondingfossilswereerroneouslyassignedtotherespectivenodes, whereaslow svalueswouldcharacterizecalibrationsetswithhighinternalconsistency. Inordertoaccountforpossibleeffectsrelatedtothemoleculardatingmethod(inourcase multidivtime ),thecrossvalidationexperimentswererepeatedbyusingpenalizedlikelihood (Sanderson,2002)implementedin r8s (Sanderson,2003;datanotshown).Forbatchprocessingthe calculationsofSSχand s,wewroteacollectionofPerlscripts(availablefromthefirstauthorupon request). Relationshipbetweenaveragesquareddeviationsandnodaldistance.Becausethe fossilcrossvalidationproceduremightbeinfluencedbythepositionofthecalibrationpoints 148 relativetoeachother(Near et al. ,2005a),wetestedwhethertheaveragesquareddeviations s ofthe 72calibrationsetswerecorrelatedwiththenumberofnodesseparatingthepointsofacalibration set(nodaldistance;Figure2).Foreachcalibrationset,nodaldistanceswerecalculatedbyfirst countingthenumberofnodesbetweenthefixednodeandeachofthefiveunconstrainednodesin eachfossilcalibrationrun(seeabove),thensummingthemupoverallruns(seeTable3). CorrelationsignificancewastestedbyusingtheFteststatisticunderalinearregressionmodelinR (RDevelopmentCoreTeam,2004)andtheSpearman’sRankCorrelationtest. Becausethe72calibrationsetsdifferedintheirdegreeofcorrelationbetweenaverage squareddeviation sandnodaldistance(Figure2),wealsocalculatedthepercentdeviationof sfrom theregressionlinewithnodaldistanceforeachcalibrationset(seeTable3)andplottedtheresults asahistogram(Figure3).Thepercentdeviationof srepresentsacorrectedmeasureofinternal consistencyamongthecalibrationpointsofaset,termed“correctedcalibrationsetconsistency” fromnowon. Effectofcorrectedcalibrationsetconsistencyondatingprecision.Inordertocheck whetherthereisarelationshipbetweenthecorrectedcalibrationsetconsistencyandtheprecisionof thedatingestimatesforthenodeofinterest(nodeX;seeFigure1),weplottedthepercentstandard deviationfortheageofnodeXcalculatedforeachofthe72calibrationsets(seebelow)againstthe percentdeviationof sfromtheregressionlinewithnodaldistance(Table3;Figure4).Correlation significancewasthentestedwithanFteststatisticunderalinearregressionmodelinR,and additionallyverifiedbyusingSpearman’sRankCorrelationtest. Estimation of the age of node X by using all 72 calibration sets ToachieveanoverallestimatefortheageofnodeX(Figure1),weperformed72molecular datinganalyses,eachbyusingadifferentcalibrationset.Foreachanalysis,thedistributionof posteriorprobabilitieswasusedtocalculatethemeanageofnodeX,standarddeviationand95% credibilityintervals(representingthe2.5 th and97.5 th percentileoftheposteriordistribution;Table 3).Thetwochronogramsderivedfromthetwocalibrationsetsthatyieldedtheoldestandyoungest agesfornodeX,respectively,wereoverlaidoneachotherforcomparativepurposes(Figure5).To calculatetheoverallmeanfortheageofnodeX,adistributionwasdrawnfromthe1.8x10 5 Markovchainsamplesgeneratedduringthe72datinganalysesbyusingthestatisticspackageR(R DevelopmentCoreTeam,2004;Figure6).

149

Results Phylogenetic analyses Thedatasetsusedforthephylogeneticanalysescontainedatotalof5124alignedpositions orcharacters(chars)for74taxa,comprisingthreeplastidandtwonuclearpartitions: rbc L(1144 chars), ndh F(818chars), rpl 16intron(560chars),nr18S(1634chars),andnr26S(968chars;see Table1). TheoptimalmodelsofmolecularevolutionselectedbyMrAIC(Nylander,2005b)were: SYM+I+Gfor rbc L,GTR+Gfor ndh F,GTR+Gfor rpl 16intron,SYM+I+Gfornr18S,and GTR+I+Gfornr26S.Inallcases,theAICcandBICselectioncriteriaappliedinMrAIC(Nylander, 2005b)convergedonthesamemodels.Parametervaluesforthesemodelswereestimated simultaneouslyforeachpartitionduringtopologyandbranchlengthoptimizationinMrBayes. TheMrBayesmajorityruleconsensustreewithposteriormeanbranchlengths,clade credibilityvalues,andmaximumlikelihoodbootstrapsupportvaluesisshowninFigure1.Thetree topologyiscongruentwithpublishedphylogenies(Conti et al. ,2002;Rutschmann et al. ,2004; SchönenbergerandConti,2004;Renner,2004;Sytsma et al. ,2004;Wilson et al. ,2005).Thewell supportedSoutheastAsianCrypteroniaceaearesistertoacladeformedbytheCentral/South AmericanAlzateaceaeandtheAfricanRhynchocalycaceae,Oliniaceae,andPeneaceae. Memecylon isweaklysupportedassistertoMelastomataceae,corroboratingthephylogeniesofRenner(2004) andClausingandRenner(2001).WithinMelastomataceae,Melastomeae,Miconieae,and Merianieaearewellsupportedasmonophyletic.WithinMyrtaceaes.l.,Psiloxyloideaearesisterto therestoftheclade,referredtoasMyrtaceaes.s.(syn.Myrtoideae),inagreementwiththe phylogenyofWilson et al. (2005).Myrteae,Melaleuceae,Eucalypteae,andLeptospermeaeareall monophyletic,asinWilsonet al. (2005).ThepositionofVochysiaceaesistertoMyrtaceaes.l. confirmstheresultsofSytsma et al. (2004)andWilson et al. (2005).Therelationshipsamongthe sampledOnagraceaeareresolvedasinConti et al. (1993),Levin et al. (2003),andBerry et al. (2004). Evaluating rate heterogeneity TheLFχ2testappliedtothephylogramshowninFigure1(afterremovingtheoutgroups Duabanga and Cuphea )indicatedsignificantdeparturefromrateconstancy:LFχ2testvalue= 1385.8,df=71,p=7.27x10 243 .

150

Finding the most internally consistent calibration sets by using fossil cross- validation Theaveragesquareddeviations( svalues)calculatedinthefossilcrossvalidationanalyses rangedfrom0.061(withcalibrationset1)to0.265(withcalibrationsets50and66;seeTable3). Thelowest sscorewasgeneratedbythecalibrationsetwhereallsixfossilswereassignedtostem nodes,whilethehighest sscorewasproducedbyasetwithmostfossilsassignedtocrownnodes (Table3).Theuseofpenalizedlikelihood(implementedin r8s ;Sanderson,2002)insteadof Bayesiandating(implementedin multidivtime ;Kishino et al. ,2001;ThorneandKishino,2002)to estimatedivergencetimesdidnotaffectthe sscoresinanysignificantway(datanotshown). Therefore,therankingofthe sscoresremainedunchanged. Relationshipbetweenaveragesquareddeviationsandnodaldistance.Thelinear regressionbetweentheaveragesquareddeviations softhe72calibrationsetsandthedistancesin numberofnodesbetweenthecalibrationpointsofeachcalibrationsetproducedamultipleR 2of 0.8967(Figure2).TheFteststatisticshowedasignificantcorrelation(degreesoffreedom1and 70;p<2.2x10 16 ).ThisresultwasconfirmedbySpearman’sRankCorrelationtest(stem:rho= 0.9561722;p<2.2x10 16 ).Thethreecalibrationsetswiththelowest svalueswere1,9,and5 (Figure2,left),whilethethreesetswiththehighest svalueswere50,66,and58(Figure2,right). Thethreecalibrationsetsthatdeviatedthemostbelowtheregressionlinewere18,10,and11 (Figure2,circled),whereasthethreesetsthatdeviatedthemostabovethelinewere33,41,and25 (Figure2,circled;seeTable3). Thepercentdeviationof sfromtheregressionlinewithnodaldistancerangedfrom 27.35%,associatedwithcalibrationset18,to+18.45%,associatedwithcalibrationset33(see Table3andFigure3).Twelvecalibrationsetshadsvaluesatleast10%lowerthanexpectedbased ontheregressionlinewithnodaldistance(termed“calibrationsetsA”fromnowon;seeFigure3, leftside).Inall12sets,fossil1wasalwaysassignedtonode 1a ,andfossil6tonode 6b, whilethe nodalassignmentsoffossils3,4and5varied(seeTable4).Morespecifically,calibrationsets18, 10,and11(Figure2)showedthesvaluesthatdeviatedthemostbelowtheregressionline (27.35%;25.72%,and23.95%,respectively;Table3andFigure3).Basedontheseresults,we concludethatthesethreesetsarecharacterizedbythehighestlevelofinternalconsistencycorrected fornodaldistance(correctedcalibrationsetconsistency).Conversely,23calibrationsetswere associatedwith svaluesthatwereatleast10%higherthanexpectedfromtheregressionline (Figure3,rightside;named“calibrationsetsB”fromnowon).Morespecifically,calibrationsets 33,41,and25showedthe svaluesthatdeviatedthemostabovetheregressionline(18.45%; 20.39%;20.73%,respectively;Table5andFigure3).Basedontheseresults,weconcludethat

151 thesethreecalibrationsetsarecharacterizedbythelowestlevelofinternalconsistencycorrectedfor nodaldistance. Tosummarize,thecalibrationsetswiththelowestnegativevaluesofpercentdeviationof s fromtheregressionline(Figure2)representthesetswiththehighestlevelofcorrectedinternal consistencyamongcalibrationpoints(Figure3,left),whilethecalibrationsetswiththehighest positivevaluescorrespondtothesetswiththelowestlevelofcorrectedconsistency(Figure3, right). Effectofcorrectedcalibrationsetconsistencyondatingprecision.Thecorrelation betweenthecorrectedmeasureofcalibrationsetconsistency(definedaspercentdeviationof sfrom theregressionlinewithnodaldistance)andthepercentstandarddeviationfortheageofnodeX wassignificant(Figure4).LinearregressionresultedinamultipleR 2of0.5975,andtheFtest statisticshowedasignificantcorrelation(degreesoffreedom1and70;p<1.788x10 16 ).This resultwasconfirmedbySpearman’sRankCorrelationtest(stem:rho=0.721429;p<2.2x10 16 ). Thethreecalibrationsets18,10,and11producedlowerstandarddeviationsfortheageofnodeX thanthethreecalibrationsets33,41,and25(Table3andFigure4). Age of node X estimated by using all 72 calibration sets ThelowestmeanagefornodeX(72.8mys)wasobtainedwithcalibrationset1,thehighest (81.46mys)withcalibrationset66(Table3).Thechronogramscorrespondingtothesecalibration setsareshowninFigure5.Asexpected,calibrationsetswithmorestemassignments(forex.,1,25, and5)producedyoungeragesfornodeXthancalibrationsetswithmorecrownassignments(e.g., 70,72,and66;Table3),becausethedeeperacalibrationpointisplacedinaphylogeny,the youngeraretheageestimatesforallothernodes,andviceversa.Consequently,calibrationsetswith amixtureofstemandcrownassignments(e.g.,51and61withthreecrownandtwostem assignments;Table3)producedintermediateageestimatesfornodeX. Theoverallmeanforthe ageofnodeXbasedonall72datinganalyseswas77.74mys,withastandarddeviationof8.51mys anda95%credibilityintervalof60.89to94.21mys(Figure6).

152

Discussion Despitewellfoundedtheoreticalguidelines(Hennig,1969;DoyleandDonoghue,1993; Patterson,1981;Sanderson,1998;Magallón,2004),itisoftendifficultinpracticetodeterminethe exactphylogeneticplacementoffossilsonthebasisoftheirmorphologicaltraits(Doyleand Donoghue,1992;ManchesterandHermsen,2000).Theuncertaintyofnodalassignmentmightbe especiallysevereforthepaleobotanicalrecord,duetothegenerallylowerdegreeofmorphological integrationinplantsascomparedtoanimals(Hennig,1966;DoyleandDonohue,1987;Donoghue et al. ,1989;DoyleandDonoghue,1992).Whileexhaustivecladisticmorphologicalanalysesof extinctandextanttaxashouldallowformorereliableattachmentoffossilstospecificnodes,such analysesarerarelyavailable(Donoghue et al. ,1989;DoyleandDonoghue,1993;Hermsen et al. , 2003).Inmostcases,practitionersmustdependonpublisheddescriptionsofthemorphological featuresofafossil,whichareoftenvagueandcontradictingwhenitcomestoplacingitina phylogeny(Hickey,1977;CollinsonandPingen,1992;Pigg et al. ,1993;Rozefelds,1996; ManchesterandHermsen,2000).Therefore,acarefulreviewofthepaleontologicalliteraturefora givengroupoftaxamightleadtomultiplenodalassignmentsofaselectedfossilthatcanbeequally defendedonthebasisofmorphology. Thepossibilityofattachingfossilstomultiplenodesalsodependsonthedensityoftaxon samplingintherelevantphylogeneticneighborhood.Inmanydatedchronograms,onlyonepossible assignmentexists,becauseonlyonetaxonwassampledfromthepertinentgroup(e.g.,the assignmentoffossilMelastomataceaeleavesinConti et al. ,2002,ortheassignmentoffossil EucalyptoidfruitsinSytsma et al. ,2004;seealsoSandersonandDoyle,2001).Whileunequivocal, thisprocedureishardlysatisfactory.Inthestudypresentedhere,wedesignedtaxonsamplingin ordertoallowformultiplenodalassignmentpossibilities.Infact,fiveoutofthesixselected Myrtalesfossils(Table2)couldbejustifiablyassignedtomorethanonenode,basedonthe morphologicaltraitsdiscussedinthepaleobotanicalliterature(Hickey,1977;CollinsonandPingen, 1992;Pigg et al. ,1993;Rozefelds,1996).Intotal,72differentassignmentcombinations (calibrationsets)werepossible,eachcomprisingsixcalibrationpoints(Table3). Finding the most internally consistent calibration sets by using fossil cross- validation InthisstudyofCrypteroniaceaeandrelatedtaxa,weusethefossilcrossvalidation procedureofNearandSanderson(2004)inanovelwaytoassessuncertaintyinfossilnodal assignment.Morespecifically,wetrytoidentifythemostcongruentcalibrationsetsbycomparing

153 theinternalconsistenciesofall72calibrationsetsgeneratedfromalternativeplacementsofsix fossils(Table3).Theprocedurerevealedlargedifferencesamongtheaveragesquareddeviation s associatedwiththe72calibrationsets,rangingfroman svalueof0.061forset1toan svalueof 0.265forset66(Table3;Figure2).Therefore,onemightconcludethattheassignmentoffossils1, 2,3,4,5,and6tonodes 1a, 2, 3a, 4a, 5a ,and 6a ,respectively,producedthemostinternally consistentcalibrationset,whiletheassignmentofthesamefossilstonodes 1c, 2, 3c, 4b, 5b, and 6b ,respectively,themostinconsistentone.However,incalibrationset1allthefossilsareassigned totheirstemnodes,whileincalibrationset66allthefossilsareassignedtotheircrownnodes, exceptforfossil2,forwhichonlyonenodalassignmentispossible(Table3).Itisthusreasonable toaskwhetherthe svaluesmightbeinfluencedbythenodaldistanceamongcalibrationpoints. Indeed,asignificantpositivecorrelationbetweentheaveragesquareddeviation sandnodal distanceswasobservedforthecalibrationsets (Figure2). Thepositivecorrelationbetween svaluesandnodaldistancesfoundinourstudydiffers fromtheresultsdescribedinNear et al. (2005a).Intheirstudyofcentrarchidfishes,theauthors plottedthepercentdeviationbetweenmolecularandfossilagesinasinglecalibrationsetversusthe numberofnodesseparatingallpossiblepairsofcalibrationpointsintheset.Theirresultsshowed nocorrelationbetweenpercentdeviationsandnodaldistances,leadingthemtoconcludethatthe proximityamongcalibrationpointsinaphylogenyhasnoeffectontheresultsoffossilcross validation.Thekeydifferencesbetweentheirandourresultsmaydependinpartonmethodological details(i.e.,thedifferentproceduresusedtocalculatenodaldistancesinthetwostudies),butalso onthefactthat,asNear et al. (2005a)remarked,theirfossilsweremoreorlessevenlydistributed acrossthephylogeny,whileinourcasefossilsareconcentratedinthreeclades(Melastomataceae, Myrtaceaes.l.,Onagraceae;Figure1). Howcanwethenexplainthecorrelationbetween svaluesandnodaldistancefoundinour study(Figure2)?Itisimportanttorememberthatthe svaluesareessentiallyderivedfromthe differencebetweentheestimatedandthefossilagesofthecalibrationpointsinaset.Therefore,one possibleinterpretationoftheobservedcorrelationmightrelatetotheproceduresusedfornodalage estimation.Morespecifically,theratesmoothingmethodsemployedinourdatinganalyses,based onbothBayesian(Thorne et al. ,1998)andpenalizedlikelihood(Sanderson,2002)approaches, allowratestochangebetweenancestraldescendantbranches,thuscreatingestimationerrorsthat dependonthenumberofnodesinvolvedinthesmoothingprocedure.Consequently,thegreaterthe nodaldistanceamongcalibrationpoints,thegreaterthepossibledifferencebetweentheestimated andthefossilagesofthecalibrationpointsinaset.Becausegreaternodaldistancesareassociated withsetswherefossilsaremostlyassignedtothecorrespondingcrownnodes(seeFigure1and Table3),thiswouldexplainwhysuchsetsarecharacterizedbygreater svalues,asinthecaseofset

154

66(Figure2).Conversely,calibrationsetswheremostfossilsareattachedtothestemnodes,asin thecaseofset1,areassociatedwithsmallernodaldistancesamongcalibrationpoints,hencewith smaller svalues(Figure2;Table3).Thus,ourresultssuggestthatthesmaller svaluesassociated withcalibrationsetswheremostfossilsareassignedtostemnodesdonotinherentlyreflectahigher levelofconsistencyamongthecalibrationpoints,buttheeffectsofnodaldistance.Therefore, s valuesappeartorepresentabiasedestimateofinternalconsistency. Inordertoidentifythecalibrationsetsleastandmostaffectedbynodaldistancebias,we rankedallsetsaccordingtothepercentdeviationof sfromtheregressionlinewithnodaldistance (Figure3).Thisallowedustorecognizecalibrationssets18,10and11asthoseassociatedwiththe highestlevelofinternalconsistencycorrectedfornodaldistance,andsets33,41,and25asthose withthelowestlevelofcorrectedinternalconsistency(Table5).Importantly,themostconsistent calibrationsetsalsoproducedthelowestpercentstandarddeviationsfortheestimatedagesofnode X,andtheleastconsistentsetsthehighestpercentstandarddeviations(Figure4).Thispositive correlationmightbeexplainedbytheobservationthatinconsistentcalibrationpointsinaset contradicteachotherintheirstatementsaboutthetimingofevolutionaryevents,thusproducing conflictingestimatesfortheage(s)ofthenode(s)ofinterest,hencehigherassociatederrors(Near andSanderson,2004;Near et al. ,2005b).Conversely,calibrationpointsinsetswithhighlevelsof correctedinternalconsistencyproduceconvergentestimatesfortheage(s)ofthenode(s)ofinterest, hencelowerassociatederrors. The12calibrationsetsassociatedwiththehighestlevelofcorrectedinternalconsistency (Figure3,leftside)sharesomecommonproperties.Inall,thetemporalinformationprovidedby fossil1ismostconsistentwiththatoftheothercalibrationpointsifitisassignedtonode 1a (Table 4andFigure1).ThisresultsupportstheinterpretationbyRenner et al. (2001)andSytsma et al. (2004)thatthefossilleavesfromtheEarlyEoceneofNorthDakota(Hickey,1977)shouldbe assignedtothenoderepresentingtheentireMelastomataceaecrowngroup,becauseofthe acrodromousleafvenation.Ontheotherhand,fossil6,representingthepollen Diporites aspis from theEarlyOligoceneofOtwayBasin(Australia;Berry et al. ,1990;Table2),ismostconsistentwith theothercalibrationpointsifitisassignedtonode 6b ,representingthe Fuchsia crowngroup(Table 4andFigure1).Thisconclusioniscongruentwiththeresultsofmoleculardatinganalysesthat producedanageintervalforthenodecorrespondingto 6b compatiblewiththeageof Diporites aspis (Berry et al. ,2004;Sytsma et al. ,2004). NoclearpatternemergesfromcomparisonsamongcalibrationsetsAfortheassignmentof fossils3,4,and5(Table4).However,inthecalibrationsetwiththehighestlevelofcorrected internalconsistency(18;seeTable5),thethreefossilsareallassignedtotheircrownpositions (nodes 3c , 4b ,and 5b ;Figure1).Basedonthisevidence,thepollen Myrtaceidites lisamae fromthe

155

SantonianofGabon(fossil3)ismostconsistentlyattributedtoMyrtaceaes.s.(node 3c ),as proposedbySytsma et al. (2004).AlsoinagreementwithSytsma et al. (2004),thefruitsandseeds of Paleomyrtinaea fromthelatestPaleoceneofNorthDakota(fossil4)aremostconsistentlyplaced withthecrownradiationofthetribeMyrteae(Myrtoideaes.s.;node 4b ).Finally,theEucalyptlike fruitsfromtheMiddleEoceneofSouthEasternQueensland(fossil5)arebestassignedtothenode representingthemostrecentcommonancestorof Eucalyptus and Angophora (node 5b ),as suggestedbyRozefelds(1996). Age of node X estimated by using all 72 calibration sets TheoverallmeanagefornodeXestimatedfromanalysesperformedwithall72calibration sets was77.74mys,withacredibilityintervalof60.89to94.21mys(seeFigure6).Byusingall possiblecalibrationsetsinthedatinganalyses,allknownuncertaintiesofnodalassignmentare incorporatedinthefinalageestimateforthenodeofinterest,providingincreasedconfidencethat the“real”ageofthenodeiscontainedintheestimate.ItisworthnoticingthattheagesofnodeX (79.70mys;79.14mys,and78.15mys;Table5)estimatedfromthethreecalibrationsets(18,10, 11;respectively)withthehighestlevelofcorrectedinternalconsistencyfallwithinthecredibility intervaloftheoverallmeanage.Therefore,itmightbesuggestedthatthe“overallmeanapproach” increasestheaccuracyoftheestimate,lendingfurthersupporttotheproponentsofmulticalibration (Lee,1999;ConroyandvanTuinen,2003;ReiszandMüller,2004). Atthesametime,however,the“overallmeanapproach”reducestheprecisionofthe estimate.Infact,theoverallmeanageisassociatedwithahigherstandarddeviation(8.51mys) thanthoseoftheagesestimatedbyusingthethreecalibrationsetswiththehighestcorrected calibrationsetconsistency(18:7.55mys;10:7.34mys;11:7.49mys;Table5).Thisobservation mightagainbeexplainedbythefactthatallthebiasesintroducedbyconflictingnodalassignments ofthefossilsinthe“overallmeanapproach”contributetotheerrorsassociatedwiththeestimated ages(ConroyandvanTuinen,2003;Conti et al. ,2004;ReiszandMüller,2004;MüllerandReisz, 2005). Allestimatesgeneratedinthisstudy(Table3)forthemeanageofthesplitbetweenthe SoutheastAsianCrypteroniaceaeandtheirWestGondwanansistercladearecontainedwithinthe intervalrangingfrom81.5to72.8mys(Figure5).Thisrangeoverlapsalmostentirelywiththe resultsofpublishedageestimatesforthesamenode(62to109mys,Rutschmann et al. ,2004;57to 79mys,Moyle,2004),eventhoughthementionedstudiesdifferedfromoursbothingene/taxon samplingandcalibrationstrategies.Despitethesedifferences,thebiogeographicscenariomost compatiblewiththetimeframescalculatedfornodeXisthattheCrypteroniaceaestemlineage dispersedfromAfricatotheDeccanplateasitdriftednorthwardduringtheLateCretaceous 156

(approximately125to84mysago;PlummerandBelle,1995;McLoughlin,2001).Thenewly obtainedageestimates,then,furthersupportIndia’slikelyroleinexpandingtherangeof CrypteroniaceaefromAfricatoAsiaduringitsnorthboundmovementalongtheAfricancoast, corroboratingtheoutofIndiahypothesisfortheoriginofCrypteroniaceae(Conti et al. ,2002; Conti et al. ,2004;Moyle,2004;Rutschmann et al. ,2004;seealsoLieberman,2003). Tosummarize,ourstudyillustratestwomainapproachestotheproblemofnodalfossil assignmentwhenequallyjustifiablealternativesexist.Ontheonehand,onemightuseamodified versionofthefossilcrossvalidationproceduretoidentifythecalibrationsetswiththehighestlevel ofinternalconsistency,correctedfornodaldistancebias,andthenusethesesetstoestimatethe agesofthenodesofinterest.Suchsetsshouldgeneratelowerstandarddeviationsassociatedwith nodalageestimatesthansetscharacterizedbylowerlevelsofcorrectconsistency.Ontheother hand,estimatingtheoverallmeanagesforthenodesofinterestbyusingallpossiblecalibrationsets mightrepresentamorecautiousapproach. Whilewehaveattemptedtosuggestpracticalprocedures,basedonavailablemethodology (i.e.,fossilcrossvalidation;NearandSanderson,2004;Near et al. ,2005b),toaddressthedifficult problemoffossilnodalassignment,wealsowishtoemphasizethatsuchmeasurescanbynomeans replacecarefulreview,selection,andevaluationofthefossilrecordusedforcalibration.Tofurther improveconfidenceintheassignmentofselectedfossilstospecificnodesinaphylogeny,amulti prongedapproachwillbenecessary,includingcomprehensivemorphologicalcladisticanalysesof extinctandextanttaxa(Donoghue et al. ,1989;Doyle,2000;Eklund et al. ,2004),quantitative evaluationofthegapbetweenthetimeoflineagedivergenceandthetimeoffirstappearanceof synapomorphiesinthefossilrecord(FooteandSepkoski,1999;Tavaré et al. ,2002),improved paleontologicaldatingoffossils,andevaluationofthepositionaleffectsofcalibrationnodesin relationtothenodesofinterest(SmithandPeterson,2002;ConroyandvanTuinen,2003;Porter et al. ,2005).

157

References Alroy,J.1999.ThefossilrecordofNorthAmericanmammals:evidenceforaPaleocene evolutionaryradiation. Systematic Biology 48 :107118.

ArisBrosou,S.,andZ.Yang.2002.Effectsofmodelsofrateevolutiononestimationofdivergence dateswithspecialreferencetothemetazoan18SribosomalRNAphylogeny. Systematic Biology 51 :703714.

Ashton,P.S.,andC.V.S.Gunatilleke.1987.NewlightontheplantgeographyofCeylon:I. Historicalplantgeography. Journal of Biogeography 14 :249285.

Baum,D.A.,R.L.Small,andJ.F.Wendel.1998.BiogeographyandfloralevolutionofBaobabs (Adansonia ,Bombacaceae)asinferredfrommultipledatasets. Systematic Biology 47 :181207.

Bell,C.D.,andM.J.Donoghue.2005.DatingtheDipsacales:Comparingmodels,genes,and evolutionaryimplications. American Journal of Botany 92 :284296.

Benton,M.J.,andF.J.Ayala.2003.Datingthetreeoflife. Science 300 :16981700.

Berry,P.E.,W.J.Hahn,K.J.Sytsma,J.C.Hall,andA.Mast.2004.Phylogeneticrelationships andbiogeographyof Fuchsia (Onagraceae)basedonnoncodingnuclearandchloroplastDNAdata. American Journal of Botany 94 :601614.

Berry,P.E.,J.J.Skvarla,A.D.Partridge,andM.K.Macphail.1990. Fuchsia pollenfromthe TertiaryofAustralia. Australian Systematic Botany 3:739744.

Boltenhagen,E.1976.PollensetsporesSénoniennesduGabon. Cahiers de Micropaléontologie 17 :121.

Bossuyt,F.,andM.C.Milinkovitch.2001.AmphibiansasindicatorsofearlyTertiary"outof India"dispersalofVertebrates. Science 292 :9395.

Brochu,C.A.2004.Calibrationageandquartetdivergencedateestimation. Evolution 58 :1375 1382.

Bult,C.,M.Källersjö,andY.Suh.1992.Amplificationandsequencingof16/18SrDNAfromgel purifiedtotalplantDNA. Plant Molecular Biology Reporter 10 :273284.

Christophel,D.C.,L.J.Scriven,andD.R.Greenwood.1992.AnEocenemegafossilflorafrom NellyCreek,SouthAustralia. Transactions of the Royal Society of South Australia116 :6576.

Clausing,G.,andS.S.Renner.2001.MolecularphylogeneticsofMelastomataceaeand Memecylaceae:implicationsforcharacterevolution. American Journal of Botany 88 :486498.

Collinson,M.E.,andM.Pingen.1992.SeedsoftheMelastomataceaefromtheMioceneofCentral Europe.Pp.129139 in J.KovarEder,ed.PalaeovegetationaldevelopmentinEurope.Museumof NaturalHistory,Vienna,Austria.

Conroy,C.J.,andM.vanTuinen.2003.Extractingtimefromphylogenies:positiveinterplay betweenfossilandgeneticdata. Journal of Mammalogy 84 :444455.

158

Conti,E.,T.Eriksson,J.Schönenberger,K.J.Sytsma,andD.A.Baum.2002.EarlyTertiaryout ofIndiadispersalofCrypteroniaceae:evidencefromphylogenyandmoleculardating. Evolution 56 :19311942.

Conti,E.,A.Fischbach,andK.J.Sytsma.1993.TribalrelationshipsinOnagraceae:implications from rbc Lsequencedata. Annals of the Missouri Botanical Garden 80 :672685.

Conti,E.,A.Litt,andK.J.Sytsma.1996.CircumscriptionofMyrtalesandtheirrelationsshipsto otherRosids:evidencefrom rbc Lsequencedata. American Journal of Botany 83 :221233.

Conti,E.,A.Litt,P.G.Wilson,S.A.Graham,B.G.Briggs,L.A.S.Johnson,andK.J.Sytsma. 1997.InterfamilialrelationshipsinMyrtales:molecularphylogenyandpatternsofmorphological Evolution. Systematic Botany 22 :629647.

Conti,E.,F.Rutschmann,T.Eriksson,K.J.Sytsma,andD.A.Baum.2004.Calibrationof molecularclocksandthebiogeographichistoryofCrypteroniaceae:AreplytoMoyle. Evolution 58 :18741876.

Cowles,M.K.,andB.P.Carlin.1996.MarkovchainMonteCarloconvergencediagnosis:A comparativereview. Journal of the American Statistical Association 91 :883904.

Crane,P.R.,S.R.Manchester,andD.L.Dilcher.1990.Apreliminarysurveyoffossilleavesand wellpreservedreproductivestucturesfromtheSentinelButteFormation(Paleocene)nearAlmont, NorthDakota. Fieldiana Geology 1418 :163.

Daghlian,C.P.,J.J.Skvarla,D.T.Pocknall,andP.H.Raven.1985. Fuchsia pollenfromtheearly MioceneofNewZealand. American Journal of Botany 72 :10391047.

Dahlgren,R.,andR.F.Thorne.1984.TheorderMyrtales:circumscription,variation,and relationships. Annals of the Missouri Botanical Garden 71 :633699.

Dahlgren,R.,andA.E.VanWyk.1988.Structuresandrelationshipsoffamiliesendemictoor centeredinSouthernAfrica. Monographs in Systematic Botany from the Missouri Botanical Garden 25 :194.

Darwin,C.1859.Ontheoriginofspeciesbymeansofnaturalselectionorthepreservationof favouredracesinthestruggleforlife.JohnMurray,London. deQueiroz,K.,andJ.Gauthier.1990.Phylogenyasacentralprincipleintaxonomy:phylogenetic definitionsoftaxonnames. Systematic Zoology 39 :307322.

Donoghue,M.J.,J.A.Doyle,J.Gauthier,A.G.Kluge,andT.Rowe.1989.Theimportanceof fossilsinphylogenyreconstruction. Annual Reviews of Ecology and Systematics 20 :431460.

Dorofeev,P.I.1960.OntheTertiaryfloraofBelorussia. Botanichesky Zhurnal SSSR 45 :14181434 (inRussian).

Dorofeev,P.I.1963.TheTertiaryflorasofwesternSiberia.IzdatelstvoAkademiiNaukSSSR. MoskvaLeningrad,Russia(inRussian).

Dorofeev,P.I.1988.MioceneflorasoftheTambovdistrict.AkademiiNauk,Leningrad,Russia(in Russian,posthumouswork,F.Y.Velichkevich,ed.).

159

Doyle,J.A.2000.Paleobotany,relationships,andgeographichistoryofWinteraceae. Annals of the Missouri Botanical Garden 87 :303316.

Doyle,J.A.,andM.J.Donoghue.1987.Theimportanceoffossilsinelucidatingseedplant phylogenyandmacroevolution. Review of Paleobotany and Palynology 50 :6395.

Doyle,J.A.,andM.J.Donoghue.1992.Fossilsandseedplantphylogenyreanalyzed. Brittonia 44 :89106.

Doyle,J.A.,andM.J.Donoghue.1993.Phylogeniesandangiospermdiversification. Paleobiology 19 :141167.

Drummond,A.J.,S.Y.W.Ho,M.J.Phillips,andA.Rambaut.2006.Relaxedphylogeneticsand datingwithconfidence. PLoS Biology 4:e88.

Dyjor,S.,Z.Kvacek,M.LanuckaSrodoniowa,W.Pyszynski,A.Sadowska,andE.Zastawniak. 1992.TheYoungerTertiarydepositsintheGozdnicaregion(SWPoland)inthelightofrecent palaeobotanicalresearch. Polish Botanical Studies 3:1129.

Eklund,H.,J.A.Doyle,andP.S.Herendeen.2004.Morphologicalphylogeneticanalysisofliving andfossilChloranthaceae. International Journal of Plant Sciences 165 :107151.

FaironDemaret,M.1994[1996].LesfruitsetgrainesduMiocenedeBioul(EntreSamreet Meuse,Belgique).Etudequalitative,quantitativeetconsiderationspaleoécologiques. Annales de la Societé Géologique de Belgique 117 :277309.

Felsenstein,J.2004.PHYLIP(PhylogenyInferencePackage),version3.63.Departmentof Genetics,UniversityofWashington,Seattle,WA.

Foote,M.,J.P.Hunter,C.M.Janis,andJ.J.SepkoskiJr.1999.Evolutionaryandpreservational constraintsonoriginsofbiologicgroups:divergencetimesofEutherianmammals. Science 283 :13101314.

Foote,M.,andJ.J.SepkoskiJr.1999.Absolutemeasuresofthecompletenessofthefossilrecord. Nature 398 :415417.

Graham,S.A.1984.Alzateaceae,anewfamilyofMyrtalesintheAmericanTropics. Annals of the Missouri Botanical Garden 71 :757779.

Graur,D.,andW.Martin.2004.Readingtheentrailsofchickens:moleculartimescalesofevolution andtheillusionofprecision. TRENDS in Genetics 20 :8086.

Guindon,S.,andO.Gascuel.2003.Asimple,fast,andaccuratealgorithmtoestimatelarge phylogeniesbymaximumlikelihood. Systematic Biology 52 :696704.

Hedges,S.B.,andS.Kumar.2003.Genomicclocksandevolutionarytimescales. TRENDS in Genetics 19 :200206.

Hennig,W.1966.PhylogeneticSystematics.UniversityIllinoisPress,Urbana,Illinois.

Hennig,W.1969.DieStammesgeschichtederInsekten.Kramer,Frankfurt,Germany.

Hermsen,E.J.,M.A.Gandolfo,K.C.Nixon,andW.L.Crepet.2003. Divisestylus gen.nov.(aff. Iteaceae),afossilsaxifragefromtheLateCretaceousofNewJersey,USA. American Journal of Botany 90 :13731388. 160

Herngreen,G.F.W.1975.AnUpperSenonianpollenassemblageofborehole3PIA10AL,State ofAlagoas,Brazil. Pollen Spores 17 :93140.

Hickey,L.J.1977.StratigraphyandpaleobotanyoftheGoldenValleyformation(EarlyTertiary) ofwesternNorthDakota.Memoir150.GeologicalSocietyofAmerica,Boulder,Colorado.

Ho,S.Y.W.,andG.Larson.2006.Molecularclocks:whenthetimesareachangin'. TRENDS in Genetics 22 :7983.

Huelsenbeck,J.P.,andF.Ronquist.2001.MrBayes:Bayesianinferenceofphylogeny. Bioinformatics 17 :754.

Johnson,L.A.S.,andB.G.Briggs.1984.MyrtalesandMyrtaceaeaphylogeneticanalysis. Annals of the Missouri Botanical Garden 71 :700756.

Kishino,H.,J.L.Thorne,andW.J.Bruno.2001.Performanceofadivergencetimeestimation methodunderaprobabilisticmodelofrateevolution. Molecular Biology and Evolution 18 :352361.

Kuzoff,R.K.,J.A.Sweere,D.E.Soltis,P.S.Soltis,andE.A.Zimmer.1998.Thephylogenetic potentialofentire26SrDNAsequencesinplants. Molecular Biology and Evolution 15 :251263.

Langley,C.H.,andW.Fitch.1974.Anestimationoftheconstancyoftherateofmolecular evolution. Journal of Molecular Evolution 3:161177.

Lantern,L.R.,andW.P.Sharp.1989.SeedcoatcharactersofsomeAmericanMyrtinae (Myrtaceae): Psidium andrelatedgenera. Systematic Botany 14 :370376.

Lantern,L.R.,andD.Stevenson.1986.VariabilityofembryosinsubtribeMyrtinae(Myrtaceae). Systematic Botany 11 :155162.

Lee,M.S.Y.1999.MolecularclockcalibrationsandMetazoandivergencedates. Journal of Molecular Evolution 49 :385391.

Levin,R.A.,W.L.Wagner,P.C.Hoch,M.Nepokroff,J.C.Pires,E.A.Zimmer,andK.J. Sytsma.2003.FamilylevelrelationshipsofOnagraceaebasedonchloroplast rbc Land ndh Fdata. American Journal of Botany 90 :107115.

Lieberman,B.S.2003.Unifyingtheoryandmethodologyinbiogegraphy. Journal of Evolutionary Biology 33 :125.

Macey,J.R.,J.A.SchulteII,A.Larson,N.B.Ananjeva,Y.Wang,R.Rethiyagoda,N.Rastegar Pouyani,andT.J.Papenfuss.2000.EvaluatingtransTethysmigration:anexampleusingacrodont lizardphylogenetics. Systematic Biology 49 :233256.

Maddison,P.G.,andD.R.Maddison.2000.MacClade4:analysisofphylogenyandcharacter evolution.Sinauer,Sunderland,MA.

Magallón,S.A.2004.Datinglineages:molecularandpaleontologicalapproachestothetemporal frameworkofclades. International Journal of Plant Sciences 165 :721.

Magallón,S.A.,andM.J.Sanderson.2001.AbsolutediversificationratesinAngiospermclades. Evolution 55 :17621780.

Magallón,S.A.,andM.J.Sanderson.2005.Angiospermdivergencetimes:theeffectofgenes, codonpositions,andtimeconstraints. Evolution 59 :16531670. 161

Mai,D.H.1995.TertiäreVegetationsgeschichteEuropas.G.Fischer,Jena,Germany.

Mai,D.H.2000.DieuntermiozänenFlorenausderSprembergerFolgeunddemII.Flözhorizont derLausitz.TeilIII.DialypetalaeundSympetalae. Palaeontographica Abteilung B 253 :1106.

Manchester,S.R.1999.BiogeographicalrelationshipsofNorthAmericanTertiaryfloras. Annals of the Missouri Botanical Garden 86 :472522.

Manchester,S.R.,andE.J.Hermsen.2000.Flowers,fruits,seeds,andpollenof Landeenia gen. Nov.,anextinctsapindaleangenusfromtheEoceneofWyoming. American Journal of Botany 87 :19091914.

Marshall,C.R.1990a.Confidenceintervalsonstratigraphicranges. Paleobiology 16 :110.

Marshall,C.R.1990b.Thefossilrecordandestimatingdivergencetimesbetweenlineages maximumdivergencetimesandtheimportanceofrelieablephylogenies. Journal of Molecular Evolution 30 :400408.

McKenna,M.C.C.1973.Sweepstakes,filters,corridors,Noah'sarks,andbeachedVikingfuneral shipsinpaleogeography.Pp.291304 in D.H.TarlingandS.K.Runcorn,eds.Implicationsof ContinentalDrifttotheEarthSciences.AcademicPress,London.

McLaughlin,S.2001.ThebreakuphistoryofGondwanaanditsimpactonpreCenozoicfloristic provincialism. Australian Journal of Botany 48 :271300.

Mentink,H.,andP.Baas.1992.LeafanatomyoftheMelastomataceae,Memecylaceae,and Crypteroniaceae. Blumea 37 :189225.

Morley,R.J.2000.Originandevolutionoftropicalrainforests.JohnWiley&SonsLtd., Chichester,England.

Morley,R.J.,andC.W.Dick.2003.Missingfossils,molecularclocksandtheoriginofthe Melastomataceae. American Journal of Botany 90 :16381645.

Moyle,R.G.2004.Calibrationofmolecularclocksandthebiogeographichistoryof Crypteroniaceae. Evolution 58 :18711873.

Muller,J.1968.PalynologyofthePedawanandPlateauSandstoneFormations(Creataceous Eocene)inSarawak,Malaysia. Micropaleontology 14 :137.

Muller,J.1981.Fossilpollenrecordsofextantangiosperms. Botanical Reviews 47 :1142.

Müller,J.,andR.R.Reisz.2005.Fourwellconstrainedcalibrationpointsfromthevertebratefossil recordformolecularclockestimates. BioEssays 27 :10691075.

Near,T.J.,D.I.Bolnick,andP.C.Wainwright.2005a.Fossilcalibrationsandmolecular divergencetimeestimatesincentrarchidfishes(Teleostei:Centrarchidae). Evolution 59 :17681782.

Near,T.J.,P.A.Meylan,andH.B.Shaffer.2005b.Assessingconcordanceoffossilcalibration pointsinmolecularclockstudies:anexampleusingturtles. American Naturalist 165 :137146.

Near,T.J.,andM.J.Sanderson.2004.Assessingthequalityofmoleculardivergencetime estimatesbyfossilcalibrationsandfossilbasedmodelselection. Philosophical Transactions of the Royal Society of London B: Biological Sciences 359 :14771483.

162

Nylander,J.2005a.BootPHYML3.4.SchoolofComputationalScience(SCS),FloridaState University,Tallahassee,Florida.

Nylander,J.2005b.MrAIC1.4.SchoolofComputationalScience(SCS),FloridaStateUniversity, Tallahassee,Florida.

Olmstead,R.G.,andJ.A.Sweere.1994.Combiningdatainphylogeneticsystematics:anempirical approachusingthreemoleculardatasetsintheSolanaceae. Systematic Biology 43 :467481.

Patterson,C.1981.Significanceoffossilsindeterminingevolutionaryrelationships. Annual Reviews of Ecology and Systematics 12 :195223.

Penny,D.2005.Relativityformolecularclocks. Nature 436 :183184.

Pereira,J.T.1996.Crypteroniaceae.Pp.135149 in E.Soepadmo,K.M.WongandL.G.Saw,eds. TreefloraofSabahandSarawak,Volume2.ForestResearchInstituteMalaysia,SabahForestry Department,andSarawakForestryDepartment,KualaLumpur,Malaysia.

Pereira,J.T.,andK.M.Wong.1995.Threenewspeciesof Crypteronia (Crypteroniaceae)from Borneo. Sandakania 6:4153.

Pigg,K.B.,R.A.Stockey,andS.L.Maxwell.1993. Paleomyrtinaea ,anewgenusof permineralizedmyrtaceousfruitsandseedsfromtheEoceneofBritishColumbiaandPaleoceneof NorthDakota. Canadian Journal of Botany 71 :19.

Plummer,P.S.,andE.R.Belle.1995.MesozoictectonostratigraphicevolutionoftheSeychelles microcontinent. Sedimentary Geology 96 :7391.

Porter,M.L.,M.PérezLosada,andK.A.Crandall.2005.Modelbasedmultilocusestimationof decapodphylogenyanddivergencetimes. Molecular Phylogenetics and Evolution 37 :355369.

RDevelopmentCoreTeam.2004.R:Alanguageandenvironmentforstatisticalcomputing.R FoundationforStatisticalComputing,Vienna,Austria.Availablefrom http://www.Rproject.org .

Rambaut,A.,andA.J.Drummond.2005.Tracer1.3.Aprogramforanalyzingresultsfrom BayesianMCMCprogramssuchasBEAST&MrBayes.DepartmentofZoology,Universityof Oxford,Oxford,UK.Availablefrom http://evolve.zoo.ox.ac.uk/software.html .

Reisz,R.R.,andJ.Müller.2004.Moleculartimescalesandthefossilrecord:apaleontological perspective. TRENDS in Genetics 20 :237241.

Renner,S.S.2004.Bayesiananalysisofcombinedchloroplastloci,usingmultiplecalibrations, supportstherecentarrivalofMelastomataceaeinAfricaandMadagascar. American Journal of Botany 91 :14271435.

Renner,S.S.2005.Relaxedmolecularclocksfordatinghistoricalplantdispersalevents. TRENDS in Plant Science 10 :550558.

Renner,S.S.,G.Clausing,andK.Meyer.2001.HistoricalbiogeographyofMelastomataceae:the rolesofTertiarymigrationandlongdistancedispersal. American Journal of Botany 88 :12901300.

Renner,S.S.,andK.Meyer.2001.Melastomeaecomefullcircle:biogeographicreconstructionand molecularclockdating. Evolution 55 :13151324.

163

Ronquist,F.,andJ.P.Huelsenbeck.2003.MrBayes3:Bayesianphylogeneticinferenceunder mixedmodels. Bioinformatics 19 :15721574.

Rozefelds,A.C.1996. Eucalyptus phylogenyandhistory:abriefsummary. Tasforests 8:1526.

Rutschmann,F.2005.Bayesianmoleculardatingusingpaml/multidivtime.Astepbystepmanual. Version1.5(July2005).InstituteofSystematicBotany,UniversityofZurich,Zurich,Switzerland. Availablefrom http://www.plant.ch .

Rutschmann,F.2006.Moleculardatingofphylogenetictrees:Abriefreviewofcurrentmethods thatestimatedivergencetimes. Diversity and Distributions 12 :3548.

Rutschmann,F.,T.Eriksson,J.Schönenberger,andE.Conti.2004.DidCrypteroniaceaereally disperseoutofIndia?Moleculardatingevidencefrom rbc L, ndh F,and rpl 16sequences. International Journal of Plant Sciences 165 :6983.

Sanderson,M.J.1997.Anonparametericapproachtoestimatingdivergencetimesintheabsenceof rateconstancy. Molecular Biology and Evolution 14 :12181231.

Sanderson,M.J.1998.Estimatingrateandtimeinmolecularphylogenies:beyondthemolecular clock?Pp.242264 in D.E.Soltis,P.S.SoltisandJ.J.Doyle,eds.Molecularsystematicsofplants II;DNAsequencing.KluwerAcademicPublishers,Norwell,MA.

Sanderson,M.J.2002.Estimatingabsoluteratesofmolecularevolutionanddivergencetimes:a PenalizedLikelihoodapproach. Molecular Biology and Evolution 19 :101109.

Sanderson,M.J.2003.r8s:inferringabsoluteratesofmolecularevolutionanddivergencetimesin theabsenceofamolecularclock. Bioinformatics 19 :301302.

Sanderson,M.J.,J.L.Thorne,N.Wikström,andK.Bremer.2004.Molecularevidenceonplant divergencetimes. American Journal of Botany 91 :16561665.

Schönenberger,J.,andE.Conti.2003.MolecularphylogenyandfloralevolutionofPenaeaceae, Oliniaceae,Rhynchocalycaceae,andAlzateaceae(Myrtales). American Journal of Botany 90 :293 309.

Sebola,R.J.,andK.Balkwill.1999.Resurrectionoftwopreviouslyconfusedspecies, Olinia capensis (Jacq.)Klotzschand O. micrantha Decne.(Oliniaceae). South African Journal of Botany 65 :97103.

Smith,A.B.,andJ.J.Peterson.2002.Datingthetimeoforiginofmajorclades:molecularclocks andthefossilrecord. Annual Review of Earth and Planetary Sciences 30 :6588.

Soltis,P.S.,D.E.Soltis,V.Savolainen,P.R.Crane,andT.G.Barraclough.2002.Rate heterogeneityamonglineagesoftracheophytes:Integrationofmolecularandfossildataand evidenceformolecularlivingfossils. Proceedings of the National Academy of Sciences USA 99 :44304435.

Springer,M.S.1995.Molecularclocksandtheincompletenessofthefossilrecord. Journal of Molecular Evolution 41 :531538.

Storey,M.,J.J.Mahoney,A.D.Saunders,R.A.Duncan,S.P.Kelley,andM.F.Coffin.1995. TimingofhotspotrelatedvolcanismandthebreakupofMadagascarandIndia. Science 267 :852 855.

164

Swofford,D.L.2001.PAUP*4.0b10:PhylogeneticAnalysisUsingParsimony(*andother methods).Sinauer,Sunderland,MA.

Sytsma,K.J.,A.Litt,M.L.Zjhra,J.C.Pires,M.Nepokroeff,E.Conti,J.Walker,andP.G. Wilson.2004.Clades,clocks,andcontinents:historicalandbiogeographicalanalysisofMyrtaceae, Vochysiaceae,andrelativesinthesouthernhemisphere. International Journal of Plant Sciences 165 :85105.

Tavaré,S.,C.R.Marshall,O.Will,C.Soligo,andR.D.Martin.2002.Usingthefossilrecordto estimatetheageofthelastcommonancestorofextantprimates. Nature 416 :726729.

Thompson,J.D.,T.J.Gibson,F.Plewniak,F.Jeanmougin,andD.G.Higgins.1997.TheClustalX windowsinterface:flexiblestrategiesformultiplesequencealignmentaidedbyqualityanalysis tools. Nucleic Acids Research 24 :48764882.

Thorne,J.L.,andH.Kishino.2002.Divergencetimeandevolutionaryrateestimationwith multilocusdata. Systematic Biology 51 :689702.

Thorne,J.L.,H.Kishino,andI.S.Painter.1998.Estimatingtherateofevolutionoftherateof molecularevolution. Molecular Biology and Evolution 15 :16471657.

Tobe,H.,andP.H.Raven.1984.TheembryologyandrelationshipsofOliniaceae. Plant Systematics and Evolution 146 :105116. vanderHammen,T.1954.Eldesarrollodelafloracolombianaenlosperiodosgeológicos.I. MaestrichtianohastaTerciariomásinferior. Boletín de Geología 2:49106. vanTuinen,M.,andE.A.Hadly.2004.Errorinestimationofrateandtimeinferredfortheearly AmniotefossilrecordandAvianmolecularclocks. Journal of Molecular Evolution 59 :267276.

Welch,J.J.,andL.Bromham.2005.Moleculardatingwhenratesvary. TRENDS in Ecology and Evolution 20 :320327.

Wikström,N.,V.Savolainen,andM.W.Chase.2001.Evolutionoftheangiosperms:calibrating thefamilytree. Proceedings of the Royal Society B: Biological Sciences268 :22112220.

Wikström,N.,V.Savolainen,andM.W.Chase.2003.Angiospermdivergencetimes:congruence andincongruencebetweenfossilsandsequencedivergenceestimates.Pp.142165 in P.C.J. DonoghueandM.P.Smith,eds.Tellingtheevolutionarytime:molecularclocksandthefossil record.Taylor&Francis,London,UK.

Wilson,P.G.,M.M.O'Brien,M.M.Heslewood,andC.J.Quinn.2005.Relationshipswithin Myrtaceaesensulatobasedona mat Kphylogeny. Plant Systematics and Evolution 251 :319.

Wray,G.A.2001.DatingbranchesontheTreeofLifeusingDNA. Genome Biology 3:1.11.7.

Yang,Z.2004.Aheuristicratesmoothingprocedureformaximumlikelihoodestimationofspecies divergencetimes. Acta Zoologica Sinica 50 :645656.

Yang,Z.,andB.Rannala.2005.Bayesianestimationofspeciesdivergencetimesunderamolecular clockusingmultiplefossilcalibrationswithsoftbounds. Molecular Biology and Evolution 23 :212 226.

165

Zuckerkandl,E.,andL.Pauling.1965.Evolutionarydivergenceandconvergenceinproteins.Pp. 97166 in V.BrysonandH.Vogel,eds.EvolvingGenesandProteins.AcademicPress,NewYork.

Zurawski,G.,B.Perrot,W.Bottomley,andP.R.Whitfield.1981.Thestructureofthegeneforthe largesubunitofribulose1,5bisphosphatecarboxylasefromspinachchloroplastDNA. Nucleic Acids Research 14 :32513270.

166

Tables Table1.Speciesnames,sourcesandGenBankaccessionnumbersfortheDNAsequencesusedinthisstudy.Accessionnumberswithanasterisk representnewlygeneratedandsubmittedsequences.Theothersequenceswerefrom aSchönenbergerandConti,2003, bConti et al. ,1996, cClausingand Renner,2001, dConti et al. ,2002, eRenner et al. ,2001, fRennerandMeyer,2001, gRutschmann et al. ,2004.n.a.=sequencescouldnotbegeneratedand weretreatedasmissingdata.Herbariaacronyms:BOL=Bolus,UniversityofCapeTown,SouthAfrica;BRUN=BruneiForestryCentre,Brunei Darussalam;CANB=CentreforPlantBiodiversityResearch,Canberra,Australia;CAY=InstitutdeRecherchepourleDeveloppement,French Guiana/Cayenne,INPA=InstitutoNacionaldePesquisasdaAmazônia,Manaus,Brazil;K=RoyalBotanicGardens,Kew,England;NY=NewYork BotanicalGarden,Bronx,NewYork;SAN=ForestResearchCentre,Sandakan,Sabah,Malaysia;Z=UniversityofZurich,Switzerland.

GenBankaccessionnumbers Taxon Voucher rbc L ndh F rpl 16intron nr18S nr26S Crypteroniaceae A.DC.(1868),nom.cons. J.Pereira,san142218142220,Sabah, Axinandra coriacea Baill. AM235621 n.a. AM235441 AM235477 AM235549 Malaysia,(SAN),(Z). Axinandra zeylanica Thwaites PeterAshton,s.n.,SriLanka AY078157 d AJ605094 g AJ605107 g AM235478 AM235550 Crypteronia borneensis J.T. F.Rutschmann,fru61,(BRUN),(Z) AM235622 AM235389 AM235442 AM235479 AM235551 Pereira&Wong Crypteronia glabrifolia J.T. F.Rutschmann,fru28,(BRUN),(Z) AM235623 AM235390 AM235443 AM235480 AM235552 Pereira&Wong Crypteronia griffithii C.B. ShawnLum,s.n.,Singapore AJ605087 g AJ605098 g AJ605108 g AM235481 AM235553 Clarke Crypteronia paniculata Blume SeeGenBankassociatedreferences AY078153 d AJ605099 g AY151597 a AM235482 AM235554

167

Dactylocladus stenostachys PeterBecker,s.n.,Brunei AY078156 d AJ605100 g AJ605109 g AM235483 AM235555 Oliver Alzateaceae S.A.Graham(1985) Alzatea verticillata Ruiz& SeeGenBankassociatedreferences U26316 b AF215591 c AY151598 a AM235484 AM235556 Pavon Rhynchocalycaceae L.A.S.Johnson&B.G.Briggs (1985) Rhynchocalyx lawsonioides SeeGenBankassociatedreferences U26336 b AF270757 c AY151599 a AM235485 AM235557 Oliver Oliniaceae Arn.exSond.(1839),nom. cons. Olinia capensis (Jacq.) J.Schönenberger519(Z),(BOL) AM235624 AM235392 AY151600 a AM235486 AM235558 Klotzsch J.Schönenberger579,cultivatedin Olinia emarginata BurttDavy AJ605089 g AJ605102 g AY151601 a AM235487 AM235559 KirstenboschBotanicalGarden,(Z) Olinia radiata Hofmeyr& T.Abbott,6341,(Z) AM235625 AM235393 AY151602 a AM235488 AM235560 Phill. Olinia vanguerioides Bakerf. A.Blarer,s.n.,(Z) AM235626 AM235394 AY151603 a AM235489 AM235561 Olinia ventosa (L.)Cufod. SeeGenBankassociatedreferences AF215546 c AF215594 c AY151604 a AM235490 AM235562 Penaeaceae Sweetex.Guillemin(1828), nom.cons. Brachysiphon acutus (Thunb.) J.Schönenberger365,(Z),(BOL) AJ605084 g AJ605095 g AY151605 a AM235491 AM235563 A.Juss. Brachysiphon fucatus (L.)Gilg J.Schönenberger357(Z),(BOL) AJ605085 g AJ605096 g AY151606 a AM235492 AM235564 Brachysiphon microphyllus J.Schönenberger386(Z),(BOL) AJ605086 g AJ605097 g AY151608 a AM235493 AM235565 Rourke Brachysiphon mundii Sond. J.Schönenberger377(Z),(BOL) AM235627 AM235395 AY151607 a AM235494 AM235566

168

Brachysiphon rupestris Sond. J.Schönenberger366(Z),(BOL) AM235628 AM235396 AY151609 a AM235495 AM235567 Endonema lateriflora (L.f.) J.Schönenberger369(Z),(BOL) AM235629 AM235397 AY151610 a AM235496 AM235568 Gilg Endonema retzioides Sond. J.Schönenberger370(Z),(BOL) AJ605088 g AJ605101 g AY151611 a AM235497 AM235569 Glischrocolla formosa J.Schönenberger521,photovouchered AM235630 AM235398 AY151612 a AM235498 AM235570 (Thunb.)R.Dahlgren Penaea acutifolia A.Juss. J.Schönenberger376(Z),(BOL) AM235631 AM235399 AY151613 a AM235499 AM235571 Penaea cneorum Meerb.ssp. J.Schönenberger363(Z),(BOL) AM235632 AM235400 AY151614 a AM235500 AM235572 cneorum Penaea cneorum Meerb.ssp. J.Schönenberger375(Z),(BOL) AM235633 AM235401 AY151615 a AM235501 AM235573 gigantea R.Dahlgren Penaea cneorum Meerb.cf. J.Schönenberger320(Z),(BOL) AM235634 AM235402 AY151616 a AM235502 AM235574 ssp. lanceolata R.Dahlgren Penaea cneorum Meerb.ssp. ovata (Eckl.&Zeyh.exA. J.Schönenberger374(Z),(BOL) AM235635 AM235403 AY151617 a AM235503 AM235575 DC.)R.Dahlgren Penaea cneorum Meerb.cf. J.Schönenberger368(Z),(BOL) AM235636 AM235404 AY151618 a AM235504 AM235576 ssp. ruscifolia R.Dahlgren Penaea dahlgrenii Rourke J.Schönenberger388(Z),(BOL) AM235637 AM235405 AY151619 a AM235505 AM235577 Penaea mucronata L. SeeGenBankassociatedreferences AJ605090 g AF270756 c AY151620 a AM235506 AM235578 Saltera sarcocolla (L.)Bullock J.Schönenberger360(Z),(BOL) AJ605091 g AJ605103 g AY151621 a AM235507 AM235579 Sonderothamnus petraeus J.Schönenberger362(Z),(BOL) AY078154 d AJ605104 g AY151622 a AM235508 AM235580 (Barkerf.)R.Dahlgren Sonderothamnus speciosus R. J.Schönenberger364(Z),(BOL) AM235638 AM235406 AY151623 a AM235509 AM235581 Dahlgren Stylapterus ericifolius (A. J.Schönenberger372(Z),(BOL) AM235639 AM235407 AY151624 a AM235510 AM235582 Juss.)R.Dahlgren Stylapterus ericoides A.Juss. J.Schönenberger355(Z),(BOL) AJ605092 g AJ605105 g AY151625 a AM235511 AM235583 ssp. pallidus R.Dahlgren Stylapterus fruticulosus (L.f.) J.Schönenberger359(Z),(BOL) AM235640 AM235408 AY151626 a AM235512 AM235584

169

Stylapterus micranthus R. M.Johns,s.n.,(Z) AJ605093 g AJ605106 g AY151627 a AM235513 AM235585 Dahlgren Memecylaceae DC.(1827),nom.cons. Memecylon durum Cogn. F.Rutschmann,fru35,(BRUN),(Z) AM235641 AM235444 AM235514 AM235586 Memecylon edule Roxb. SeeGenBankassociatedreferences AF215528 c AF215574 c AF215609 c n.a. n.a. Melastomataceae Juss.(1789),nom.cons. Bertolonia marmorata F.Rutschmann,fru78,cultivatedinthe AM235642 AM235409 AM235445 AM235515 AM235587 (Naudin) ZurichBotanicalGarden,(Z) Clidemia petiolaris (Schltdl.& KewDNAdatabase,2534,Chase2534, AM235643 AM235410 AM235446 AM235516 AM235588 Cham.) (K) Graffenrieda latifolia (Naudin) FabianMichelangeli,FAM794,(NY) AM235644 AM235411 AM235447 AM235517 AM235589 Triana Macrocentrum cristatum (DC.) M.F.Prévost(Fanchon)4841,French AM235645 AM235412 AM235448 AM235518 AM235590 Triana Guyana,(CAY),(Z) Melastoma beccarianum Cogn. F.Rutschmann,fru74,(BRUN),(Z) AM235646 AM235413 AM235449 AM235519 AM235591 Meriania macrophylla (Benth.) FabianMichelangeli,FAM829,(NY) AM235647 AM235414 AM235450 AM235520 AM235592 Triana Miconia donaeana Naudin FabianMichelangeli,FAM727,(NY) AM235648 AM235415 AM235451 AM235521 AM235593 J.Pereira,san142201142203,Sabah, Pternandra caerulescens Jack AM235649 AM235416 AM235452 AM235522 AM235594 Malaysia,(SAN),(Z). Pternandra echinata Jack SeeGenBankassociatedreferences AF215520 c AF215559 c AF270744 c n.a. n.a. (Metcalfe1996) T.Eriksson,cultivatedintheBergius Rhexia virginica L. BotanicalGarden,Stockholm.Seealso U26334 b AF215587 c AF215623 c AM235523 AM235595 GenBankassociatedreferences Tibouchina urvilleana (D.C.) SeeGenBankassociatedreferences U26339 b AF272820 f AF322234 f AM235524 AM235596 Cogn. Tococa guianensis Aublet FabianMichelangeli,FAM703 AM235650 AM235417 AM235453 AM235525 AM235597 Myrtaceaes.l.

170

Juss.(1789),nom.cons. EdBiffin,cultivatedintheAustralian Angophora costata (Gaertn.) NationalBotanicGardens,Canberra, AM235651 AM235418 AM235454 AM235526 AM235598 Britten (CANB) Callistemon citrinus (Curtis) F.Rutschmann,fru79,cultivatedinthe AM235652 AM235419 AM235455 AM235527 AM235599 Skeels ZurichBotanicalGarden,(Z) Eucalyptus lehmannii (L. F.Rutschmann,fru80,cultivatedinthe AM235653 AM235420 AM235456 AM235528 AM235600 PreissexSchauer)Benth. ZurichBotanicalGarden,(Z) F.Rutschmann,fru81,cultivatedinthe Eugenia uniflora L. AM235654 AM235421 AM235457 AM235529 AM235601 ZurichBotanicalGarden,(Z) F.Rutschmann,fru82,cultivatedinthe Kunzea vestita Schauer AM235655 AM235422 AM235458 AM235530 AM235602 ZurichBotanicalGarden,(Z) Leptospermum scoparium JR F.Rutschmann,fru83,cultivatedinthe AM235656 AM235423 AM235459 AM235531 AM235603 Forst.&G.Forst. ZurichBotanicalGarden,(Z) EdBiffin,cultivatedintheAustralian Lophostemon confertus (R. NationalBotanicGardens,Canberra, AM235657 AM235424 AM235460 AM235532 AM235604 Br.)PGWilson&Waterhouse (CANB) Melaleuca alternifolia (Maid. F.Rutschmann,fru84,cultivatedinthe AM235658 AM235425 AM235461 AM235533 AM235605 andBet.)Cheel ZurichBotanicalGarden,(Z) Metrosideros excelsa Banks. F.Rutschmann,fru85,cultivatedinthe AM235659 AM235426 AM235462 AM235534 AM235606 ex.Gaertn. ZurichBotanicalGarden,(Z) Tristaniopsis sp. indet. F.Rutschmann,fru70,(BRUN),(Z) AM235660 AM235427 AM235463 AM235535 AM235607 EdBiffin9102545,cultivatedinthe Uromyrtus metrosideros AustralianNationalBotanicGardens, AM235661 AM235428 AM235464 AM235536 AM235608 (Bailey)AJ.Scott Canberra,(CANB) PeterWilson,cultivatedintheRoyal Heteropyxis natalensis Harv. BotanicalGardens,Sydney,RBG AM235662 AM235429 AM235465 AM235537 AM235609 781154. Psiloxylon mauritianum DennisHansen,LaRéunion,(Z) AM235663 AM235430 AM235466 AM235538 AM235610 ThouarsexTul. Vochysiaceae A.St.Hil.(1820),nom.cons.

171

Ruizterania albiflora KewDNAdatabase,3622,RIB1498, AM235664 AM235431 AM235467 AM235539 AM235611 (Warming)MarcanoBerti (INPA) KewDNAdatabase,1054,Litt32, Vochysia tucanorum Mart. AM235665 AM235432 AM235468 AM235540 AM235612 (NY) Onagraceae Juss.(1789),nom.cons. F.Rutschmann,fru86,cultivatedinthe Circaea lutetiana L. AM235666 AM235433 AM235469 AM235541 AM235613 ZurichBotanicalGarden,(Z) F.Rutschmann,fru87,cultivatedinthe Fuchsia paniculata Lindl. AM235667 AM235434 AM235470 AM235542 AM235614 ZurichBotanicalGarden,(Z) Fuchsia procumbens R.Cunn. T.Eriksson,cultivatedintheBergius AM235668 AM235435 AM235471 AM235543 AM235615 exA.Cunn. BotanicalGarden,Stockholm Gaura lindheimeri Engelm.& F.Rutschmann,fru88,cultivatedinthe AM235669 AM235436 AM235472 AM235544 AM235616 A.Gray ZurichBotanicalGarden,(Z) F.Rutschmann,fru89,cultivatedinthe Ludwigia palustris AM235670 AM235437 AM235473 AM235545 AM235617 BotanischerGartenBasel,(Z) F.Rutschmann,fru90,cultivatedinthe Oenothera macrocarpa Nutt. AM235671 AM235438 AM235474 AM235546 AM235618 ZurichBotanicalGarden,(Z) Lythraceae JaumeSt.Hil.(1805),nom. cons. F.Rutschmann,fru91,cultivatedinthe Cuphea hyssopifolia Kunth AM235672 AM235439 AM235475 AM235547 AM235619 ZurichBotanicalGarden,(Z) PeterWilson,cultivatedintheRoyal Duabanga grandiflora (Roxb. BotanicalGardens,Sydney,RBG AM235673 AM235440 AM235476 AM235548 AM235620 exDC.)Walpers 811005.

172

Table2. Fossilsusedinthisstudywithcorrespondingages,locations,andreferences.Thefossilageshighlightedinboldwereusedforcalibration.

Fossils Fossilages Locations References

1.Melastomataceaeleaves EarlyEocene(53mys) NorthDakota Hickey,1977

Russia(Siberia,Tambov Dorofeev,1960,1963,1988;Collinsonand Miocene 2.Melastomeaeseeds region),Belarus,Poland, Pingen,1992;Dyjor et al. ,1992;Fairon (2623mys) Germany,Belgium Demaret,1994;Mai,1995,2000

Santonian Herngreen,1975;Boltenhagen,1976; Gabon (86mys) Muller,1981 3.Pollenof Myrtaceidites lisamae LowerSenonian Borneo Muller,1968 = Syncolporites lisamae (89–83.5mys) Maastrichtian Colombia VanderHammen,1954 (71.3–65mys) LatePaleocene NorthDakota Crane et al. ,1990;Pigg et al. ,1993 4.Fruitsandseedsof (56mys) Paleomyrtinaea EarlyEocene(54mys) BritishColumbia Manchester,1999

MiddleEocene RedbankPlainsFormation, Rozefelds,1996 (48mys) Queensland,Australia 5.Eucalyptlikefruits MiddleEocene LakeEyre,NellyCreek, Christophel et al. ,1992 (48mys) northernSouthAustralia EarlyOligocene Daghlian et al. ,1985;Berry et al. ,1990; 6. Fuchsia pollen Diporites aspis Australia (33.7–28.5mys) Berry et al. ,2004

173

Table3. Characteristicsofthe72differentcalibrationsets,eachconsistingofsixcalibrationpoints:Averagesquareddeviation s(seeFigure2);nodal distancessummedupoverallfossilcalibrationruns(seeFigures1and2);percentdeviationof sfromregressionlinewithnodaldistances(seeFigures3 and4);meanagesofnodeX(seeFigure1)withstandarddeviationsand95%credibilityintervals(seeFigures4,5,and6).Thethreesetswiththe highestlevelofcorrectedcalibration–setconsistencyareshadedinlightgrey,whereasthethreesetswiththelowestcorrectedconsistencyareshadedin darkgrey.Notethatfossil2couldbeassignedtoonlyonenodeinourphylogeny(node 2).

Percent 95%credibilityinterval Average deviation Mean Calibration Calibrationpoints Nodal squared of sfrom ageofnodeX SD set distances deviation s regression [mys] 2.5 th 97.5 th line percentile percentile 1 2 3 4 5 6 1 a 2 a a a a 0.0610 214 15.870 72.80 7.92 57.25 88.81 2 a 2 a b b b 0.1411 244 17.133 78.14 7.57 63.14 92.22 3 a 2 a a b b 0.1098 234 15.960 76.66 7.62 61.30 91.12 4 a 2 a b a a 0.0982 224 9.053 75.83 7.74 60.72 91.06 5 a 2 a a a b 0.0769 224 16.133 74.40 7.88 59.24 89.71 6 a 2 a b b a 0.1291 234 1.419 77.27 7.67 61.27 92.36 7 a 2 a a b a 0.0957 224 6.689 74.80 7.78 59.17 89.99 8 a 2 a b a b 0.1120 234 13.642 77.15 7.45 62.66 91.82 9 a 2 b a a a 0.0662 216 11.062 75.55 7.88 59.63 90.29 10 a 2 b b b b 0.1375 246 25.719 79.14 7.34 64.44 93.31 11 a 2 b a b b 0.1088 236 23.954 78.15 7.49 62.97 91.98 12 a 2 b b a a 0.1008 226 3.864 77.12 7.60 61.73 91.73 13 a 2 b a a b 0.0792 226 22.426 76.61 7.54 61.60 91.34 14 a 2 b b b a 0.1285 236 4.954 78.38 7.66 63.06 92.81 15 a 2 b a b a 0.0977 226 0.865 76.81 7.69 61.21 91.95 16 a 2 b b a b 0.1116 236 20.846 78.19 7.43 62.86 92.43 174

17 a 2 c a a a 0.0794 218 16.299 77.08 7.80 61.21 91.72 18 a 2 c b b b 0.1417 248 27.351 79.70 7.55 64.47 94.76 19 a 2 c a b b 0.1169 238 21.903 79.21 7.50 63.69 93.02 20 a 2 c b a a 0.1102 228 5.136 78.01 7.82 61.76 92.96 21 a 2 c a a b 0.0914 228 14.361 78.50 7.57 62.56 92.77 22 a 2 c b b a 0.1337 238 6.553 78.36 7.67 62.63 92.96 23 a 2 c a b a 0.1068 228 2.161 78.43 7.95 62.98 93.42 24 a 2 c b a b 0.1200 238 18.753 79.42 7.63 63.76 93.87 25 b 2 a a a a 0.1414 230 20.730 72.84 8.39 56.80 89.34 26 b 2 a b b b 0.2246 260 0.661 79.30 8.13 63.07 94.74 27 b 2 a a b b 0.1925 250 2.265 76.61 8.42 60.31 93.44 28 b 2 a b a a 0.1794 240 16.351 75.99 8.55 59.39 92.26 29 b 2 a a a b 0.1596 240 5.926 74.55 8.78 58.50 92.04 30 b 2 a b b a 0.2104 250 10.601 77.48 8.59 60.92 93.88 31 b 2 a a b a 0.1762 240 14.793 74.64 8.58 58.15 91.25 32 b 2 a b a b 0.1955 250 3.781 77.69 8.46 60.69 93.73 33 b 2 b a a a 0.1468 232 18.448 74.92 8.83 58.32 92.23 34 b 2 b b b b 0.2211 262 5.682 79.76 8.39 63.48 95.23 35 b 2 b a b b 0.1916 252 2.128 78.40 8.63 60.82 94.68 36 b 2 b b a a 0.1822 242 13.427 77.53 8.54 60.81 94.36 37 b 2 b a a b 0.1619 242 2.608 76.98 8.62 60.23 93.92 38 b 2 b b b a 0.2099 252 6.773 78.52 8.61 61.57 95.03 39 b 2 b a b a 0.1783 242 11.562 76.20 8.59 59.39 93.04 40 b 2 b b a b 0.1952 252 0.248 78.79 8.44 62.39 94.58 41 b 2 c a a a 0.1599 234 20.387 76.58 8.64 59.42 93.34 42 b 2 c b b b 0.2252 264 7.131 80.43 8.41 63.90 96.26 43 b 2 c a b b 0.1996 254 1.861 78.81 8.35 61.89 94.17 44 b 2 c b a a 0.1914 244 13.646 78.27 8.58 61.70 95.00 45 b 2 c a a b 0.1740 244 5.026 78.43 8.62 61.70 95.19 46 b 2 c b b a 0.2150 254 5.450 79.21 8.56 62.70 95.82 47 b 2 c a b a 0.1873 244 11.735 77.16 8.80 60.38 94.60 48 b 2 c b a b 0.2035 254 0.089 79.84 8.00 63.51 95.53 175

49 c 2 a a a a 0.1835 240 18.205 74.49 8.62 58.29 91.65 50 c 2 a b b b 0.2654 270 0.502 79.54 8.84 62.21 96.80 51 c 2 a a b b 0.2335 260 3.177 76.92 8.82 59.50 94.27 52 c 2 a b a a 0.2213 250 14.999 77.40 8.84 59.56 94.04 53 c 2 a a a b 0.2008 250 6.307 76.19 8.79 59.28 93.81 54 c 2 a b b a 0.2521 260 10.316 78.20 8.74 61.17 95.89 55 c 2 a a b a 0.2181 250 13.757 76.47 8.89 58.85 93.67 56 c 2 a b a b 0.2365 260 4.380 78.17 8.66 61.25 94.98 57 c 2 b a a a 0.1884 242 16.280 76.51 8.58 59.66 93.18 58 c 2 b b b b 0.2614 272 3.921 80.37 8.54 63.11 96.18 59 c 2 b a b b 0.2322 262 0.655 78.37 8.96 60.34 96.05 60 c 2 b b a a 0.2235 252 12.441 78.92 8.61 61.62 95.37 61 c 2 b a a b 0.2026 252 3.418 77.64 8.75 60.70 95.12 62 c 2 b b b a 0.2511 262 6.936 79.43 8.72 62.31 96.32 63 c 2 b a b a 0.2198 252 10.947 77.35 8.80 59.40 93.97 64 c 2 b b a b 0.2357 262 0.839 79.77 8.74 62.06 96.74 65 c 2 c a a a 0.2013 244 17.890 77.80 8.68 59.91 94.11 66 c 2 c b b b 0.2654 274 5.245 81.46 8.69 64.39 98.24 67 c 2 c a b b 0.2400 264 0.554 79.74 8.52 63.31 96.77 68 c 2 c b a a 0.2326 254 12.595 79.31 8.70 62.18 95.73 69 c 2 c a a b 0.2146 254 5.256 79.12 8.90 61.32 95.80 70 c 2 c b b a 0.2560 264 5.759 80.57 8.69 63.24 97.94 71 c 2 c a b a 0.2285 254 11.047 78.48 8.81 61.27 95.67 72 c 2 c b a b 0.2438 264 1.013 80.64 8.65 63.42 97.54

176

Table4. DistributionofcalibrationpointsincalibrationsetsA(seeFigure3).Theletter xinthe“consensusset”indicatesthat,amongthe12calibration sets,thefossilwasassignedtoallpossiblecalibrationnodes.

Nodalassignmentsinthe12 Fossil calibrationsetsA

a b c 1 all12 0 0 2 3 4 4 4 4 6 6 5 6 6 6 0 all12 Consensus 1a 2 3x 4x 5x 6b

177

Table5. Characteristicsofthesixcalibrationsetswiththehighest(18,10,11)andthelowest(33,41,25)levelsofcorrectedinternalconsistency.

Calibrationsetswith Calibrationsetswith Fossil Min.fossilage[mys] highestcorrectedconsistency lowestcorrectedconsistency

set18 set10 set11 set33 set41 set25 1 53 1a 1a 1a 1b 1b 1b 2 23 2 2 2 2 2 2 3 86 3c 3b 3b 3b 3c 3a 4 56 4b 4b 4a 4a 4a 4a 5 48 5b 5b 5b 5a 5a 5a 6 28.5 6b 6b 6b 6a 6a 6a

Averagesquareddeviation s 0.1417 0.1375 0.1088 0.1468 0.1599 0.1414

Percentdeviationof sfrom 27.351 25.719 23.954 18.448 20.387 20.730 regressionline (seeFigures3and4)

EstimatedagefornodeX[mys] 79.7 79.14 78.15 74.92 76.58 72.84 withstandarddeviation ±7.55 ±7.34 ±7.49 ±8.83 ±8.64 ±8.39

178

Figures

Figure1 (seelegendonnextpage)

179

Figure1(previouspage).MrBayesmajorityruleconsensustreewithmeanbranchlengths, basedonthecombined5124nucleotidedataset.Maximumlikelihoodbootstrapsupportvalues andBayesiancladecredibilityvaluesarereportedaboveandbelowthebranches,respectively. Generaldistributionrangesofthefocusgroupsarereportedtotherightofthetree,asarethe infrafamilialranksrelevanttofossilnodalassignments.NodeXrepresentsthephylogeneticsplit betweentheSoutheastAsianCrypteroniaceaestemlineageanditsAfrican/SouthAmericansister clade.Alternativenodalassignments( a, b,or c)forthesixfossilslistedinTable2arelabelledon thetree.Outgrouptaxaareindicatedbyanasterisk.

180

0.3

0.25 50 58 66 s

0.2

2 41 R = 0.8967 0.15 33 25 10 18 0.1 11

5 9 Averagesquared deviation 0.05 1

0 200 210 220 230 240 250 260 270 280

Nodal distance

Figure2.Correlationbetweentheaveragesquareddeviation sandnodaldistanceamong calibrationpoints(seeTable3).RrepresentsPearson’scorrelationcoefficient.Calibrationsets1, 9,5and50,66,58representthesetswiththelowestandhighest svalues,respectively. Calibrationsets18,10,11and33,41,25(circled)showthe svaluesthatdeviatethemostbelow andabove,respectively,theregressionline.

181

30.00

25 41 20.00 33

calibration 10.00 sets A

0.00 from regression line with nodal distance nodal with line regression from

s calibration -10.00 sets B

-20.00

11 10

Percent deviation of deviation Percent 18 -30.00 Highest corrected Lowest corrected calibration-set consistency calibration-set consistency 72 different calibration sets

Figure3.Histogramrepresentingthe percentdeviationof s fromtheregressionlineofFigure2 forall72calibrationsets.Twelvecalibrationsetsshowed svaluesthatwereatleast10%lower thanexpectedfromtheregressionline(calibrationsetsA).Thesesetsareassociatedwiththe highestlevelofcorrectedcalibrationsetconsistency.Twentythreecalibrationsetsshowed s valuesthatwereatleast10%higherthanexpectedfromtheregressionline(calibrationsetsB). Thesesetsareassociatedwiththelowestlevelofcorrectedcalibrationsetconsistency.

182

13

12.5

12 33 25 11.5

11 41 R2 = 0.5975 10.5

10 11 18 9.5 10 9

8.5 Highest corrected Lowest corrected calibration-set consistency calibration-set consistency

Percent standard deviation thefor age of node X 8 -30 -20 -10 0 10 20 30

Percent deviation of s from regression line with nodal distance

Figure4.Correlationbetweencorrectedcalibrationsetconsistency(expressedaspercent deviationof sfromtheregressionlinewithnodaldistance;seeFigures2and3)andpercent standarddeviationfortheageofnodeX.Thethreecalibrationsets18,10,and11producedlower standarddeviationsfortheageofnodeXthanthethreecalibrationsets33,41,and25.

183

Figure5.Thetwochronogramsderivedfromthetwocalibrationsets(66and1)thatyieldedthe oldest(inblack)andyoungest(ingrey)agesfornodeX,respectively.Thecalibrationpointsof thetwosets(set66: 1c, 2, 3c, 4b, 5b, 6b ;set1: 1a, 2, 3a, 4a, 5a, 6a )aremarkedonthetrees. 184

Figure6.DistributionofmeanagesfornodeXestimatedfromthe72moleculardatinganalyses. Overallmean:77.74mys,standarddeviation:8.51mys,95%credibilityinterval(representingthe 2.5 th and97.5 th percentileoftheposteriordistribution):60.89–94.21mys.

185

186

Chapter VI. Taxon sampling effects in molecular clock dating: An example from the African Restionaceae

H.PeterLinder 1,ChristopherR.Hardy 1,andFrankRutschmann 1Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland

Publishedin MolecularPhylogeneticsandEvolution35:569582.2005.

187

Abstract Threecommonlyusedmoleculardatingmethodsforcorrectionofvariablerates(non parametricratesmoothing,penalizedlikelihoodandBayesianratecorrection)aswellasthe assumptionofaglobalmolecularclockweretestedforsensitivitytotaxonsampling.Thetest datasetof6854basepairsfor300terminalsincludesanearlycompletesampleofthe Restio clade oftheAfricanRestionaceae(272ofthe288species),aswellas26outgroupspecies.Ofthis, nestedsubsetsof35,51,80,120,150andthefull300specieswereused.Moleculardating experimentswiththesedatasetsshowedthatallmethodsaresensitivetoundersampling,butthat thiseffectismoresevereinanalysesthatusemoreextremeratesmoothing.Additionally,the undersamplingeffectispositivelyrelatedtodistancefromthecalibrationnode.Thecombined effectofundersamplinganddistancefromthecalibrationnoderesultedinuptothreefold differencesintheageestimationofnodesfromthesamedatasetwiththesamecalibrationpoint. WesuggestthatthemostsuitablemethodsarePenalizedLikelihoodandBayesianwhenaglobal clockassumptionhasbeenrejected,asthesemethodsaremoresuccessfulatfindingoptimal levelsofsmoothingtocorrectforrateheterogeneity,andarelesssensitivetoundersampling. Keywords: Moleculardating,NPRS,PenalizedLikelihood,Bayesiandating,sampling effects,Restionaceae,Lineagethroughtimeplots.

188

Introduction Datingtheinternalnodesofcladogramsisusefulformanyevolutionaryinvestigations, forexampleexploringplantinsectcospeciation(e.g.Percyetal.,2004),historical biogeographicalanalysis(e.g.Contietal.,2002;Davisetal.,2002;Nagyetal.,2003;Vinnersten andBremer,2001),andrelatingspeciationratechangestopalaeoenvironmentalchanges(e.g. Kadereitetal.,2004;Linder,2003).However,moleculardatingisbesetbyanumberof problems.Forexample,thepseudoprecisionanderrorsthatmayresultfromtheuseofinadequate calibrationpoints,andespeciallytheuseofderivedcalibrationpointswhicharenotdirectly basedonfossilevidence,haverecentlyreceivedattention(GraurandMartin,2004;Hedgesand Kumar,2004;Lee,1999;ShaulandGraur,2002).Furthermore,theassumptionofaglobal molecularclockhasbeenshowntobeinvalidinmanyinstances(Gaut,1998).Variousmethods havebeendevelopedtoaccommodateratevariation:theseincludetheremovalofcladeswith deviantrates(Takezakietal.,1995),excludingdatapartitionsthatfalsifytheclockassumption (Katoetal.,2003),usingseverallocalclocksforratehomogenousclades(i.e.,thelocalclocks approachofYoderandYang,2000),usingnonparametricratesmoothingtoconstrainbetween internoderatevariation(Sanderson,1997),andsearchingfortheoptimalratesusingBayesian methods(Thorneetal.,1998)andpenalizedlikelihood(Sanderson,2002a).However,there seemstohavebeennoinvestigationintotheeffectsofsamplingonlyasmallproportionofthe terminals(species)ontheageestimatesoftheinteriornodes.Anunderstandingofhow undersamplingeffectsageestimatesisimportant,asmolecularphylogeneticinvestigationsof cladeagesareoftenbasedonsparsetaxonsamples. Hereweinvestigatethesensitivityofvariousmethodsofobtainingmolecularage estimatestoincompletetaxonsamplinginthe" Restio clade"ofAfricanRestionaceae(Poales) which,with288species,isthelargestcladeofAfricanRestionaceae.TheAfricanRestionaceae asawholecomprise350speciesofevergreen,rushlikeplantsthatcollectivelydominatemuchof thefynbosvegetationofthespeciesrichCapeFloristicRegionofSouthernAfrica(Linder,1991; Linder,2003;Taylor,1978).Specifically,weevaluateeffectonnodeageestimatesofincreasing ordecreasingtaxonsampling,anddistancefromthecalibrationnode.Ourdataonthe Restio cladeareparticularlysuitedthistypeofinvestigationbecause(1)taxonsamplingisnearly complete(ca.95%),and(2)phylogeneticrelationshipsarewellresolvedandsupportedbyover 6,000nucleotidesofDNAsequencedata.

189

Methods Phylogeny estimation Twohundredandseventytwospecies(ca.95%)ofthe288speciesofthe" Restio clade" AfricanRestionaceaewereincludedinthecurrentanalysis.Additionally,bothsubspeciesof Restio dodii andtwoaccessionsofthevariableandwidespreadspecies Ischyrolepis macer were included,astheyappeartorepresenttwodistinctchloroplastlineagesandmaybeseparate species.Toallowtheuseofthebasaldatingnode,wealsoincluded24speciesofthe "Willdenowia clade"ofAfricanRestionaceae.Assuch,atotalof298plantsofAfrican Restionaceaeweresampledforthisanalysis.Ofthe16speciesofthe" Restio clade"thatwerenot included,threearepossiblynottaxonomicallydistinct(fordetailedcomment,seeLinder,2001), andtheremaindercouldnotbelocatedinthefieldforthecollectionofextractionqualityplant material.BasedonthephylogeneticstudiesofBriggs et al. (2000)andLinder et al. (2003),the treewasrootedtotwoterminalsrepresentingtheca.150speciesofAustralianRestionaceae. DNAsequencesweregeneratedfromtheplastidregionsspanningthe trnL intronandthe trnL-trnF intergenicspacer(Taberletetal.,1991),thecompletegeneencoding rbcL (Chaseand Albert,1998),thecomplete atpB-rbcL intergenicspacer(ChiangandSchaal,2000;Cuénoudet al.,2000;Manenetal.,1994),and matK plustheflanking trnK intron(HiluandLiang,1997). TotalDNAwasisolatedfromsilicageldriedculmsusingtheDNeasy®PlantMiniKit(Qiagen, Inc.;Valencia,California,USA).SequencesweregeneratedusingstandardmethodsforPCR amplificationandautomatedsequencing. RawsequencedatafileswereanalysedwiththeABIPrism™377SoftwareCollection 2.1.ContigswereconstructedinSequencher™andalignmentswereperformedusingthedefault alignmentparametersinClustalX(Thompsonetal.,1997),followedbyadjustmentbyeye. ThesesequenceswereassembledintoasinglematrixinWinClada(Nixon,2002).Thealigned matrixconsistedof6854alignedbases,ofwhich1512areparsimonyinformative.Additionally, indelswerecodedattheendofthematrixusingSimpleIndelCoding(SimmonsandOchoterena, 2000)asimplementedintheprogramGapCoder(YoungandHealy,2001).Thetotalmatrix consistsof1782parsimonyinformativecharacters.Allcharacterswereweightedequallyand treatedasnonadditiveduringtreesearches.Thisdatamatrixhasbeendepositedat www.treebase.org. Parsimonysearcheswereconductedusingtheparsimonyratchet(Nixon,1999)as implementedfromWinClada,runningNONAvers.1.6(Goloboff,1993)asadaughterprocess. Tenratchetsearcheswereconducted,eachinitiatedwiththegenerationofaWagnertree,usinga randomtaxonentrysequence,followedbyTBRbranchswappingwithonetreeretainedandused 190 asthestartingpointfor500ratchetcycles.Intheweighted/constrainedhalfofeachratchetcycle, arandomlyselectedsetof10%ofthecharacterswereresampled,andarandomlyselectedsetof 10%oftheresolvedcladeswereconstrained.Thisanalysisresultedin885equallymost parsimoniouscladograms(L=5415,CI=0.44,RI=0.84;informativecharactersonly).These werethenpooledandswappedtoobtainatotalof10,615cladogramsoflength5415.Oneof thesecladogramswasarbitrarilychosenforthesubsequentinvestigationintotheimpactoftaxon samplingontheestimationofabsolutedatesanddivergencetimes. Construction of smaller subset matrices and cladograms Usingour300taxonmatrix(notincludingindels)andtreeasfixedstartingpoints,six smallermatricesandtreeswereconstructedbydeletingterminalsinMesquite1.02(Maddison andMaddison,2003).Thesesmallerdatasetshave150,120,100,80,51,and35 species/terminalsrespectively.Thelistofspeciesandsequencesineachsmallersetisaprecise subsetofthenextlargerset,andeachemployedthesamerelativealignmentandtreetopologyas thoseobtainedfromthe300taxonanalysis.Theonlydifferenceslieinthenumbersofterminals andbytheexclusionofextraneousgapsfromthelargermatricesthatarenolongernecessaryin thesmallermatrices.Assuch,eachsuccessivelysmallermatrixconsistsof6623,6547,6480, 6399,6248,and6135alignedbases.Forthesmallest(35species)sampling,atleasttwo representativesofthebasallineagesforeachofthe32cladesdepictedinFigure1werechosen. Successivelylargerdatamatricesandcladogramssimplyaddeddescendantspeciesand, therefore,moredistalnodestothese32nodesofinterest(the"testnodes").Thustheproportion ofthedescendentspeciessampleddiffersenormouslyamongthetestnodes,asdoestherateat whichthesamplingdensityincreases(Table1).Thisparticularstrategywaschosenbecauseit resultsinasetofcomparabletestnodesforeachsamplingset(Simmonsetal.,2004).Sampling basallineagesisalsothemethodusedbyphylogeneticiststoestimatetheageofparticularclades withincompletesampling.Onlytestnodes130wereusedintheanalysis.Node32isthe constrainedbasalnode,andnode31isatthebaseofthe Willdenowia clade,andassuchisnot partofthestudygroup. NPRS, PL and clock analyses Aspreparationfortheclockassumption(CL),nonparametricratesmoothing(NPRS, Sanderson,1997),andpenalizedlikelihood(PL,Sanderson,2002a)approachestodating, molecularbranchlengthswereestimatedforeachofthesevennestedmatricesandcladograms. WeusedtheimplementationofModeltest(PosadaandCrandall,1998)inHyPhyver.0.99beta forWindows®(KosakovskyPondetal.,2004)toselectastatisticallyadequatemodelfromaset 191 of56possiblemodelsofsequenceevolution.Usingtheselectedmodels(Table2),likelihood ratiotests(Felsenstein,1981)wereperformedinHyPhytotestforasignificantdeparturefrom thehypothesisofaglobalmolecularclock.Ineachcase,theclockwasrejected(Table2).Branch lengthswereestimatedinPAUP*4.0(Swofford,2002)usingtheappropriatemodelwithouta clockassumption. ThesebranchesweremadeultrametricusingNPRS,asimplementedinTreeEditfor Macintosh(RambautandCharleston,2004),andpenalizedlikelihoodwithr8s(ver.1.6for Linux,Sanderson,2002b).Forthelatter,anoptimalratesmoothingparametervaluewasselected withtheprerequisitecrossvalidationprocedure(Sanderson,2002a)forallexceptthelargesttwo matrices(i.e.,150and300terminals).Attemptstofindanoptimalsmoothingparameterforthe 150and300taxonsetsfailed,possiblyduetocomputationallimitationswiththeselargedatasets, orpossiblybecauseofthepresenceofzerolengthterminalbranches.Forthe120taxonandfewer datasets,smoothingparametervaluesrangingfroml0 –3.5to7.5 (inincrementsof10 0.5 )weretested andtheresultingvaluesreportedinTable2.Inordertocomparethefourmethods,theoptimal regressionofthetaxonsamplingandaveragenodeagevaluesforthe35to120samplePL methodwereusedtopredictthevaluesforthe150and300taxonsamples.Thesepredicted valueswerenotincludedinanystatisticaltesting. Despiterejectingtheclock,branchlengthsweremadeultrametricalsounderthe assumptionofamolecularclock,forcomparativepurposes,usingtheappropriatemodelin PAUP*. Wecalibratedthetreesagainstnode32(connectingthe Restio and Willdenowia clades). Weusedasecondarydate(49.8Ma,witharangeof42.755.9Ma),obtainedfromtheanalysis ofLinder et al. (2003).Inthisanalysistheadjacentnode(connectingtheAfricanandAustralian Restionaceae)wasdatedfromanAfricanpollendepositfromtheearliestTertiary(Linderetal., 2003;Scholtz,1985). Bayesian dating TheBayesdatingmethod(ThorneandKishino,2002;Thorneetal.,1998)usesa probabilisticmodeltodescribethechangeinevolutionaryrateovertimeandusestheMarkov chainMonteCarlo(MCMC)proceduretoderivetheposteriordistributionofratesandtime.It allowsmultiplecalibrationwindowsandprovidesdirectcredibilityintervalsforestimated divergencetimesandsubstitutionrates.Theprocedurewefollowedisdividedintothreedifferent stepsandprograms,andisdescribedinmoredetailinastepbystepmanualavailableat http://www.plant.ch/software.html .Itwasperformedona3GhzPentiumIVmachinerunning WindowsXP.Inafirststep,weestimatedthemodelparametersforthetheF84+Gmodel 192

(Felsenstein,1993;KishinoandHasegawa,1989),themostcomplexmodelofnucleotide substitutionimplementedinthesoftwarebelowsofar.Byusingtheprogram Baseml ,whichis partofthePAMLpackage(Yang,1997),weestimatedbasefrequencies,transition/transversion ratekappa,andthealphashapeparameter(describingtherateheterogeneityamongsitesundera discretegammamodel;5categoriesofrates).Then,byusingtheseparameters,weestimatedthe maximumlikelihoodofthebranchlengthsoftherootedevolutionarytreetogetherwitha variancecovariancematrixofthebranchlengthestimatesbyusingtheprogram Estbranches (Thorneetal.,1998).Themaximumlikelihoodscoresobtainedin Baseml and Estbranches were thencomparedtocheckifbothapproacheswereabletooptimizethelikelihood.Thethird programweused, Multidivtime (Kishinoetal.,2001;ThorneandKishino,2002),approximates theposteriordistributionsofsubstitutionratesanddivergencetimesbyusingamultivariate normaldistributionofestimatedbranchlengths(providedhereby Estbranches )andrunninga MarkovchainMonteCarloprocedure.Twoconstraintsfortheageofnode32wereset:alower constraintof42.7Ma,andahigheroneof55.9Ma,representingtheextremevaluesobtainedfor thisnodebyLinder et al. (2003).Theothersettingsforthepriordistributionswere:50forboth rttm (meanofthepriordistributionforthetimeseparatingtheingrouprootfromthepresent) and rttmsd (theprior’sstandarddeviation),0.004forboth rtrate (meanofthepriordistributionforthe rateofmolecularevolutionattheingrouprootnode,calculatedbytakingthemeandistance betweentheingrouprootandtheingrouptipsobtainedfromestbranches)and rtratesd (theprior’s standarddistribution) . Brownmean (themeanofthepriordistibutionfortheBrownianmotion parameter„nu“,whichdeterminesthepermittedratechangebetweenancestralanddescendant nodes)wasinitiallyleftatthedefaultvalueof0.4.Later,wechangedthatvalueto0.02and repeatedtheanalysis,followingthemanual’srecommendationthat rttm multipliedwith„nu“ shouldbeabout1.Asthisdidnotaffectthedivergencetimeestimatessignificantly,wereport hereonlytheresultsfromthefirstanalysis. Brownsd ,theprior’sstandarddeviationwaschosen tobe0.4.Fortheparameter bigtime ,anumberthatshouldbesethigherthanthetimeunits betweenthetipsandtherootintheuser’swildestimagination,we’vechosenavalueof100. WerantheMarkovchainforatleast10 4cyclesandcollectedonesampleevery100 cycles,afteranunsampledburninof10 4 cycles.Weperformedeachanalysisatleasttwiceby usingdifferentinitialconditionstoassureconvergenceoftheMarkovchain,althoughitisnot possibletosaywithcertaintythatafinitesamplefromanMCMCalgorithmisrepresentativeof anunderlyingstationarydistribution(CowlesandCarlin,1996).

193

Statistical testing and lineage through time plots Thehypothesisthatthetestnodeagesobtainedarerelatedtothenumberoftaxasampled wastestedusingtheWilcoxonPairedSampletest,whichcomparesthenumberofinstancesin whichthelargersamplefindsanolderdatecomparedtothenumberoftimesitfindsayounger date.Thehypothesesthatchangesinageestimationarerelatedtothedistancefromthe calibrationpoint,andtothedegreeofsamplingofthesubcladesubtendedbyeachtestnode,were evaluatedusinglinearregressions.Thisallowedustostatisticallytestboththeextenttowhich thevariationinthedatawasaccountedforbytheregressionline,andalsowhethertheslopeof theregressionlinedeviatessignificantlyfromhorizontal.Allstatisticaltestswereconducted usingSPSS.Foreachanalysisalineagethroughtime(LTT)plot(Neeetal.,1992)was constructed.TherateconstancyoftheradiationinRestionaceaewastestedusingtheConstant RatestestofPybusandHarvey(2000),asimplementedinGammastatisticv1.0(Griebeler,2004).

194

Results Undersampling Allfourmethodsfindmoreorlessthesameagesforthe30testnodeswhenonly35taxa aresampled.However,whenmoretaxaaresampled,theageestimatesofthetestnodesdiverge rapidly(Figure2,Table3).Theproportionofspeciessampled(thustheproportionofnodes distaltothetestnodes)clearlyhasamajorimpactontheagesestimatedforthetestnodes(Figure 3).Forallfourmethodsthemeanestimatedagesofthenodesaresignificantlylesswithasparser taxonsamplingthanwhenalltaxaareincludedinthefinalcalculation.Thus,notincludingall taxainthesampleresultsina"younger"estimationofthetestnodeages.Furthermore,forall fourmethodsthedegreeofageunderestimationincreaseslogarithmicallywiththeproportionof undersampling(Figure3). However,taxonundersamplinghasverydifferenteffectsinthefourmethods.TheCL analysisandPLareonlyslightlyaffected:forthe35taxonsamplestheaverageagesusingCLare 91%,andusingPL88%,ofthoseobtainedwiththe300taxonsample.Theregressionline explainsonly73%ofthevariationinthesedataforCL,and72%inthecaseofPL.Whilstthe moresevereundersamplinginbothCLandPLresultedinsignificantagechange,inboththereis nosignificantchangeintheageestimatesbetweenthe150and300taxonsamplesforCL, suggestingthatat50%samplinganasymptotehadbeenreached,atleastforCL(thevaluesfor the150and300taxonsampleswereinferredforPL,andsotheasymptotecannotbecalculated). ForBayesianandNPRSanalysestheeffectsaremoredramatic,andnoageasymptoteis reached.Thusanychangeinsamplingresultedinsignificantlydifferentageestimations.For NPRSthe35taxonsampletheaverageageestimateisonly56%oftheestimatewiththe300 taxondataset,andforthefittedregressionliner2 =0.9804.ForBayesiananalysistheequivalent valuesare72%andr 2 =0.9819. Theregulardecreaseintheageestimationswithdecreasingsamplesizeisreflectedinthe verygoodfitofthedatatothelogarithmicregression,andindicatesthatthesepatternsarenot random. Distance from the calibration point ForNPRSandtheBayesiananalysisthereisasignificant(atp<0.01),positive,linear relationshipbetweenthedegreeofunderestimationoftheageofanodeanditsdistance(time) fromthecalibrationpoint,forthe35taxonsample(Figure4).Theslopeoftheregressionis somewhatsteeperforNPRSthanfortheBayesiananalysis,andalsoexplainsmoreofthe

195 variation(r 2 =0.9087comparedtor 2 =0.7534).Inboththesecasestheslopedeviates significantlyfromthehorizontal.Thusthemoredistantanodeisfromthecalibrationpoint,the moresensitiveitsageestimationistotheeffectsofundersampling.Andconversely,thecloserit istoitscalibrationpoint,thelesssensitiveitistotaxonundersampling.FortheNPRS35taxon analysis,themostdistanttestnodefromthecalibrationpointisdatedtoonly37.7%oftheage indicatedbythe300taxonsample(7insteadof18.7Mafornode5).Theseeffectsaremuchless severeintheBayesiananalysis,wherethisnodeisdatedto6.6insteadof10.4Ma(an underestimationof63%).Conversely,themostproximalnodeintheNPRS35taxonanalysisis estimatedtobe79%ofthevalueofthe300taxonsample(32.96insteadof41.66Ma). TheCLanalysisandPLarelesssensitivetothisdistanceeffect,andintheircasesthe regressionexplainsverylittleofthevariation(r2 =0.1469andr 2 =0.0344respectively). Interestingly,boththeseanalysesshowamuchwiderscatter,consistentwiththeassumptionofa moreclocklikemolecularvariation.Forboththeseanalysesneitherthevariationexplained,nor thedeviationoftheregressionslopefromhorizontal,issignificant. Impact of undersampling of individual clades Thesensitivityofthevariousmethodstovariationinthesamplingdensityoftheclades subtendedbyeachevaluatednodecannotberigorouslytestedfromourdata,sincemostofthese cladeswereratherpoorlysampledinthe35taxonsample.Formostcladeslessthan30percentof thespecieswereincluded,onecladeincludes50%ofthespecies,one63%,andoneallspecies. Nonetheless,itappearsasifthereisnorelationshipbetweenthesamplingdensityofthe individualclades,andtheageestimationoftheirsubtendingnodes(Figure5)foranyofthefour methodsused.Neitherthevarianceinthedata,northedeviationofslopeoftheregressionline fromhorizontal,issignificant,suggestingthatthesubcladesamplinghasnoimpactontheresults. Thusonlytheaveragesamplingdensityonthewholetreeunderinvestigationhasanimpacton theresults,notthesamplingdensityoftheindividualsubclades. Age estimates by the four methods Thefourmethodsresultinratherdifferentageestimates(Table3,Figure6)forthe300 taxondataset.Asexpected,theextremesareformedbyCLandNPRS.TheNPRSanalysis returnsresultsthatarebetween10and15millionyearsolder(thusuptodouble)theage estimatesoftheCLanalysis.Thissuggeststhatallthenodeshavebeenmadeolder,andthis couldonlybeachievedbyinterpretingthebasalbranchofthewholetree,betweenthecalibration pointandthefirstspeciationevents,asbeingmuchshorterthantheunsmootheddataindicates. BayesiananalysisandPLreturnintermediateagesforthenodes.However,forthenodesfurther 196 fromthecalibrationpoint,BayesianagesapproachthoseofPLandCL,whilenodesclosertothe calibrationpointaremoreintermediate.Themostextremedisparityisfoundinthemiddlesection ofthetree,forexamplenode10,whichCLdatesas9.28,Bayesianas14.04andNPRSas22.62 Ma,thusmorethantwofolddifferences. TheLTTplotsforthefourmethodsareremarkablydifferent(Figure7).Inallanalysesthe nodesareshiftedtowardsthebaseofthetree,indicatingthatwithtimethespeciationrateslowed down.ForNPRStheshiftishighlysignificant(p<0.01),forCLandPLweaklysignificant(p< 0.05),andforBayesianitisnotsignificant.

197

Discussion Thedifferencesinthenodeagesreportedbythedifferentmethods,andfordifferent samplingintensities,areremarkablylarge.Onaverage,thehighestageestimateforeachnodeis 2.09timeslargerthanthesmallestestimate,thisfactorrangesfromaminimumof1.41toa maximumof2.94.Thisindicatesapotentiallysubstantialsourceoferrorfordatingstudies.This errorisdeterminedbyboththeoverallsamplingdensityandthedistancefromthecalibration node. Suchlargedifferenceshavebeenreportedbefore.Forexample,Klak et al. (2004) reportedatwofolddifferenceintheageestimationofthestartoftheradiationtimeofthe AfricanRushioideaefortwodifferentgenes;however,onegenewassampledfortwiceasmany speciesastheothergene.Ourresultspointtothepossibilitythatthisdiscrepancymaynotdueto differencesinthemolecularevolutionofthetwogenes,buttodifferencesintaxonsampling. Undersampling Undersamplinghasasevereimpactontheresultsinratesmoothedanalyses,andwith increasingundersamplingtheimpactrapidlybecomesmoreextreme.WithNPRS,ataxon samplingof10%canresultinageestimatesthatarehalfofthecorrectvalue(assumingthat samplingallspeciesgivesthecorrectvalue).Thefittedcurvetotheundersamplingeffect indicatesthatitislogarithmic,whichmeansthatincreasingtheundersamplingmightincreasingly rapidlyexacerbatetheageunderestimation.Manyrecentstudiesincludedlessthan10%oftheir species,suggestingthattheycouldbepronetotheundersamplingerror. Althoughsamplingsignificantlyeffectsanalysesthathavelimited(PL)no(CL)rate smoothing,thiseffectinourstudieswaslessthan15%.ExperimentswithPL,involvingchanging thesmoothingparameter,showedthatdecreasingthesmoothingfunction λcomeswiththecost ofincreasedsensitivitytosamplingeffects(datanotshown).Itthereforedoesnotautomatically followthattheuseofPLwouldeliminatesamplingeffects.Inaddition,wedonotknowwhat happenswhenthesamplingislessthan10%,andwouldcautionagainstusingtheseresultsto suggestthatinallcircumstancesundersamplingcanbeaccommodatedbyusingCLorPL. Itismostlikelythattheeffectisnotduetosimpleundersampling.Inourexperimentswe addedonlynodesthatweredistaltothetestnodes(relativetothecalibrationnode),anditis possiblethatifnodeswereaddedbothproximallyanddistallytothetestnodes,theremightbeno undersamplingeffect.Addingonlyproximalnodesmightresultinthetestnodesbeingshifted downthetree(furtherintothepast).Thisshiftingofthenodesismanifestedaschangingage estimates.However,itisdifficulttoavoidbiasedsampling.Unbiasedsamplingisonlypossibleif 198 weknowtherelativetimepositionsofallthenodes,andcanselectthemtokeeptheproportions ofproximalanddistalnodesequal.Unfortunatelywedonotknowtheirrelativepositionswithout firstincludingalloftheminadatinganalysis.Randomsamplingdoesnothelp,sincerandomly selectedspeciesbiastowardsretrievingthedeepernodes(PybusandHarvey,2000). Furthermore,mostinvestigatorsareinterestedinestablishingtheageofapresetnumberofnodes, deepinsidethetree(e.g.thestartingageoftheradiationofRushioideae(Klaketal.,2004), Angiosperms(SandersonandDoyle,2001;Wikströmetal.,2001), Phylica (Richardsonetal., 2001))andthesenodescanonlyberetrievedifthetwobasalmostdescendentsofthenodeare includedintheanalysis.Thisforcesanunbalancedsampling. Furthermore,thevagariesofextinctionandspeciationarenotlikelytohavelefta temporallyevenlyspacedsetofsurvivingtaxa.Clustersofshortbranchlengthsinaphylogeny havebeenreportedinverydivergentgroups,suchascommelinidmonocots(Duvalletal.,1993) andspongedwellingsnappingshrimps(Morrisonetal.,2004).Consequentlywecannotestablish whatafullspeciessampleconstitutes,andsotheextentofundersamplingcannotbedetermined. Thusonlymethodsthatwouldminimizetheundersamplingeffectcanbeconsideredtoberobust. Sinceallmethodswetriedshowedsomeundersamplingeffect,itmightbeusefultosearchforan asymptote,aswasshownbytheCLandtoalesserextentthePLmethods. Distance from the calibration node Thereisaremarkablylinearrelationshipbetweenthedegreeofunderestimationofthe testnodeages,andthedistancesfromthecalibrationpointforNPRSandtheBayesiananalysis. Althoughaweaktrendisvisible,thereisnosignificantlinearrelationshipfortheCLandPL analyses. Thisargues,atleastinanalysesusingNPRSorBayesiananalysis,thatthecalibration nodesshouldbesituatedwithinthestudygroup,ashasbeensuggestedbyShaulandGraur (2002).Argumentsformultiplecalibrationpointsareusuallytoprotectagainsterrorsinsingle calibrationpoints(Lee,1999),andasecondstrongargumentisthatdatednodesaresoplacedin theproximityoffixednodes,thusreducingtheerrorthatmightaccumulateoverlongertime spans. Impact of undersampling of individual nodes Somewhatsurprisingly,weshowthattheageestimateforatestnodeisnotaffectedby howcompletethesamplingisforthecladesubtendedbythenode.Instead,theaveragelevelof samplingforthewholedatasetisofimportance.Thusthesamplingeffectcannotbeavoidedby samplingonecladeexhaustively,andleavinganumberofplaceholdersfortherestofthestudy 199 group.Clearlytheeffectsofsamplingdensityarespreadmoreorlessevenlyacrosstheingroup. Thisisadvantagousinthatgroupsthatarespeciespoor,possiblyduetoextinction,arenot intrinsicallyimpossibletodate,butitdoesargueagainststrategiesofsamplingagroupofinterest indetail,whiletherelatedgroupsareundersampled. Age and rate of diversification of Restionaceae Asthesamplingbecomesbetter,theageestimatesfortheAfricanRestionaceaediverge. Thusmoreandbetterdatadonotresultinaconvergencetoasinglepossiblycorrectanswer.This indicatesthatnotonlytaxonsampling,butalsothechoiceofalgorithm,isimportant. Theclockassumption(CL)isfairlyrobusttoundersamplingandtodistancefromthe calibrationnode,andshouldthereforebeusedwheneverpossible.However,iftheclock assumptionisrejected,asitwasforourRestionaceaedata,CLcannotbeused.OntheLTTplot, CLresultsina"wobbly"line(Figure7),whichcouldeitherbeinterpretedasavariablenet diversificationrate,orasviolationsoftheclock.Sincethelatterhasbeendemonstrated,wecan ignoretheseresults. NPRSreturnedremarkablydivergentresultsfromtheothermethodswithrespecttothe estimatedageofthenodes.Itsgreatsensitivitytobothsamplingeffectsandthedistancefromthe calibrationnodesuggestthatthedangerofoversmoothedresultsisreal.Moreremarkableisthe effectofNPRSontheLTTplot.Notonlydoestheradiationstartearlierthanpredictedbythe othermethods,buttheinitialphasesoftheradiationareinterpretedtobemuchmorerapidthan bytheothermethods,sothataconstantratestestshowsasignificantchangeinthenet diversificationrate.Theseresultsmaybedueto"oversmoothing"(Sanderson,2002a). BayesianandPLwerethemostresilienttoundersamplingwithourRestionaceaedata. Bothmethodsarecomputationallyveryintensive,andour300taxonBayesiananalysisrequired morethanfourweeksofcomputationtime.PossiblyPListhebest,sinceitisnotsensitivetothe distancefromcalibration,butwewerenotabletocompletethecrossvalidationanalysesto obtaintheoptimalsmoothingvaluesforthePLanalysesof150and300taxa.Theonlydifference betweenthetwomethodsistheestimationofthestartdateoftheradiation.Thus,whenaglobal clockassumptionisrejected,werecommendthateitherPLorBayesiananalysesshouldbeused. Beyond the Restionaceae Itisdifficulttogeneralizefromourresults,sincetheyarebasedontheresultsofasingle study.Generalitycanbeachievedbyusingsimulateddatasets,butthenwedon’tknowhowwell simulationswillmimictherealsituation.Wehavenotattemptedtoevaluateourresultswith simulateddatasets,largelybecauseoftheenormouscomputingeffortthatwouldbeneededto 200 analyseasufficientlylargesetofreplicates.However,ourresultsclearlydemonstratethatcaution isrequiredwhenusingratesmoothingmethods,andthatanunderstandingofthepotentialeffects ofsamplingandcalibrationpositiononageestimatesisaprerequisitetoanystudy.

201

References Briggs,B.G.,A.D.Marchant,S.Gilmore,andC.L.Porter.2000.Amolecularphylogenyof Restionaceaeandallies.Pp.661671 in K.L.WilsonandD.A.Morrison,eds.Systematicsand evolutionofmonocotsVol.1ofProceedingsoftheSecondInternationalConferenceonthe ComparativeBiologyoftheMonocots,Sydney,September1998.CSIRO,Melbourne.

Chase,M.W.,andV.A.Albert.1998.AperspectiveonthecontributionofplastidrbcLDNA sequencestoangiospermphylogenetics.Pp.488507in D.E.Soltis,P.S.SoltisandJ.J.Doyle, eds.MolecularsystematicsofplantsII:DNAsequencing.KluwerAcademicPublishers,Boston.

Chiang,T.,andB.A.Schaal.2000.MolecularevolutionoftheatpBrbcLnoncodingspacerof chloroplastDNAinthemossfamilyHylocomiaceae. Bot. Bull. Acad. Sin. 41 :8592.

Conti,E.,T.Eriksson,J.Schonenberger,K.J.Sytsma,andD.A.Baum.2002.Earlytertiaryout ofIndiadispersalofCrypteroniaceae:Evidencefromphylogenyandmoleculardating. Evolution 56 :19311942.

Cowles,M.K.,andB.P.Carlin.1996.MarkovchainMonteCarloconvergencediagnostics:A comparativereview. Journal of the American Statistical Association 91 :883904.

Cuénoud,P.,M.A.D.Martinez,P.A.Loizeau,R.Spichiger,S.Andrews,andJ.F.Manen.2000. Molecularphylogenyandbiogeographyofthegenus Ilex L.(Aquifoliaceae). Annals of Botany 85 :111122.

Davis,C.C.,C.D.Bell,S.Mathews,andM.J.Donoghue.2002.Laurasianmigrationexplains Gondwanandisjunctions:EvidencefromMalpighiaceae. Proceedings of the National Academy of Sciences of the United States of America 99 :68336837.

Duvall,M.R.,M.T.Clegg,M.W.Chase,W.D.Clark,W.J.Kress,H.G.Hills,L.E.Equiarte, J.F.Smith,B.S.Gaut,E.A.Zimmer,andG.H.Learn.1993.Phylogenetichypothesesforthe monocotyledonsconstructedfrom rbc Lsequencedata. Annals of the Missouri Botanical Garden 80 :607619.

Felsenstein,J.1981.EvolutionarytreesfromDNAsequences:amaximumlikelihoodapproach. Journal of Molecular Evolution 35 :292303.

Felsenstein,J.1993.PhylogenyInferencePackage(PHYLIP).UniversityofWashington,Seattle.

Gaut,B.S.1998.Molecularclocksandnucleotidesubstitutionratesinhigherplants. Evolutionary Biology 30 :93120.

Goloboff,P.A.1993.NONA.Publishedprivately,NewYork.

Graur,D.,andW.Martin.2004.Readingtheentrailsofchickens:moleculartimescalesof evolutionandtheillusionofprecision. Trends in Genetics 20 :8086.

Griebeler,E.M.2004.GammastatisticV1.0.InstitutfürZoologie,AbteilungÖkologie, JohannesGutenbergUniversität,Germany,Mainz.

Hedges,S.B.,andS.Kumar.2004.Precisionofmoleculartimeestimates. Trends in Genetics 20 :242247.

202

Hilu,K.W.,andH.P.Liang.1997.ThematKgene:Sequencevariationandapplicationinplant systematics. American Journal of Botany 84 :830839.

Kadereit,J.W.,E.M.Griebeler,andH.P.Comes.2004.QuaternarydiversificationinEuropean alpineplants:patternandprocess. Philosophical Transactions of the Royal Society London. B 359 :265274.

Kato,Y.,K.Aioi,Y.Omori,N.Takahata,andY.Satta.2003.Phylogeneticanalysesof Zostera speciesbasedonrbcLandmatKnucleotidesequences:Implicationsfortheoriginand diversificationofseagrassesinJapanesewaters. Genes & Genetic Systems 78 :329342.

Kishino,H.,andM.Hasegawa.1989.Evaluationofthemaximumlikelihoodestimateofthe evolutionarytreetopologiesfromDNAsequencedata,andthebranchingorderinHominoidea. Journal of Molecular Evolution 29 :170179.

Kishino,H.,J.L.Thorne,andW.J.Bruno.2001.Performanceofadivergencetimeestimation methodunderaprobabilisticmodelofrateevolution. Molecular Biology and Evolution 18 :352 361.

Klak,C.,G.Reeves,andT.A.Hedderson.2004.UnmatchedtempoofevolutioninSouthern Africansemideserticeplants. Nature 427 :6365.

KosakovskyPond,S.L.,S.V.Muse,andS.D.W.Frost.2004.HyphyPackage:Hypothesis TestingusingPhylogenies

Lee,M.S.Y.1999.Molecularclockcalibrationsandmetazoandivergencedates. Journal of Molecular Evolution 49 :385391.

Linder,H.P.1991.AreviewofthesouthernAfricanRestionaceae. Contributions from the Bolus Herbarium 13 :209264.

Linder,H.P.2001.TheAfricanRestionaceae.ContributionsfromtheBolusHerbarium,Cape Town.

Linder,H.P.2003.TheradiationoftheCapeflora,southernAfrica. Biological Reviews 78 :597 638.

Linder,H.P.,P.Eldenäs,andB.G.Briggs.2003.ContrastingpatternsofradiationinAfricanand AustralianRestionaceae. Evolution 57 :26882702.

Maddison,W.P.,andD.Maddison.2003.Mesquite

Manen,J.,A.Natali,andF.Ehrendorfer.1994.PhylogenyofRubiaceaeRubieaeinferredfrom thesequenceofacpDNAintergeneregion. Plant Systematics and Evolution 190 :195211.

Morrison,C.L.,R.Rios,andJ.E.Duffy.2004.Phylogeneticevidenceforanancientrapid radiationofCaribbeanspongedwellingsnappingshrimps(Synalpheus). Molecular Phylogenetics and Evolution 30 :563581.

Nagy,Z.T.,U.Joger,M.Wink,F.Glaw,andM.Vences.2003.Multiplecolonizationof MadagascarandSocotrabycolubridsnakes:evidencefromnuclearandmitochondrialgene phylogenies. Proceedings of the Royal Society of London Series B-Biological Sciences 270 :2613 2621.

203

Nee,S.,A.O.Mooers,andM.Harvey.1992.Tempoandmodeofevolutionrevealedfrom molecularphylogenies. Proceedings of the National Academy of Science of the United States of America 89 :83228326.

Nixon,K.C.1999.Theparsimonyratchet,anewmethodforrapidparsimonyanalysis. Cladistics 15 :407414.

Nixon,K.C.2002.WinClada.Publishedbytheauthor,Ithaca,NY.

Percy,D.M.,R.D.M.Page,andQ.C.B.Cronk.2004.Plantinsectinteractions:doubledating associatedinsectandplantlineagesrevealsasynchronousradiations. Systematic Biology 53 :120 127.

Posada,D.,andK.A.Crandall.1998.MODELTEST:testingthemodelofDNAsubstitution. Bioinformatics 14 :817818.

Pybus,O.G.,andP.H.Harvey.2000.Testingmacroevolutionarymodelsusingincomplete molecularphylogenies. Proceedings of the Royal Society of London Series B-Biological Sciences 267 :22672272.

Rambaut,A.,andM.Charleston.2004.TreeEdit:Anapplicationfororganising,viewingand manipulatingsetsofphylogenetictrees.Publishedprivately,Oxford.

Richardson,J.E.,F.M.Weitz,M.F.Fay,Q.C.B.Cronk,H.P.Linder,G.Reeves,andM.W. Chase.2001.RapidandrecentoriginofspeciesrichnessintheCapefloraofSouthAfrica. Nature 412 :181183.

Sanderson,M.J.1997.Anonparametricapproachtoestimatingdivergencetimesintheabsence ofrateconstancy. Molecular Biology and Evolution 14 :12181231.

Sanderson,M.J.2002a.Estimatingabsoluteratesofmolecularevolutionanddivergencetimes: Apenalizedlikelihoodapproach. Molecular Biology and Evolution 19 :101109.

Sanderson,M.J.2002b.r8s.Publishedprivately,Davis.

Sanderson,M.J.,andJ.A.Doyle.2001.Sourcesoferrorandconfidenceintervalsinestimating theageofangiospermsfrom rbc Land18SrDNAdata. American Journal of Botany 88 :1499 1516.

Scholtz,A.1985.ThepalynologyoftheupperlacustrinesedimentsoftheArnotPipe,Banke, Namaqualand. Annals of the South African Museum 95 :1109.

Shaul,S.,andD.Graur.2002.Playingchicken( Gallus gallus ):methodologicalinconsistenciesof moleculardivergencedateestimatesduetosecondarycalibrationpoints. Gene 300 :5961.

Simmons,M.P.,andH.Ochoterena.2000.Gapsascharactersinsequencebasedphylogenetic analyses. Systematic Biology 49 :369381.

Simmons,M.P.,K.M.Pickett,andM.Miya.2004.HowmeaningfulareBayesiansupport values? Molecular Biology and Evolution 21 :188199.

Swofford,D.L.2002.PAUP*:PhylogeneticAnalysisUsingParsimony(*andothermethods). Version4.SinauerAssociates,Sunderland,Massachusetts.

204

Taberlet,P.,L.Gielly,G.Patou,andJ.Bouvet.1991.Universalprimersforamplificationof threenoncodingregionsofchloroplastDNA. Plant Molecular Biology 17 :11051109.

Takezaki,N.,A.Rzhetsky,andM.Nei.1995.Phylogenetictestofthemolecularclockand linearizedtrees. Molecular Biology and Evolution 12 :823833.

Taylor,H.C.1978.Capensis.Pp.171229 in M.J.A.Werger,ed.Biogeographyandecologyof southernAfrica.Junk,TheHague.

Thompson,J.D.,T.J.Gibson,F.Plewniak,F.Jeanmougin,andD.G.Higgins.1997.The CLUSTALXwindowsinterface:flexiblestrategiesformultiplesequencealignmentaidedby qualityanalysistools. Nucleic Acids Research 25 :48764882.

Thorne,J.L.,andH.Kishino.2002.Divergencetimeandevolutionaryrateestimationwith multilocusdata. Systematic Biology 51 :689702.

Thorne,J.L.,H.Kishino,andI.S.Painter.1998.Estimatingtherateofevolutionoftherateof molecularevolution. Molecular Biology and Evolution 15 :16471657.

Vinnersten,A.,andK.Bremer.2001.AgeandbiogeographyofmajorcladesinLiliales. American Journal of Botany 88 :16951703.

Wikström,N.,V.Savolainen,andM.W.Chase.2001.Evolutionoftheangiosperms:calibrating thefamilytree. Proceedings of the Royal Society of London Series B-Biological Sciences 268 :22112220.

Yang,Z.1997.PAML:Aprogrampackageforphylogeneticanalysisbymaximumlikelihood. CABIOS or Computer Applications in the Biosciences 13 :555556.

Yoder,A.D.,andZ.H.Yang.2000.Estimationofprimatespeciationdatesusinglocalmolecular clocks. Molecular Biology and Evolution 17 :10811090.

Young,N.D.,andJ.Healy.2001.GapCoder:Acomputerprogramforincludingindelsin phylogeneticanalysis.Publishedprivately

205

Tables Table1. Percentageofspeciessampledateachselectednodeforeachsamplingrun.Thesecond columngivesthetotalnumberofspeciessubtendedbyeachselectednode,thesubsequent columnsthepercentofthesespeciessampled.

Total 35 51 80 100 120 150 300 Nodes species taxon taxon taxon taxon taxon taxon taxon 1 4 50 50 50 50 75 75 100 2 39 5 13 31 33 36 41 100 3 47 9 15 30 34 38 45 100 4 50 4 10 18 24 30 44 100 5 11 18 18 27 36 36 55 100 6 61 7 11 20 26 31 49 100 7 108 7 14 24 30 34 47 100 8 2 100 100 100 100 100 100 100 9 110 9 15 25 31 35 48 100 10 3 67 100 100 100 100 100 100 11 113 11 18 27 33 37 50 100 12 4 50 100 100 100 100 100 100 13 117 12 21 30 35 39 51 100 14 31 6 10 23 35 42 45 100 15 30 7 10 20 33 43 53 100 16 61 7 10 21 34 43 49 100 17 2 100 100 100 100 100 100 100 18 63 10 13 24 37 44 51 100 19 180 11 17 28 36 41 51 100 20 12 17 33 33 33 42 50 100 21 192 11 18 28 35 41 51 100 22 49 4 10 16 22 37 51 100 23 12 17 17 25 33 33 33 100 24 61 7 11 18 25 34 48 100 25 253 10 17 26 33 40 50 100 26 9 22 22 33 33 44 44 100 27 262 11 17 26 33 40 50 100 28 11 18 18 27 36 36 45 100 29 273 11 17 26 33 40 50 100 30 274 11 17 26 33 40 50 100 31 24 8 8 25 29 29 46 100

206

Table2. ResultsofModeltest,clocktests,andthepenalizedlikelihood(PL)crossvalidationprocedureforeachofthesevennestedtaxonsamplings. Valueswithasterisk:attemptstodetermineoptimalsmoothingvaluefailed;therefore,threezeroorpositivevalueswerechosen(consistentwiththe rangeofvaluesdeterminedforthesmallerdatasets)tobrackettherangeofprobablevalues.

35taxon 51taxon 80taxon 100taxon 120taxon 150taxon 300taxon

Modeltest GTR+G+I GTR+G+I GTR+G+I GTR+G+I GTR+G+I GTR+G+I GTR+I results

rejected rejected rejected rejected rejected rejected rejected LRtest:clock (X 2=106.5, (X 2=145.0, (X 2=234.0, (X 2=308.7, (X 2=329.6, (X 2=4830.3, (X 2=7297.2, df=33, P<0.01) df=49, P<0.01) df=78, P<0.01) df=98, P<0.01) df=118, P<0.01) df=148, P<0.01) df=298, P<0.01)

PLsmoothing 5.0(4.56.0were 6.5 4.0 5.0 1.5 0.0,3.5,6.5* 0.0,3.5,6.5* value(log10) equallyoptimal)

207

Table3. Meannodeagesinmillionsofyearsobtainedforthefourdifferentmoleculardating methodswiththesevendifferentsamplingstrategies.ThePLvaluesfor150and300taxonwere predictedfromthe35120taxonsamplesbyoptimalregression(seemethods).CL:assuminga global,constantclock;PL:Penalizedlikelihood;Bayes:Bayesian;NRS:nonparametricrate smoothing,

35 51 80 100 120 150 300 Nodes Methods taxon taxon taxon taxon taxon taxon taxon CL 7.56 7.72 7.98 8.50 9.23 8.56 8.81 PL 7.65 7.81 7.96 8.60 8.36 8.43 8.80 1 Bayes 6.53 7.04 7.99 9.22 8.65 10.77 13.38 NPRS 7.82 10.26 11.56 13.79 14.13 14.94 19.20 CL 10.48 10.61 10.77 10.91 11.09 10.68 11.10 PL 10.52 10.58 10.69 10.92 10.14 10.23 10.67 2 Bayes 9.47 10.04 11.52 12.01 12.19 13.26 15.90 NPRS 10.40 13.26 15.08 17.96 18.58 20.28 24.81 CL 12.12 12.58 12.96 13.15 13.71 13.30 13.61 PL 12.16 12.52 12.86 13.17 12.70 12.81 13.36 3 Bayes 11.09 11.92 13.52 14.06 14.45 15.70 18.20 NPRS 12.12 15.85 17.62 20.36 21.11 22.98 27.00 CL 12.18 13.45 13.34 13.64 14.07 13.76 14.14 PL 12.40 13.47 13.44 13.56 12.87 12.98 13.54 4 Bayes 10.79 11.55 12.81 13.09 13.46 14.80 16.76 NPRS 11.97 15.49 16.89 18.15 19.31 21.56 25.53 CL 7.94 8.27 9.86 10.03 10.31 9.99 9.81 PL 7.90 8.22 9.74 9.89 9.25 9.33 9.73 5 Bayes 6.65 7.12 9.06 9.34 9.64 10.55 13.54 NPRS 7.00 8.65 11.62 12.01 12.94 14.79 18.72 CL 12.77 13.45 13.59 13.64 14.07 13.76 14.14 PL 12.74 13.47 13.66 13.56 12.87 12.98 13.54 6 Bayes 11.47 12.35 13.33 13.72 14.13 15.51 18.61 NPRS 12.36 15.49 17.16 18.15 19.31 21.56 25.53 CL 14.45 15.10 15.28 15.48 16.04 15.58 15.90 PL 14.47 15.04 15.34 15.49 14.92 15.05 15.70 7 Bayes 13.44 14.36 15.59 16.11 16.54 17.85 20.37 NPRS 14.48 18.84 19.94 22.63 23.45 25.36 28.97 CL 9.00 9.18 9.33 9.36 9.71 9.43 13.45 PL 9.16 9.38 9.49 9.53 9.31 9.39 9.80 8 Bayes 8.94 9.48 10.26 10.67 10.96 11.80 13.33 NPRS 9.76 12.73 13.51 15.56 16.34 18.06 21.83 CL 15.12 15.64 15.76 15.93 16.54 16.16 16.62 PL 15.20 15.53 15.80 15.93 15.58 15.72 16.39 9 Bayes 14.45 15.27 16.52 17.01 17.52 18.88 21.58 NPRS 15.60 19.95 20.87 23.60 24.50 26.38 29.91 10 CL 8.98 9.18 9.25 9.27 9.61 9.29 9.28 PL 9.00 9.24 9.36 9.40 9.27 9.35 9.75 208

Bayes 9.21 9.79 10.66 11.02 11.37 12.29 14.04 NPRS 9.76 12.88 13.77 15.98 16.83 18.67 22.62 CL 15.63 16.09 16.21 16.40 17.05 16.66 17.05 PL 15.78 16.06 16.30 16.41 16.13 16.27 16.97 11 Bayes 15.38 16.14 17.42 17.96 18.53 19.93 22.76 NPRS 16.41 20.81 21.70 24.51 25.42 27.26 30.70 CL 14.20 13.61 14.06 13.90 14.60 14.13 14.05 PL 14.20 13.86 14.00 14.08 14.38 14.51 15.13 12 Bayes 14.50 14.92 16.11 16.72 17.16 18.34 20.16 NPRS 15.62 19.54 20.43 23.20 24.15 25.95 29.35 CL 16.66 17.13 17.64 17.53 18.38 17.96 18.12 PL 16.80 17.18 17.50 17.61 17.69 17.85 18.61 13 Bayes 16.83 17.77 19.13 19.78 20.36 21.77 24.46 NPRS 17.96 22.65 23.53 26.42 27.34 29.07 32.26 CL 10.92 11.23 12.39 13.30 14.25 13.81 12.71 PL 10.92 11.54 12.82 13.50 14.22 14.35 14.96 14 Bayes 11.66 12.60 14.19 15.43 15.99 16.86 18.53 NPRS 12.64 15.96 17.66 21.21 22.70 24.15 24.14 CL 14.16 14.84 15.21 15.11 15.84 15.58 15.17 PL 14.29 14.90 15.48 15.62 16.07 16.21 16.91 15 Bayes 14.55 15.34 16.35 17.21 17.63 18.55 19.73 NPRS 16.04 20.01 20.46 23.99 25.43 26.95 29.80 CL 15.71 16.36 16.77 17.17 17.90 17.56 16.83 PL 15.81 16.51 17.05 17.31 18.07 18.23 19.01 16 Bayes 16.36 17.31 18.38 19.31 19.79 20.83 22.16 NPRS 17.85 22.29 22.78 26.15 27.38 28.88 31.58 CL 13.57 14.33 14.43 14.35 15.16 15.95 14.58 PL 13.68 14.11 14.47 14.78 15.40 15.54 16.20 17 Bayes 14.58 15.43 16.48 17.09 17.50 18.43 19.11 NPRS 15.80 19.62 20.39 23.09 24.10 25.46 28.35 CL 18.58 19.22 19.68 19.94 21.29 20.61 19.97 PL 18.75 19.35 19.80 20.18 20.96 21.15 22.05 18 Bayes 19.35 20.35 21.70 22.49 23.06 24.25 25.67 NPRS 21.00 25.55 26.46 29.43 30.39 31.86 34.51 CL 19.35 19.99 20.42 20.62 21.77 21.23 21.03 PL 19.48 20.03 20.43 20.80 21.55 21.74 22.68 19 Bayes 20.29 21.31 22.73 23.50 24.08 25.35 27.04 NPRS 21.73 26.28 27.25 30.15 31.05 32.51 35.17 CL 15.59 15.83 16.05 16.17 16.95 16.30 16.16 PL 15.52 15.83 16.02 16.31 17.05 17.20 17.94 20 Bayes 17.02 17.95 19.08 19.78 20.38 21.55 23.09 NPRS 18.10 22.14 22.88 25.66 26.65 28.26 32.03 CL 20.24 20.91 21.15 21.60 22.51 21.98 21.89 PL 20.20 20.95 21.02 21.62 22.23 22.43 23.39 21 Bayes 21.47 22.36 23.82 24.69 25.19 26.48 28.47 NPRS 22.84 27.25 28.10 30.98 31.82 33.22 35.86 CL 12.59 14.62 14.61 15.52 16.12 15.48 15.21 PL 12.74 14.81 14.85 15.68 15.26 15.39 16.06 22 Bayes 13.63 14.96 16.10 16.92 17.55 18.32 22.19 NPRS 14.72 17.74 18.34 22.07 22.49 24.31 27.53 209

CL 13.04 13.56 13.59 14.49 15.02 14.57 14.93 PL 13.20 13.97 13.63 14.59 15.57 15.71 16.38 23 Bayes 15.43 16.41 17.75 18.42 18.85 19.96 18.29 NPRS 16.44 20.18 21.40 24.72 25.46 27.21 30.74 CL 17.68 19.02 19.37 20.27 21.07 20.84 20.80 PL 17.86 19.11 19.45 20.29 20.72 20.90 21.80 24 Bayes 19.59 20.70 22.29 23.27 23.71 25.21 27.01 NPRS 20.93 25.24 26.33 29.45 30.19 31.86 34.56 CL 20.94 21.88 22.00 22.61 23.56 23.03 23.15 PL 20.98 21.77 21.93 22.58 23.25 23.46 24.46 25 Bayes 22.50 23.54 25.03 25.97 26.49 27.78 30.07 NPRS 23.70 28.28 29.44 31.98 32.80 34.13 36.69 CL 18.11 18.75 18.32 18.76 19.93 19.37 19.88 PL 18.20 18.64 18.40 18.68 19.98 20.16 21.02 26 Bayes 18.97 19.83 21.23 22.06 22.88 24.00 26.16 NPRS 20.10 24.37 25.39 28.24 29.23 30.66 33.87 CL 21.25 22.15 22.23 22.90 23.79 23.20 23.36 PL 21.28 22.03 22.14 22.78 23.47 23.68 24.70 27 Bayes 23.14 24.17 25.68 26.61 27.14 28.44 30.97 NPRS 23.99 28.55 29.44 32.22 33.04 34.35 36.69 CL 22.89 23.32 21.86 22.26 22.91 22.36 22.50 PL 22.78 22.79 21.58 22.24 23.75 23.96 24.99 28 Bayes 26.07 26.69 27.25 27.95 28.17 29.09 30.33 NPRS 26.91 30.61 30.55 32.65 33.37 34.56 37.31 CL 27.10 27.77 27.71 28.39 29.10 28.48 28.24 PL 26.90 27.28 27.36 28.01 29.15 29.41 30.67 29 Bayes 29.99 30.74 31.89 32.86 33.10 34.06 35.49 NPRS 30.37 34.07 34.83 36.93 37.54 38.51 40.31 CL 29.35 29.72 29.80 30.26 31.07 30.47 30.12 PL 29.44 29.67 29.74 30.23 31.31 31.59 32.95 30 Bayes 32.45 33.08 34.18 35.04 35.33 36.21 38.36 NPRS 32.96 36.16 36.92 38.68 39.24 40.06 41.66

210

Figures

Figure1. Cladogramusedinthisstudy.Specieslistedarethoseusedinthe35taxonanalysis. Theblackcircleisthecalibrationnode,thenumberedopencirclesarethetestnodes.

211

Figure2. Acomparisonoftheactualagesreturnedbythefourdifferentmoleculardating methodsforthesevennestedtaxonsamples.Thexaxisgivesthenumberoftaxasampled,they axistheaverageageofthe30testnodes.Diamonds:NPRS,squares:Bayesian;crosses:PLand triangles:CL.

212

Figure3. Effectofthespeciessamplingdensityontheaveragetestnodeageestimated,forthe fourdifferentmoleculardatingmethods.Thexaxisisthetaxonsamplesize.Theyaxisindicates, foreachmethod,theaverageproportionofthe300taxonsampleageobtainedforeachspecies samplesize.

213

Figure4. Proportionofnodeageunderestimationrelativetodistancefromthecalibrationpoint. Thexaxisindicatesthetimebetweenthetestnodeandthecalibrationnode,calculatedwitheach methodbasedonthe300taxonsample.Theyaxisrepresentstheproportionoftheageobtained withthe35taxonsampleoftheageobtainedwiththe300taxonsample,foreachmethodof analysis.ForbothBayesandNPRStheslopedeviatessignificantly(atp<0.01)from0,andthe r2issignificantatthesamepvalue.

214

Figure5. Differentialeffectsofsamplingoneachtestnodeindividuallyinthe35taxonanalysis, forthefourdifferentmoleculardatingmethodsused.Thexaxisindicatestheproportionofthe speciessampledaboveeachnode.Theyaxisrepresentsthepercentageofageundersamplingfor eachnode.

215

Figure6. Comparisonoftheaveragenodalagesestimatedbythefourdifferentmoleculardating methodsforthe300taxonsample.ThenodesarenumberedasinFigure1.

216

Figure7. Lineagethroughtimeplotsfor300taxa,usingfourdifferentmoleculardatingmethods. Squares:NPRS,triangles:Bayesian,crosses:PL,anddiamonds:CL.NotethatthePLvaluesfor the300taxonsamplewereestimated.

217

218 General summary

Thesixchaptersthatcomposethisdissertationareallrelatedtovariousaspectsof moleculardating,rangingfrommoremethodologicalandexperimentalworktotheapplicationof differentmethodsinthecontextofbiologicalandevolutionaryquestionsandhypotheses. Thefirstchapterrepresentsanuptodatereviewonthemostcommonmoleculardating methods,whichprovidespracticalinformationandusefulcomparisontablesintendedfor researcherslookingfortheirmethodofchoiceanditsadvantagesanddrawbacks.Inaddition,the reviewprovideslinkstothemostrecentandimportantliteratureonmoleculardating. Inthesecondchapter,weusedevidencederivedfrommoleculardatingtotesttheoutof IndiahypothesisforCrypteroniaceae,asmallgroupofSoutheastAsiantropicalrainforesttrees. Accordingtothisbiogeographicscenario,CrypteroniaceaewereamongotherGondwanantaxa thathavebeencarriedfromGondwanatoAsiabyraftingontheIndianplateasitmovedalong theAfricancontinent,fromwheretheydispersed“outofIndia”intoSouthandSoutheastAsia, afterIndiacollidedwiththeAsiancontinentintheEarlyTertiary.Wetestedthevalidityofthis hypothesisbyinferringtheageofCrypteroniaceaebasedonMaximumLikelihoodanalysesof threechloroplastDNAregions( rbc L, nhd F,and rpl 16intron)andusingbothclockbased (LangleyFitch)andclockindependentageestimates(NonParametricRateSmoothingand PenalizedLikelihood).OurdatingresultsindicatedanancientGondwananoriginof CrypteroniaceaeintheEarlytoMiddleCretaceous,followedbydiversificationontheIndian plateintheEarlyTertiaryandsubsequentdispersaltoSoutheastAsia.Thesefindingswere congruentwithrecentmolecular,paleontological,andbiogeographicresultsinvertebrates. ThethirdchapterrepresentsareplytoRobertG.Moyle(2004),whoreanalyzeddata publishedinanearlierpaperontheoutofIndiahypothesisforCrypteroniaceae(Conti et al. , 2002).ByusingadifferenttaxonsamplingandanothercalibrationpointthanConti et al. (2002), MoyleconcludedthattheoutofIndiahypothesisforCrypteroniaceaehadtoberejected.Inour reply,wedefendedtheanalysisbyConti et al. (2002),highlightedsomeweaknessesinMoyle’s analyticalprocedure,andofferedinthesametimesomegeneralreflectionsonthecontroversial issueofcalibrationinmoleculardatinganalyses. Thefourthchapterisabouttherelativelysmallgroupoftreesandshrubswhichbelongto theSouthandEastAfricanPenaeaceae,Oliniaceae,andRhynchocalycaceae,allcloselyrelatedto theCrypteroniaceaetreatedinchapterstwoandthree(orderMyrtales).Chronogramsinferredin previousstudiesrevealedlongstembranchesforbothPenaeaceaeandOliniaceae,indicatinga longtimeperiodbetweentheoriginanddiversificationoftheselineages.Thechronogramsalso

219 suggestedthatthislongphasewasfollowedbyarelativelyshortepisodewithrapid diversification,especiallywithinPenaeaceae.Inordertoreconstructthetempo,mode,and possiblereasonsofdiversificationoftheseplantgroups,weperformedphylogeneticand moleculardatinganalysesbasedoneightchloroplastandthreenucleargenesequences,followed bystatisticalevaluationoflineagesthroughtimeplotsandMaximumLikelihoodreconstructions oftheancestralcharacterstatesforleafsizeandvegetationtype.Weshowedthatthecrown radiationofPenaeaceaestartedabout17millionyearsago,followingtheinitiationofaclimatic trendtowardsthemodernseasonallycoldandaridconditionsintheCapeFloristicRegion.Our ancestralcharacterstatereconstructionsindicategeneralshiftsfromtropicaltofynbosvegetation types,andfrommacrotoleptophyllousleaves,corroboratingthehypothesisthatmodernspecies, adaptedtolownutrientsoilsandsummeraridity,replacedanancestraltropicalfloraduringthe LateMiocenearidification. Inthefifthchapter,weaddressedoneofthecrucialchallengesinmoleculardating:the problemoffossilcalibration,ormoreprecisely:theuncertaintythatoftensurroundsthe assignmentoffossilstospecificnodesinaphylogeny.WeusedBayesianmoleculardatingand thefossilcrossvalidationprocedureofNearandSanderson(2004)inanovelwaytoassess uncertaintyinfossilnodalassignment.Morespecifically,byusinganexpandedMyrtalesdataset andsixfossilswithalternativeassignments,weidentifiedthethreemostcongruentcalibration setsbycomparingtheconsistenciesof72multiplecalibrationsetsavailableforourstudy.The threeselectedcalibrationsetswerecharacterizedbylowerstandarddeviationsassociatedwith theirestimateddivergencetimes. Finally,inthesixthchapter,wetestedthesensitivityofthreecommonlyusedmolecular datingmethodstotaxonsampling(NonParametricRateSmoothing,PenalizedLikelihood,and Bayesiandatingwithmultidivtime).Byusinganearlycompletesampleofthe Restio cladeofthe AfricangrasslikeRestionaceae(300species,including26outgroupspecies),weformednested subsetsof35,51,80,120,and150speciesandperformedmoleculardatinganalysesbasedonthe fulldatasetandallthesubsets.Wethencomparedtheimpactofthedifferentdatasetsizesand datingmethodsontheageestimates.Ourdatingexperimentsshowedthatallmethodswere sensitivetoundersampling,dependingontheamountofratesmoothingusedinthedating analyses.Inaddition,weobservedthattheundersamplingeffectwaspositivelyrelatedtothe distancefromthecalibrationnode.Finally,weobservedthatbothPenalizedLikelihoodand BayesiandatingmethodsarelesssensitivetoundersamplingthanNonParametricRate Smoothing.

220 Zusammenfassung

DiesechsKapiteldervorliegendenDissertationbefassensichallemitverschiedenen AspektenvonmolekularenDatierungsmethoden,englisch molecular dating methods genannt. DabeireichtdieSpannweitederbehandeltenThemenvonexperimentellenUntersuchungender MethodenselbstbishinzurpraktischenAnwendungdermolekularenAltersbestimmungfürdie AufklärungvonbiologischenundevolutionsgeschichtlichenFragen. DasersteKapitelstellteineaktuelleBeschreibungdermeistenheutegebräuchlichen molekularenDatierungsmethodendarundbietetdeminteressiertenLeserpraktische InformationenundVergleichstabellen.SowerdenzumBeispieldiespezifischenVorund NachteilederMethodenbesprochenundHinweiseaufdieaktuellsterelevanteLiteraturzum Themagegeben. ImzweitenKapitelwerdenmolekulareDatierungsmethodenbenützt,umdie VerbreitungsgeschichtederCrypteroniaceen,einerkleinenGruppevonsüdundsüdost asiatischenRegenwaldbäumen,zuuntersuchen.Dabeiwurdediesogenannte Out-of-India Hypothesegetestet,welchepostuliert,dassdieCrypteroniaceensichinderspätenKreidezeitvon Afrika(dasdamalsTeildesSuperkontinentsGondwanawar)aufdieindischenKontinentalplatte ausgebreitethabenundmitdieserdurchKontinentaldriftnachAsiengelangtsind.Gemässdieser HypothesehabensichdiePflanzendannspäter,imfrühenTertiär,alsdieindische KontinentalplatteaufAsienstiess, Out-of-India nachSüdundSüdostasienausgebreitet.Wir testetendiesesSzenario,indemwirdasphylogenetischeAlterderCrypteroniaceenbestimmten. DazurekonstruiertenwirzuerstdenStammbaumderCrypteroniaceenmittelsMaximum Likelihood AnalysenvondreiDNAAbschnittendesChloroplastenGenoms( rbc L, nhd F,und rpl 16intron)undbenütztenanschliessenddreiverschiedenemolekulareDatierungsmethoden (Langley-Fitch, Non Parametric Rate Smoothing und Penalized Likelihood )zur Altersbestimmung.UnsereDNAbasiertenDatierungsresultatezeigten,dassderUrsprungder CrypteroniaceentatsächlichaufdiefrühebismittlereKreidezeitzurückgehtunddasssichdiese ArtenwieimSzenariobeschriebenüberdiedriftendeindischeKontinentalplattenachAsien verbreitethabenkönnten.DieserBefundwirdübrigensdurchneueremolekulareund paläontologischeErkenntnissebeiverschiedenenWirbeltiergruppengestützt. DasdritteKapitelstelltdieAntwortaufeinenkritischenArtikelvonRobertG.Moyle (2004)dar,derAltersbestimmungenauseinerfrüherenArbeitüberdie Out-of-India Hypothese vonConti et al. (2002)wiederholteunddieseanzweifelte.DurchVerwendungeinesanderen KalibrierungspunktesinseinermolekularenDatierungkamMoylezumSchluss,dasssichdie

221

CrypteroniaceennichtdurchKontinentaldrift,sondernreinzufälligdurch long distance dispersal nachAsienausgebreitethätten.InunsererAntwort,welchegleichzeitigmitMoylesKritikim International Journal of Organic Evolution erschien,verteidigtenwirdieAnalysenvonContiet al. (2002),wiesenaufeinigegravierendeSchwächeninMoylesAnalysenhinunddiskutierten daskontroverseGebietderKalibrierungbeidermolekularenAltersbestimmung. ImviertenKapiteluntersuchtenwireinekleineGruppevonnahverwandtensüdund ostafrikanischenBäumenundSträuchern,diePenaeaceen,OliniaceenundRhynchocalycaceen. DiesePflanzensindalleengverwandtmitdenasiatischenCrypteroniaceen(sieheKapitelzwei unddrei)undgehörenzurOrdnungMyrtales.DatierteStammbäume,sogenannte Chronogramme,zeigteninfrüherenStudien,dassdiePenaeaceenundOliniaceenwährendeiner langenZeitperiodevonüber40MillionenJahrenDauerkeineneuenArtengebildethabenoder dieseeinerhohenSterberateunterworfenwaren.Erstvoretwa20MillionenJahrennahmdie Artenzahldannplötzlichmassivzu.UmdieseserstaunlicheDiversifikationsmusterzeitlich genauerzuuntersuchenunddiemöglichenUrsachendafüraufzuklären,führtenwir phylogenetischeUntersuchungenundmolekulareAltersbestimmungendurch,dieaufachtGenen ausdemChloroplastenGenomunddreinukleärenGenenberuhten.Anschliessendstelltenwir lineages through time plots aufundrekonstruiertenmit Maximum Likelihood Verfahrendie mutmassliche,ursprünglicheBlattgrösseunddenursprünglichbevorzugtenVegetationstypder VorfahrenderuntersuchtenPflanzen.Wirkonntenzeigen,dassdiePhasederintensiven Artbildungvoretwa17MillionenJahrenbegannundvermutlichdurcheineKlimaänderungin Südafrikaausgelöstwurde,diederKapRegioneinsaisonales,mediterranesKlimamit niederschlagsreichenWinternundheissen,trockenenSommernbrachte.Unsere Rekonstruktionenergabenferner,dassdiePflanzenimVerlaufeihrerevolutivenEntwicklungdie BlätterverkleinerthabenundsichvoneinemursprünglichtropischenHabitatandieheute vorherrschendemediterraneFynbosVegetationangepassthaben.DieseMerkmalsänderungen sindalsAnpassungenandiesommerlicheTrockenheitunddienährstoffarmenBödenzu verstehen,diesichimspätenMiozäninSüdafrikaentwickelten. ImfünftenKapitelgehtesumdasobenbereitserwähnteundumstritteneThemader Kalibrierungder„molekularenUhr“beiderDurchführungderAltersbestimmung.Dadie DatierungsresultateimWesentlichenvonderKalibrierungabhängigsind,handeltessichumein äusserstdelikatesThema.ImDetailgehtesumdieSchwierigkeit,dieFossilien,dieman normalerweisezumKalibrierenverwendetundderenAltermanungefährkennt,präziseden zugehörigenKnotenpunkteneinesStammbaumeszuzuordnen.WirgingendiesesProbleman, indemwirdie Bayesian dating MethodezusammenmitdervonNearundSanderson(2004) erstmalsbeschriebenenfossil cross-validation procedure benützten.Esgelanguns,aus72

222 verschiedenenMöglichkeiten,sechsverschiedeneFossilieneinemStammbaumzuzuordnen,jene dreiKombinationenzuermitteln,welchediekonsistentestenDatierungsresultateergaben.Als StammbaumbenütztenwireineeigensrekonstruiertePhylogenievon74Blütenpflanzenartender OrdnungMyrtales.AlswirdiedreiausgewähltenKombinationenzurAltersbestimmung einsetzten,stelltenwirfest,dassdieDatierungsresultatekleinereStandardabweichungen aufwiesenalsdieErgebnisseanderer,wenigerkonsistenterKombinationenvon Kalibrierungspunkten. ImsechstenKapitelschliesslichüberprüftenwir,wieempfindlichdreiheuteverbreitet eingesetztemolekulareDatierungsmethoden( Non Parametric Rate Smoothing , Penalized Likelihood und Bayesian dating )aufunterschiedliches taxon sampling reagieren.Dazubenützten wirDatensätzeverschiedenerGrösse,welcheDNASequenzenvonjeweils35,51,80,120,150 oder300RestionaceenArtenenthielten.RestionaceensindgrasähnlicheBlütenpflanzen,welche hauptsächlichinSüdafrikaundAustralienverbreitetsind.DurchAnwendungderverschiedenen DatierungsmethodenverglichenwirdenEinflussdestaxon samplings undderverwendeten MethodenaufdieDatierungsresultate.UnsereExperimentezeigten,dassalleMethodenmehr oderwenigerstarkaufunterschiedliches taxon sampling reagieren,abhängigvonderStärkedes beiderDatierungeingesetzten rate smoothings .Derbeobachtete undersampling Effektwar ausserdempositivkorreliertmitderDistanzzwischendendatiertenKnotenimStammbaumund demKalibrierungspunkt.Abschliessendstelltenwirfest,dasssowohldie Penalized Likelihood- alsauchdie Bayesian dating Methodewenigersensibelauf undersampling reagierenalsdie Non Parametric Rate Smoothing Methode.

223

224 Curriculum vitae

Personalien NameundVorname: Rutschmann,Frank Kaspar Geborenam: 14.Januar1970inBülachZH,Schweiz Heimatort: ZürichZH,Schweiz Ausbildung Mittelschule: KantonaleMaturitätsschulefürErwachsene,Zürich. Abschluss1997,TypusB(Latein). Hochschulstudium: UniversitätZürich,GrundstudiumBiologie, 4Semester,1997bis1999. ETHZürich,FachstudiumAllgemeineBiologie, 4Semester,1999bis2001. Diplomfach: AllgemeineBiologie(ETHZürich),mitdenSchwerpunkten Pflanzenphysiologie,Biochemie,MolekulareGenetik, ZellbiologieundMikrobiologie. Diplomarbeit: „CharakterisierungeinerCalciumabhängigenProteinkinase Le CPK1aus Lycopersicon esculentum “. InstitutfürPflanzenwissenschaftenderETHZürich, Prof.NikolausAmrhein.Herbst2001. Doktorat: UniversitätZürich,InstitutfürSystematischeBotanik, Prof.ElenaConti.Assistenz(50%)vonSeptember2002 bisJuli2006.

225